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AbstractThis paper focuses on human-machine communication with in-
telligent agents, it proposes a generic architecture with an algorithm for
natural language (NL) command interpretation which makes it easy to
de�ne di�erent applications using the description and domains of the
di�erent agents, since all that is required is their respective codes and
domain ontologies. There are two classical approaches for NL command
interpretation: the top-down approach, which relies on the syntactical
constraints of the agent's model, and the bottom-up approach which
relies on the set of the agent's possible actions. The present work com-
bines the two in a new bottom-up based algorithm that makes use of
agent's constraints. the three algorithms are then compared, and results
show that the combined approach gives best results.

Keywords.Human-Agent communication, introspection, domain ontology,
top-down and bottom-up approach, comparative evaluation.

1. Introduction

Fore a long time, the Multi-Agent System (MAS) community has focused on dis-
tributed problem solving through autonomous cognitive agents [1]. One of the
core issues in MAS research is the study of agent interaction models and proto-
cols [2] at the formal level. Although little work had been done on human-agent
communication, recent work on the use of MAS for ambient intelligence [3] and
semantic web services [4] in the context of mixed human-agent communities has
rekindled interest in this question.

Two communities working closely with the agent world have chosen to ex-
amine this issue. The embodied conversational agents (ECA) [5] community has
focused on multi-modal interaction, social behavior [6] and expression of emotions
[7]. However, their approaches rely mainly on ad-hoc pattern matching without
semantic analysis [8]. The dialogue system community, on the other hand, pro-
poses to use ontologies to improve genericity [9,10]. The main idea behind the use
of ontologies is to specify generic algorithms that only depend on the ontology
formalism. Thus, applications only depend on the ontology and the speci�c ap-
plication problem-solver. Systems like [9,11] use their ontology to parameterize a
generic parser. However, in such systems, the ontology formalism itself is ad-hoc,



depends very much on the application type and does not allow generic knowledge

representation (e.g. concept/relation ontologies). Moreover, these ontologies de-

scribe the application model as well as the application actions. In other words,

the application is written in a speci�c non-semantic language which will be exe-

cuted and in a semantic form in the ontologies. Other systems use generic knowl-

edge representation (e.g. [10]) and rely on application-dependent parsers. How-

ever, the parser uses the structure of the ontology to understand over-speci�ed or

under-speci�ed commands like �switch the light on� (the system will propose the

di�erent possible locations to be lit).

We suggest that it should be possible to extract the meaning of actions from

the code itself (without having to describe both a semantic form and an exe-

cutable form for any given action). The ontology is therefore no longer an applica-

tion descriptor but simply provides the complementary semantic information on

relations between the application concepts (which is the initial role of ontologies).

This paper focuses on NL command interpretation for intelligent agents. The

aim is to show that it is possible to de�ne a generic NL system based upon a

domain ontology and agents capable of introspection. The system extracts the

set of possible actions from the agent's code and matches these actions with the

user's command using the ontology as a glue. In addition, a score-based dialogue

manager (such as [12]) deals with misunderstood or inde�nite commands.

Whereas the architecture relies on a speci�c agent's model that allows code

introspection, the Natural Language Processing (NLP) modules (for interpreta-

tion of terms, feedback, dialogue and clari�cation) can be generalized, in order to

depend only on domain ontology and the description of the agent. In other words,

NLP algorithms remain the same for all the agents in the domain, and it is their

ontologies that make the link between the algorithms, the agent's code, the NL

commands and the user's questions.

The paper is organized as follows. The second section provides a general

overview of our agent model. Section 3 presents the NLP tool chain and the Dia-

logue Manager, which are the parts of the NLP architecture that the three algo-

rithms have in common. Section 4 introduces three di�erent generic algorithms

for NL command interpretation: a top-down one, a bottom-up one and a com-

bination of the two. Section 5 illustrates the three algorithms. Section 6 o�ers a

preliminary evaluation of the three algorithms, section 7 presents related work

and section 8 suggests future lines of research.

2. Overview

Our aim is to be able to program cognitive agents that can be controlled by

natural language commands, and that are capable of reasoning about their own

actions, so as to answer questions about their behavior and their current action.

To do so, we rely upon a speci�c language in order to access at runtime the

description of the agent's internal state and actions.



Figure 1. VDL Embodied Conversational Agents based on the LEA model. The system asks
�Could you get me the red torch?�

2.1. The VDL model

Our agents are programmed using the View Design Language (VDL)1. The VDL
model is based on XML tree rewriting: the agent's description is an XML tree
whose nodes represent either data or actions. The agent rewrites the tree at every
execution step according to these speci�c elements. This model allows agents to
access at runtime the description of their actions and to reason about it for plan-
ning, formal question answering [13], behavior recognition [14] for example. The
VDL agent model can also be used for web services composition [15], Embodied
Conversational Agents [16], social behavior simulation, etc.

In the VDL model, every agent is provided with a domain ontology written
in OWL [17]. This ontology must contain all the concepts used by the agent (i.e.
the VDL concepts), either as XML tags (except for VDL keywords), attribute
names and values or CDATA contents. We note CV DL the set of VDL concepts
and COWL the set of OWL concepts. We de�ne an injective map mapV DL de�ned
on the set CV DL and taking values from the set COWL in order to match VDL
concepts on the ontology.

2.2. Actions in VDL

It is possible to identify two kinds of behavior for an autonomous agent provided
with interaction capabilities [1]:

1http://www-poleia.lip6.fr/~sabouret/demos



• Reactive behavior corresponds to actions which are performed only when

the agent receives a command (a typical example is a start/stop operation).

• Proactive behavior is the ability of the agent to run independently of any

command.

Since this paper focuses on human-machine interaction, only work on reactions

will be considered. In VDL, reactions are triggered by external events, i.e. XML

nodes sent to the agent at runtime for command. These nodes are the formal rep-

resentation of commands. External events correspond to the content of �request�

ACL messages [2] whereas reactions describe how such messages (sent by other

agents or by the user) must be processed. The aim of the NLP system presented

in this paper is to build VDL events from a user's command. No previous work

has been done previously on NL interaction with a VDL agent and the only way

to communicate directly with a VDL agent was to use its speci�c XML-based

formalism.

Message processing in MAS protocols can be broken down into two stages.

In the �rst stage, a parser checks the syntax of the message (the message could

be rejected). It ensures that the reaction will be able to process the event and

switches it to the correct reaction. In the second stage, the reaction processes the

event itself according to the agent's internal state and the de�nition of the reaction

(i.e. behavior). It must extract the relevant information (i.e. parameters expected

by the reaction) from the event and then carry out modi�cations. However, these

modi�cations will be performed only if the current agent's context (internal state)

allows it.

In VDL, as in most action representation models, actions are de�ned as a tuple

< N, P,E > where N is the action name, P is the set of preconditions of the action

and E its e�ects. The parser and context veri�cation must be implemented within

the agent, using preconditions. Based on the previous de�nitions, we characterize

four kinds of preconditions for a reaction r in R, the set of agent reactions:

• Pe(r) is the set of event preconditions. They are used to ensure that a given

action is triggered by a given class of events. Their interpretation relies on

subsumption for checking the structure of the received event.

• Ps(r) is the set of structure preconditions. It is used to check the message's

syntax and to ensure that the action will be able to process the event.

Preconditions in Ps(r) do not depend on the agent's internal state, but

only on the received event.

• Pc(r) is the set of context preconditions. Such preconditions only depend

on the agent's internal state. For example, a (simulated) robot cannot move

when it runs out of energy.

• Pcs(r) is the set of contextual structure preconditions, i.e. preconditions

that depend both on events (selected by Pe) and on the agent's internal

state. For example, a robot cannot catch an object when this object is out

of reach.

We note Pe = ∪r∈RPe(r). For all e ∈ Pe, we note Re(e) = {r ∈ R|e ∈ Pe(r)} the
set of reactions that process the event e.



Figure 2. General architecture

3. Global architecture

This section presents the NL modules which are common to the three algorithms
and that are used within our NL command interpretation architecture.

3.1. NLP toolchain

In our project (see �gure 2), the lexical module is based on the default OpenNLP2

tokenizer, tagger and chunker. The WordNet lemmatizer provided by OpenNLP is
also used and allows the system to detect concepts represented by more than one
word (e.g. �dark red �, �extra large�).3 As anticipated in [18], the use of a grammar-
based syntactic parser is not relevant for NL commands, since users often choose
keywords to command the system rather than well-structured sentences (e.g. �drop
object low � or "take blue�). For this reason, recent work proposes to compute a
logical form of the command [18,19], using a system of logical rules rather than a
grammar-based parser. This kind of approach is more robust in real applications,
since the user's sentences are often grammatically defective. We have also chosen
a logical representation of the command, based on an analysis of the relation's
ontology, in order to detect the functional relations in the user command [20].
This logical form is mostly useful when interpreting complex relations (e.g. �the
biggest triangle�) or symmetrical commands (e.g. �from London to Boston� and
�from Boston to London� which have the same bag of words). However, this type
of representation has no impact on the three algorithms evaluated in this paper.
Moreover, the technical study of this model is not the objective of this paper.
Hence, in order to read the algorithms more easily, we will suppose that the user's
sentence is a �bag of words� (i.e. a set of words).

Before getting to the semantic interpretation, the �rst important point is to
convert the bag of words S into a set C of equivalent concepts in the ontology
that can be understood by the agent, precisely because classical dialogue systems
rely on the hypothesis of semantic connectivity [21]:

2http://opennlp.sourceforge.net/
3Currently, we do not use WordNet for semantic interpretation. We give a rapid overview of

our future project with WordNet in section 8.



�the semantic content of the utterance corresponds to a path in a semantic
network describing the application domain knowledge.�

In other words, all the words used in a command must have an equivalent concept
in the ontology. To respect this hypothesis, we take into account a simple semantic
distance measure on the ontology. For (c1, c2) ∈ C2

OWL, we de�ne the distance
between c1 and c2 w.r.t. synonymy as:

distONT (c1, c2) =
{

0 if c1 = c2 or c1 owl:sameAs c2

1 else

where owl:sameAs is the transitive and re�exive relation for concept synonymy
in OWL. This formula simply uses synonymy to link the user's command to VDL
concepts. In this way, the distONT operator enriches the Sadek hypothesis, which
can be rewritten as:

Every concept that appears within a relevant command is either directly as-
sociated to a VDL concept or is in an OWL sameAs relation with an agent's
concept.

We have de�ned in [22] a new semantic distance measure for an ontology based
on a generalization of the distance measure of Jiang & Conrath [23]. Our measure
takes into account all possible relations in the ontology and not only the sub-
sumption same-as relation. Once again, this semantic measure has no impact on
the three algorithms we want to evaluate. However, the evaluation of the system
highlights the lack of semantic interpretation of the commands, which make the
system unable to understand complex command like �take the smallest triangle�
or "drop it in place of the red form�. This result was expected since we only use
the owl:sameAs relation for �semantic� relations. Since semantic distances mea-
sures are beyond the scope of this paper, work currently in progress on them is
not presented here.

Now we can build the set C of known concepts, the bag of concepts that
represent the user's sentence, as follows:

C = {v ∈ CV DL|∃s ∈ S′.distONT (mapV DL(v), s) = 0}

where mapV DL is the injective map between the VDL concepts and the ontology
(see section 2.1) and C contains the set of all VDL concepts that appear in the
user's command. Note that the construction of C is only a preliminary step for the
algorithm described in Section 4, which shows how the set C of known concepts
is used to build VDL events using the three possible NL algorithms.

The last part of our chain is an English NL generator that transforms any
VDL node (i.e. a VDL precondition or a VDL formal command) into an English
sentence.4 Since we want our system to depend only on the agent VDL code
and the ontology, this English generator is very important. It is managed by
the Dialogue Manager presented in the following section. The English generator
algorithm appends the translation of concepts obtained by a depth-�rst search of

4Unlike the classical template approach in which each dialogue state of the system must be
rewritten for each new application.



the node. Generally, this recursive algorithm prints the node tag, its attributes as
�attribute is value�, its content (if any) and then all its sub-elements. For instance,
the formal command:

<take position="out"> <shape>square</shape> </take>

will become �take position is out shape is square�.
Moreover, when we have to translate a VDL precondition into English (for

example to explain why a problem has occurred), we must pay attention to the
VDL keywords inside. Each VDL keyword is associated to a speci�c translation
rule (but is application-independent). For example, the precondition:

<equals><event-get/><size>small</size></equals>

with the VDL keyword equals (all sub-nodes must be equal) and the VDL keyword
event-get (representing a content in an event) will be translated as: �the content
of the event must be equal to size is small�.

From a syntactical point of view the resulting output is very poor, but in our
experiments (section 6) it was su�ciently clear for the users to understand the sys-
tem's proposal or explanations. However, it is possible to improve it signi�cantly
by using an XML-based NL generator like [24].

3.2. User's feedback: the Dialogue Manager

The Dialogue Manager (DM) is responsible for both command acknowledgment
and management of misunderstood or imprecise commands. The DM will produce
di�erent answers depending on the di�erent contextual situations. The input of
the DM is computed by one of the event creation algorithms described in detail
in section 4 (top-down, bottom-up or combined). The three algorithms have the
same output, in order to be compatible with the DM input. This output is a set
G of external events. The DM �rst partitions this set into two subsets:

• The set E of possible events in the current agent's context;
• The set F of impossible events, i.e. events that correspond to the user's
NL command but that cannot be processed (at least at the current time).

Let P(r) = Pc(r)∪Ps(r)∪Pcs(r)., which is the set of preconditions that are used
to compute whether a given reaction will be able to process a given event. We
note Υ the (in�nite) set of all possible VDL nodes. Let eval : Υ2 → {>,⊥} be the
precondition evaluation function: ∀p ∈ P(r), eval(p, evt) = > i� the precondition
p is valid with respect to the event evt and the current agent's state.

The sets E and F are computed as follows:

E = {evt ∈ G|∃r ∈ Re(evt),∀p ∈ P(r), eval(p, evt) = >}

F = G\E

Note that E and F do not need to contain all possible or impossible events. They
only contain the proposals made by our NL algorithms.

In addition, for all evt ∈ F , we note np(evt) ∈
⋃

r∈Re(evt) P(r) the set of
preconditions which prevents reactions from processing this event. Since F is a
set of impossible events, np(evt) 6= ∅. The set np(evt) is computed as follows:



np(evt) =
⋃

r∈Re(evt)

{p ∈ P(r)|eval(p, evt) = ⊥}

The DM computes the matching degree of events in E and F with respect to
the user's command. For every node n ∈ Υ and for any recognized concept c ∈ C,
we note contains(n, c) = ∃x ∈ sub(n)|c ∈ {tag(x), attributes(x), content(x)},
where sub(n) is the set of all direct and indirect sub-elements of n ∈ Υ. In other
words, contains(n, c) is true i� c appears anywhere within node n. The matching
degree of e ∈ E or e ∈ F is:

p(e) =
card({c ∈ C|contains(e, c)})

card(C)

We build Emax and Fmax the best matching events. Let pE = max({p(e), e ∈ E})
and pF = max({p(e), e ∈ F}). Then

Emax =
{
∅ if pE = 0
{e ∈ E|p(e) = pE} otherwise

and the same for Fmax. pE and pF are the matching degree of elements in Emax

and Fmax. In other words, the DM only takes into consideration possible and
impossible events that best match the user's command.

We de�ne two thresholds for our algorithms. pmin is the minimum value for
an event to be considered as a possibly understood command and pmax is the
further limit beyond which the event is considered as a correct representation of
the user's command. They correspond respectively to the �tell me� and �do it�
thresholds for Patty Maes in [12]. She proposed empirically to use a margin for
accepting events: pmin = 0.3 and pmax = 0.8.

The answer given by the DM depends on the position of pE and pF with
respect to pmin and pmax:

1. If pE ≥ pmax, the command is considered as correctly understood by the
system. The DM either sends the event to the agent (when |Emax| = 1) or
informs the user about an ambiguity (when |Emax| > 1). For instance5:

U: Take something red.

S: I can either �take object shape is square color is red� or �take object
shape is triangle color is red�.

2. If pmin < pE < pmax and pE < pF , the best understood event is not
possible (pF > pE) but something close was understood which is still
possible (pE > pmin). The DM asks the user for a reformulation. It displays
both the failed preconditions of impossible events (∪evt∈Fmaxnp(evt)) and
the list of possible events Emax.

U: Put it in the upper left cell (with upper left cell already occupied).

S: I can't because: the content of upper left cell is not empty. Therefore,
I can either: - drop object in the upper middle, in the upper right, in
the center left or in the lower left.

5All examples are taken from the evaluation in section 6.



3. If pmin < pE < pmax and pF ≤ pE , the impossible events can be ignored,
but still the system is not sure about the user's command (pE < pmax). It
asks for a con�rmation by displaying events e ∈ Emax.

U: Take the blue or red triangle shape (but there is no blue triangle).
S: Do you mean �take object shape is triangle color is red�?

4. If pE ≤ pmin and pmax ≤ pF , the system correctly understood an impossi-
ble command. It tells the user that this command is not possible by giving
the list of failed preconditions np(evt), evt ∈ Fmax.

U: Take the blue object (with something already in hand).
S: I can't because: the content of hand is not empty.

5. If pE ≤ pmin and pmin < pF < pmax, the system might have understood
something but this command cannot be performed. The DM asks the user
for con�rmation. The result will be the same as for (3) except that the
command is impossible. After a possible con�rmation from the user, the
agent will assert that the event is not possible.

U: Take the blue or red triangle shape (but there is no blue triangle and
with something already in hand).

S: Do you mean �take object shape is triangle color is red�?
U: Yes.
S: I can't because : the content of hand is not empty.

6. If pE ≤ pmin and pF ≤ pmin, the system didn't understand the command
and tells the user.

4. NL command interpretation algorithms

This section presents the algorithms that build the set of VDL events G from
natural language commands. This set is passed to the Dialogue Manager. As ob-
served by Allen [25], two methods can be considered for processing NL commands:
top-down and bottom-up. We �rst propose generic implementations of these two
methods, i.e. as algorithms that only depend on the ontology and the operational
semantics of our agent's programming language, and then suggest a combined
algorithm that integrates the top-down idea of building impossible events within
a bottom-up approach.

4.1. The top-down approach

The top-down approach consists in building the formal command from the NL
command, considering only the structural constraints imposed by the formal
model (e.g. [21,19]). It is mostly used when the system cannot ensure that the
command would be possible at the current time. The main drawback of the top-
down approach lies in the di�culty of keeping generic rules in the system. With-
out application-speci�c rules on the syntactic structure of events, the system can
produce �impossible events�, i.e. events that will not be accepted by the system
because of Pe, Pc or Ps. For instance, Shapiro [19] proposes to use �impossible
events� to compute such ad-hoc preconditions for inclusion within the agent's



knowledge base. In most other systems, the impossible events are not considered
and the only answer sent to the user is something like �I don't understand your
command�. On the contrary, our agent model VDL makes use of its introspec-
tion ability to compute explanations as to why a given event could not be pro-
cessed6. These explanations are produced by analyzing of the failed preconditions
for a given event (the np(e) function de�ned earlier in section 3.2). This allows us
to de�ne a top-down implementation with generic rules without having to take
impossible events into account.

Consequently, our implementation of the top-down approach only uses sub-
sumption preconditions (Pe) and the agent's internal state to build the VDL
event from known concepts (C). Subsumption preconditions allow us to de�ne
the skeleton of the possible events that correspond to a given concept. A deeper
analysis of the agent's internal XML code allows the system to enrich this event.
Rather than using strict grammar rules (like in [26]), we propose to de�ne an
event construction method based upon the VDL syntax and to apply heuristics
to constrain the construction with regard to the VDL operational semantics.

Let E = {e ∈ Pe|tag(e) ∈ C} and ∀e ∈ E, let Ce = C\{tag(e)}. For every
e ∈ E, our algorithm considers the set of leaves Le of e and searches in the agent's
code for nodes whose tag t ∈ Le and that contain at least one concept c′ ∈ Ce in
their sub-elements. ∀e ∈ E, we note Γe the set of these nodes and Γ =

⋃
e∈E Γe.

We then apply a merge algorithm that merges several possible event skeletons
in Γ (corresponding to di�erent concepts in the user's command) into one single
event. The algorithm builds the maximum common subsumed node.

For every set of nodes N , let merge(N) = max� {x ∈ Υ|∀n ∈ N,x � n}
where Υ is the (in�nite) set of all possible VDL nodes. The idea of the top-down
algorithm for computing G is to merge the largest possible number of subsets of
Γ, i.e. the events that best match the user's command. Let Γ∗ be the power set
of Γ then:

G =
⋃

N∈maxcardΓ∗

merge(N)

Note that the top-down algorithm does not consider whether events are pos-
sible or not: it simply builds the set of best matching events and passes it to the
DM. As a consequence, for the DM, E = Emax and F = Fmax .

However, because the set Γ is possibly very large, and because computing
merge is NP-hard, we reduce Γ using a minimal depth heuristic: for a given
couple (e, c′) ∈ E ×Ce, we only keep in Γe the node with the minimal depth(cj).
This heuristic is based on the forthcoming interpretation of events (according to
VDL's operational semantics). It is a minimal heuristic to decrease recall, improve
precision and only suppresses events that have been built incorrectly in terms
of VDL operational semantics. It is possible that incorrect events remain, but
the remaining set still has the complete set of best matching events and correct
events.

6For instance: �Take the red object� when the action is not possible (due to a non-empty
hand) leads the system to tell the user that the hand was not empty.



4.2. The bottom-up approach

The classical bottom-up approach makes use of a previously de�ned list of com-
petences and tries to match the natural language command to one of the possible
formal commands (e.g. [11,9]). This allows programmers to write �generic� NL
algorithms that only depend on this list of competences. However, since this list
is de�ned statically, the system has no knowledge about what is or is not possible
in the current state. Concretely, the list of competences has to contain all possi-
ble dialogues (even problem cases) and their translation into formal commands
(possibly with parameters). To make matters worse, there is often a big overlap
between this huge amount of information and the agent's rules that have been
de�ned for the problem solving itself.

To avoid this problem, recent work has considered a dynamic bottom-up ap-
proach (e.g. [27]). In these systems, only a minimal set of competences is de�ned
in advance. If an NL command does not exactly match a competence, the system
tries to generate a new one with the correct speci�cation using parts of the other
competences. We propose to go further and to adopt a constructive bottom-up
approach based on the analysis of preconditions. In this way, we do not have to
describe an initial competences list, since the primary actions described in the
agent are enough to build a competence dynamically. Our approach uses contex-
tual information (obtained from the agent's code at runtime) to determine which
events can be processed by the agent in the current state. This problem has been
widely studied for software validation (e.g. [28]) and has given interesting results
for testbed generation. It can be adapted to event generation and NL command
processing. Preconditions can be seen as tests that are applied to messages, which
means that our system builds the list of possible events from the agent's point of
view, without worrying whether or not any of them matches the user's command.

The bottom-up algorithm uses event preconditions (Pe) to provide the initial
event skeletons. Since our aim is to compute a set of possible events, we �rst
remove from Pe those events that cannot be processed by the agent due to the
current agent's context:

Pe+c =

e ∈ Pe|∀p ∈
⋃

r∈Re(e)

Pc(r), eval(p, e) = >


Pe+c is the set of event skeletons that are accepted by the agent with respect to
context preconditions (Pc). Note that Pe+c ⊆ Pe.

The idea of the bottom-up approach is to use structure and contextual struc-
ture preconditions (Ps and Pcs) as a set of constraints on the events to re�ne event
skeletons into actual events. For all e ∈ Pe, we note refine(e, r) ∈ Υ the event ob-
tained from the skeleton e and the set of preconditions Ps(r)∪Pcs(r) of the reac-
tion r ∈ Re(e) using our testbed generation-based algorithm. The complete algo-
rithm for refine, which is too long to be presented here, relies heavily on the VDL
model's operational semantics. It is based on a recursive interpretation of VDL
terms with di�erent rules for each VDL keyword (see �gure 3). In this example,
event, ctx-str, exist and get are VDL keywords. The <event><take/></event>
node indicates that the root of the XML command must be <take/>. The precon-



Part of an agent's code:

<a1>

<b>7</b>

<c>8</c>

</a1>

<a2>

<b>9</b>

<c>10</c>

</a2>

Two preconditions:

<event><take/></event>

<ctx-str>

<exist>

<get><event-get><take/></event-get></get>

<b/>

</exist>

</ctx-str >

Two events generated by these preconditions:

<take><a1/></take>

<take><a2/></take>

Figure 3. An example of event generation

dition can be translated into English as �the node take in the event (i.e. <event-
get><take/></event-get>) must contain a node 1) with a child b and 2) that
exists in the VDL code�. Since there are two nodes in the code which validate this
precondition, the event-generation algorithm can build two events (respectively
for a1 and a2 ).

The set of events G is then computed by:

G = {refine(e, r),∀e ∈ Pe+c,∀r ∈ Re(e)
|∀p ∈ Ps(r) ∪ Pcs(r), eval(p, refine(e, r)) = >}

Note that G is the set of possible events7: all events in G are accepted by the
agent and all accepted events belong to G. Thus, E = G and F = ∅.

4.3. A combined algorithm

One limitation of the constructive bottom-up approach is that our system will
not be able to understand user commands that correspond to impossible events
(whereas the top-down algorithm can build such impossible events). The classical
competence-list based approach also encounters this problem. This is generally

7The same bottom-up generation algorithm is used by our forward-chaining planner in VDL
agents.



solved by de�ning a set of special competences which are triggered by the incorrect
message and return a particular template-based answer for each incorrect state.
Unfortunately, this reinforces the disadvantages of the competence-list approach.
On the contrary, we want to keep the idea of event generation, but with the ability
to generate impossible events to match a possible incorrect command from the
user. Therefore, we would like our algorithms to be able to tell the user that a
given command is correct but not possible in the current state.

In order to do this, we propose to combine the bottom-up approach with the
top-down idea that it is possible to build events that are incompatible with the
agent's current context. Let Gbu be the set of possible events as computed by the
bottom-up approach. The idea of our combined approach is to enrich Gbu with
the set of �currently impossible� events such that Gbu ⊆ G:

Currently impossible events are events that are not acceptable by the agent in
its current state but that would be accepted in a di�erent state.

This notion of currently impossible events is the key aspect of our combined
algorithm. It relies on the idea that some preconditions (Pc and Pcs) are heavily
dependent on the agent's current context. For instance, let us consider a robot
that can perform a given action i� it has enough energy. This context precondition
(having enough energy) can be true at some point during runtime and false at
another. Similarly, if the robot has to keep close to an object so as to be able to
pick it up, the context-structure precondition I am next to object X (X being a
parameter of the event/command) depends, for a given X, on the current state.
For the same object X, it can be true at one point and false at another. For
example, let us take the event �take object A� for an agent that is far from
A. This event is currently impossible. In a di�erent state, the context-structure
precondition would be evaluated as true and the event would be possible.

More formally, currently impossible events are events associated with Pc or
Pcs that fail though they would succeed in a di�erent state. In order to build such
currently impossible events, we simply use constraint relaxation on context pre-
conditions and contextual structure preconditions (Pc and Pcs) when generating
the set of events G. To relax the Pcprecondition, we do not use the Pe+c de�ned in
section 4.2 but Pe directly. This allows us to build a set of events from skeletons of
actions that are contextually currently impossible, but that would be possible in
another state. The Pcs precondition describes a parameter of the agent's context
that can be used in an event (e.g. in the command �buy me a ticket for the Pink
Floyd show�, �Pink Floyd � is dependent on the agent's context). Using the Pcs

preconditions only when building the candidate events but not when testing them
increases the number of potential events.

Finally, the formula to compute the set G is very close to that of the bottom-
up approach, but with fewer constraints. The set of events G is computed by:

G = {refine(e, r),∀e ∈ Pe,∀r ∈ Re(e)
|∀p ∈ Ps(r), eval(p, refine(e, r)) = >}

Note that our algorithm cannot guarantee that this constraint relaxation
choice will not introduce too many false events which would mean that the system
proposes too many impossible events. However, we suggest that it will improve



the bottom-up algorithm result, as the evaluation presented in the next section
will show.

5. A complete example

This section presents a complete example of natural language processing using
our architecture. It is illustrated using the combined algorithm approach, since it
is the best algorithm in the evaluation, and also allows us to present brie�y the
results of the event generation algorithm.

5.1. The �jojo� agent

The example here is that of the agent used for the evaluation in section 6.
The agent is a simple agent called Jojo8 inspired by Winograd's block's world
[29]. This agent has two possible actions: to take an object or to drop it into a
given position in a three-by-three �grid�. An object is characterized by its shape
(shape ∈ {square, triangle, circle}), its color (color ∈ {red, green, blue, white})
and its size (size ∈ {tiny, small,medium, big}). A position is a couple in
{upper, center, lower} × {right,middle, left}. For example, a formal event using
this VDL formalism is:

<take><object>

<shape>square</shape>

<color>red</color>

<size>medium</size>

</object></take>

5.2. Building of the set of recognized concepts

Let the agent �Jojo� be in the state of �gure 4. The agent has a white circle in
its hand. There are two objects in the grid, a blue circle in the lower left cell and
a red square in the center. We consider the following command:

�hi jojo, release the circle on the lower line!�

The �rst step is to tag, chunk and lemmatize the command. The result of this
�rst step is the model:

[NP hi:PRP ] [ADVP jojo:RB ] [?? ,:, ] [VP release:VB ] [NP the:DT circle:NN ]
[PP on:IN ] [NP the:DT lower:JJR line:NN ]

Next, the system must compute the set C of recognized concepts, by searching
for words in the ontology which can be linked to the set of all VDL concepts. The
result is the set:

C = {[release VDL:drop], [circle VDL:circle], [lower VDL:lower] [line VDL:line]}

8You can try Jojo on our demo page: http://www-poleia.lip6.fr/~sabouret/demos. The
examples in the Dialogue Manager's algorithm come from the experimental corpus.



Figure 4. An initial state of our agent �Jojo�.

In Jojo's ontology, the verb �release� is declared as equivalent to the verb �drop�
using the sameAs relation. Therefore the semantic distance de�ned in section 3.1
returns 1 to distONT (drop, release). The �nal �bag of words� that we will consider
is the set:

C = {drop, circle, lower, line}

5.3. Event generation

Seven events are generated for the �take an object� action, one for each object
present in the agent's world. An event �take an object� is like:

<take><object>

<shape>square</shape>

<size>medium</size>

<color>white</color>

</object></take>

Ten events are generated for the �drop to a cell� action, one for each cell in the
grid (9 events) and one corresponding to outside of the grid. An event �drop to a
cell� is like:

<drop><position>

<line name=�upper�/>

<row name=�left�/>

</position></drop>

Finally, the set G of generated events contains 17 events, which are not all possible
at the current state.

5.4. The Dialogue Manager's response

Firstly, the Dialogue Manager has to separate the set G into the set E of possible
and the set F of impossible events. In the current state, the possible events are
only drop events, corresponding to a cell in the grid or outside of the grid. Hence,
the set E contains 8 events:



1. Seven events for the seven free cells in the grid, one �drop to a cell� action

for each cell.

2. One event for outside of the grid.

Therefore, the set F contains 9 events:

1. Two events for the two cells in the grid which already have an object.

2. Seven events for the seven objects which the agent is unable to take, be-

cause it already has an object in its hand.

The next step of the Dialogue Manager is to compute the pE and pF relevance

score, which means computing the maximum relevance sets Emax and Fmax. These

scores correspond to the maximum relevance score between the sets of concepts

C and E (resp. F). The two events of E which maximize the score, the two events

in Emax, are:

<drop><position>

<line name=�lower�/>

<row name=�center�/>

</position></drop>

<drop><position>

<line name=�lower�/>

<row name=�right�/>

</position></drop>

because the only two free cells in the lower line are the center cell and the

right cell. This means that the score pE is:

pE =
|{drop, lower, line}|

|{drop, circle, lower, line}|
= 3/4

Similarly, there is only one event which maximizes the score in the set F to

build the set Fmax:

<drop><position>

<line name=�lower�/>

<row name=�left�/>

</position></drop>

because the lower left cell is already taken by an object. Thus, we have pF = 3/4.
Now we have the parameters pE = 3/4, pF = 3/4, |Emax| = 2 and |Fmax| = 1.

The thresholds used by the Dialogue Manager are pmin = 0.3 and pmax = 0.8.
This corresponds to policy number 3: pmin < pE < pmax and pF ≤ pE . This

strategy ignores the set of impossible events F and asks the user for clari�cation

and con�rmation:

Your command is imprecise, please give information.
I can either:
- drop position line name is lower row is center
- drop position line name is lower row is right

Note that the algorithm has skipped the last event for the lower line because it

was dynamically marked to be impossible.



Figure 5. Initial state and goal of the experiment

6. Preliminary evaluation

The top-down algorithm computes the best matching event from the user com-
mand, without considering if the resulting events are possible or not. The bottom-
up algorithm computes the set of all possible events in the current agent's context.
The combined approach computes the set of possible or �currently impossible�
events, using a bottom-up algorithm. The DM �lters the result so as to separate
possible and impossible events and to determine which events best match the
user's command.

In order to evaluate the algorithms, we chose a single task and made three
identical tests (one for each algorithm) using the same protocol. The �rst section
presents the protocol in detail, the second the overall results.

6.1. Protocol

Our experiment was conducted using the simple agent called Jojo presented in
section 5.1. We had twelve subjects for this experiment, four for each algorithm.
None of them had ever used the system before. They were given no information
about the system's NLP capabilities. The aim was to reach a given particular
state (see Figure 5), with no time limitation. Subjects were afterwards asked to �ll
out a questionnaire on what they thought about the system's NLP capabilities.

We expected that:

1. the top-down approach would understand the user's command better since
it builds the best-matching possible formal representation and

2. it would provide explanations for impossible commands;
3. the bottom-up approach would lead to easier user interaction since it pro-

poses commands to the user;
4. the combined algorithm o�ers the advantages of the �rst two.

6.2. Overall results

Figure 6 shows the average time necessary to complete the task and the average
score awarded by users to the system, for all three algorithms. It clearly shows
that users prefer the bottom-up approaches (classical or combined) to the top-



0

500

1000

1500

2000

2500

Duration 1965,75 923 914
Top-Down Bottom-Up Combined

0

1

2

3

4

5

6

7

8

9

10

Score 4 7,875 8,25
Top-Down Bottom-Up Combined

Figure 6. User evaluation and task duration

down one, since the feedback to the user and the agent's proposals are seen as
very important from the user's point of view and reduce by more than 65% the
time required for the same task.

A deeper analysis of the questionnaires con�rms the usefulness of good feed-
back about what the agent expects from the user. For instance, when the user
asks: �Drop on the lower line�, the bottom-up approaches propose all empty lower
cells. From a mixed-initiative planning perspective, the user knows exactly what
the system expects. Moreover, if only one empty cell exists, the system drops di-
rectly into the correct cell. On the contrary, explanations provided by the system
from top-down generated events are often confusing, as for instance: �I can't drop
in the upper left cell because it is not a cell �. The reason for these failures is that
the top-down algorithm does not analyze the structure of the events it tries to
generate. In the previous example, �Drop in the upper left cell � leads to a failure
because �cell � is recognized as a concept whereas it should not be added to the
event's structure.

What makes the combined approach signi�cantly better than the bottom-
up one (from the user's point of view) is that it retains the top-down capability
to provide explanations about what is not possible. For instance: �Take the red
object� when the action is not possible (due to a non-empty hand) leads the system
to tell the user that the hand was not empty. Similarly, �Drop upper left� when the
hand is empty or the cell already occupied also leads to a good explanation. Using
such feedback on the agent's context, users often switched to possible commands.
In addition, the di�erence between the bottom-up algorithm and the combined
one should increase when in less intuitive contexts than the block's world: users
will not be able to guess correct formulations without any explanation about
impossible actions. However, we have not tested this thoroughly yet.



7. Related work

To our knowledge, there is no work on NL interaction which proposes an evalu-
ation of the bottom-up and top-down approaches, thus, making it impossible to
compare the importance of our results with similar experiments. However, we will
try to present the di�erence that exists between our ontology-based generic NL
architecture and the other NL interaction systems. This will be done by looking
at the two major weaknesses presented in the introduction: the separation of the
knowledge representation from the NL interpretation algorithms and the speci�c
problem-solver language adapted for semantic interpretation and introspection.

7.1. Knowledge representation

Currently, everyone agrees that it is necessary to separate the knowledge repre-
sentation from the NL algorithms [9,10,11,30], as this improves the capacity to
instantiate an NL-core algorithm to a new system with a new domain. However,
the borderline between the two and the choice of the content formalism for the
knowledge representation are very fuzzy. We suggest that it is possible to use a
generic ontology formalism which represents only the domain relation and the
concepts. The semantic interpretation must be based on a semantic similarity
measure in order to make interpretation possible. We have de�ned a new com-
plex measure based on recent advances in this domain for our system in [22].
Similarly, Flycht-Eriksson [31] uses a generic ontology formalism with di�erent
kinds of relations. However, the NL algorithms are domain-speci�c, so this system
does not use a similarity measure. Milward's system [10], which uses a separate
and generic ontology, makes inferences to understand overspeci�ed or underspec-
i�ed commands. However, the ontology is a hierarchy of concepts and is in fact
an application of the very simple Rada measure [32] which is not e�cient for
complex semantic interpretation [33]. Another example, SmartKom [30], aims at
de�ning a multimodal embodied conversational agent with speech recognition9.
They use a separate ontology [34] for disambiguation and they have de�ned a
contextual score, called OntoScore [35]. The ontology is de�ned in OIL. However,
the contextual score is only used to disambiguate the set of proposals made by
the speech recognizer and not for the semantic interpretation. The semantic in-
terpretation is handcrafted in a speci�c language called M3L which takes into
account multimodal communication (speech and gestures).

Many systems do not use a generic ontology formalism but a speci�c one.
This causes many problems when shifting to a new domain, because the speci�c
formalism is very hard to master and di�cult to use. For example, SnepS [36]
is a dialogue system architecture to command a robot in the real world based
on a top-down approach10. This system de�nes its own knowledge representation
called SnepS-Log based on semantic networks and logical operators compatible
with NL semantics [19]. A command is modeled in a logical form using a set of
Sneps-Log rules from the application. The approach is very similar to that of
Artimis [21] in which the logical model is an extended version of the BDI logic.

9http://www.smartkom.org
10http://www.cse.buffalo.edu/sneps/



They also use prede�ned rules to build the representation of the user's command.
Compared to our generic formalism approach, the logic formalism is speci�c to
their systems and very di�cult to use. For example, SnepS-Log de�nes a set of new
operators with a very speci�c semantics. Similarly, BDI programming requires
some experience.

Another example is the TRIPS system [37] that uses an ontology to describe
the parameters of their generic parser [9]. There are two ontologies (LF and KR),
one for the syntactic structure and the other for the domain information. The LF
ontology is built to be �as general as possible, [a] relatively �at structure and lin-
guistically motivated� from an extended version of the FRAMENET ontology [38]
while the KR ontology is �domain-speci�c concept, [with] roles organized for e�-
cient reasoning�. In practise, the LF ontology de�nes too much application-speci�c
information which is also de�ned in the problem solver. Moreover, the linguistic
equivalences are handcrafted and this is a very costly process. As for, the KR
ontology, it is a set of patterns used to trigger the correct action: a pattern algo-
rithm is not a semantic interpretation and requires many rules to obtain e�cient
results. Another example is the work of Paraiso & Barthes. They have de�ned an
architecture to implement conversational agents [11]. They use a domain ontology
and WordNet for disambiguation with direct synonymy recognition (using the
synset de�nition). However, the domain ontology is a very strict formalism which
describes the action and the keywords needed to trigger it. Moreover, the way
they use WordNet does not take into account recent work on semantic similarity
and complex requests cannot be understood. Last but not least, the CEDERIC
system [27] also separates its ontology. It has a semantic similarity function for
semantic interpretation, but unlike our system, the ontology is de�ned by using a
speci�c formalism, the KM language. This language describes the actions, the do-
main knowledge, the discourse model and the lexicon all in the same model, which
means that the ontology is more application speci�c than a domain-application
ontology. For example, a new application working on the same knowledge model
requires rewriting many parts of this ontology. Moreover, each entry in the on-
tology is linked to a handcrafted weight which is used for the semantic similarity
function. This similarity function is ad-hoc for the interpretation algorithm and
cannot be extended to another formalism.

7.2. Problem-solver language and natural language interpretation

Another major aspect in these systems is the problem-solving speci�cation. Ev-
eryone agrees (as in the matter of the role of ontologies), that to improve the
genericity of a system, a speci�c language must be used to describe the problem
solver. There are two kinds of approaches. The classical approach describes the
problem solver �rst in the real execution code and then, once again, in a speci�c
semantic language which represents the functionalities [9,19]. The more recent
approaches try to de�ne a language that is at one and the same time the code
to be executed and the semantics of its code [30,27,11]. This reduces drastically
the time needed to write a new architecture and it is this second approach that
we have chosen. We use the VDL language which is both an action description
language [39] and a semantic language [40], (i.e. a language capable of introspec-



tion). Similarly, the CEDERIC system [27] de�nes an action description model

with preconditions and e�ects (as does our agent model VDL). They have de�ned

a few set of plans and, in the case of complex commands, the system is able to

modify or combine many plans to construct a new one. This is, to our knowledge,

the only system which proposes a dynamic bottom-up approach. However, as we

pointed out in the previous section, the KM language describes, all in the same

model, the action, the domain knowledge, the discourse model and the lexicon.

Most of the current systems make use of the �rst approach. One example is

COLLAGEN [41], a new language especially de�ned to program user assistants.

This language allows the developer to describe all the discourse plans (a recipe)

between the agent and a user. Thus, it is possible to de�ne many di�erent agents

that will share the same plan recognition algorithm. However, this language de-

�nes the interaction plan and not the problem-solver code, which has to be writ-

ten separately. Similarly, the KR ontology of TRIPS [9] de�nes the interaction

pattern with the user and branches into a hardcode problem-solver.

8. Conclusion & future lines of research

This paper has proposed a generic NL command interpretation system within the

framework of the intelligent agent technology. Our algorithms can be parameter-

ized by the agent's code and the domain ontology. The system is integrated in

the VDL multi-agent platform and can be used for human-agent communication

in semantic web services composition [15]. However, even if we use the VDL lan-

guage for programming agents, our approach is not dependent on the language

and can easily be adapted to other programming languages, provided they are

capable of introspection (i.e. one can generate the set of possible and impossible

events).

Our current system uses the "combined" algorithm with a logical syntactic

representation of the user's command [20] (instead of the "bag of words" C) and a

semantic similarity measure [22] based on [23] (instead of the simple owl:sameAs

relation). We are currently evaluating the impact of these extensions on natural

language interpretation.

To match the user concepts to the ontology, the Sadek hypothesis is not

e�cient, since the ontologies do not de�ne all the synonyms and de�nitions for

each word. To improve this, one solution is to use work on disambiguation with

WordNet [33] to anchor all the terms in the command to the ontology, i.e. to

match a concept from the ontology for each user concept. In addition, the semantic

similarity we want to use allows us to �nd the closest (semantically speaking)

application concept to the anchoring of a user concept. Our measure relies on the

assumption that an ontology contains many other relations than is-a, part-of or

inverse-of. This information can be used to determine the relatedness degree of

two concepts, in order to build the best set of application concepts representing

the command.
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