
A Performance Study of the Squid Proxy on HTTP/1.0Alex RousskovNational Laboratory for Applied Network Research1850 Table Mesa DriveSCD, Room 22cBoulder, CO 80307rousskov@nlanr.netValery SolovievInktomi Corporation1900 South Norfolk StreetSuite 310San Mateo, CA 94403soloviev@inktomi.com

AbstractThis paper presents a performance study of the state-of-the-art caching proxy called Squid. Weinstrumented Squid to measure per request network and disk activities and conducted a series of experimentson large Web caches. We have discovered many interesting and consistent patterns across a wide variety ofenvironments. Our data and analysis are essential for understanding, modeling, benchmarking, and tuningperformance of a proxy server.Keywords: performance analysis, Web caching, caching proxy, pro�ling, Squid.

ii

A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0 11 INTRODUCTIONThe World Wide Web has clearly become the environment for global information distribution, ex-change, and sharing. Caching proxies are playing an important role in handling Web tra�c. Web caching isone of the key methods for coping with the exponential growth of the Web.Caching proxies are usually installed where many clients are accessing the Internet through a singlepath. During the �rst client request for a Web object, a proxy cache stores a copy of the response. Subsequentrequest for the same object may then be served from the local storage rather than from a remote server.Caching saves network bandwidth on outbound connections and may reduce client response time.Local copies of the Web objects are usually stored on disk. The storage capacity of a typical proxyis several gigabytes. While savings in bandwidth are almost guaranteed, the improvement in response timeis not. Indeed, every request that goes through a proxy encounters extra protocol overheads and processingdelays. These delays may actually increase total response time compared to a direct (no proxying) transfer.Caching proxies must employ special algorithms to reduce processing delays. Also, when a caching proxybecomes a bottleneck, the clients immediately experience untolerable \network" delays. Thus, a proxy musthandle intense tra�c without performance degradation. Sophisticated techniques have been developed toimprove proxy performance under heavy load.However, little is known about performance of real proxies. At �rst, caching proxies were developed aspublic domain software by Web enthusiasts. These pioneers did not have time and means for experimentingwith alternative designs and performance solutions. Thus, they had to rely on \common sense" and extensiveborrowing of design and performance ideas from other applications. Only now, public proxy software ismature enough to shift the focus from adding essential features to enhancing the performance. The publicdomain leader is a state-of-the-art caching proxy called Squid [Wessels 1998].There is also a growing number of commercial products that are squeezing out public domain softwarefrom caching solutions market. Commercial products are appealing to enterprises handling large volumes ofWeb tra�c (the interesting case). Some commercial products claim their performance superiority to publicdomain software but present limited interest to the research community because of their closed design andproprietary protocols. Interestingly, many commercial proxies are derived from Squid or its predecessorHarvest.2 RESEARCH CONTRIBUTIONSWe present performance analysis essential in understanding the work of a state-of-the-art cachingproxy. Our instrumented version of Squid measures per request network and disk activities. These detailedmeasurements allows for in-depth studying of major proxy components. We identify and quantify networkand disk performance degradation during high load periods. We also demonstrate that various classes ofrequests have di�erent impact on proxy resources, and optimization decisions must take that into account.We study the performance of caching proxies in a variety of Unix environments and are able toidentify many common performance patterns. We also show how the level of caching hierarchy a�ects proxyperformance.Our measurements and observations can be used for:� performance modeling of a proxy server� benchmarking of proxies� performance tuning of existing proxies� identifying potential bottlenecks� evaluating current design decisions and future enhancementsOur analysis is unique because we cover a variety of hardware, Unix operating systems, cachinghierarchy levels, and workloads rather than concentrating on a single con�guration. To our knowledge, ourdata collection is the only source of comprehensive proxy performance statistics available publicly [Rousskovand Soloviev 1998]. The collection has already been used in several studies on Web caching [Tewari et al.1998].

2 A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0Finally, our study is not without a few shortcomings. For example, the measurements are done withHTTP/1.0 tra�c only. For details and discussion, please refer to Section 7.3 TERMINOLOGYWeb caching, as any modern invention, uses special terminology to name objects of interest. Un-fortunately, many terms are often misused or misinterpreted. In this section, we give our interpretationof commonly used Web caching terms. Terms are grouped logically rather than alphabetically. HTTPdocument gives precise de�nitions for some of the terms [Fielding et al. 1998]. Note that throughout thediscussion we use terms object, document, and �le interchangeably, usually meaning an origin server response.client An originator of a request for a particular Web object.originserver A Web server that keeps the original copy of a document.proxycache HTTP de�nes proxy as \An intermediary program which acts as both aserver and a client for the purpose of making requests on behalf of otherclients."server Origin server or a proxy. With cooperative caching, a proxy may fetchmisses from another proxy. The latter proxy e�ectively becomes an \origin"server for the �rst proxy.uncachableobject An object that should not be cached or served from the cache by a proxyfor whatever reasons. For example, a \force-reload" request from a Webbrowser (the client forbids caching), or a \dynamic" document fetched froman origin server (the server forbids caching). Finally, a caching policy of theproxy itself may not admit certain documents for caching. For example,very big documents are often uncachable. Statistics not included in thispaper shows that about 20-25% of Web objects coming through proxiesare uncachable.negativecaching Storing an indication that a client request for a particular object resulted inerror. If the same object is requested again within a short period of time,the same error reply will be sent to a client without verifying the currentsituation.hit A client request satis�ed with information already available in the cache.The origin server may be contacted to verify the freshness of the informa-tion.200 hit A hit with a 200 reply code. Occurs when proxy reply contains objectcontent and no errors were detected. This is a most common type of a hit.IMS hit(304 hit) A hit with a 304 reply code. Occurs when client requests an object withmodi�cation date later than a certain time. The proxy checks that theobject has not been modi�ed after that time. Thus, only a small noti�cationmessage is sent back to the client. This hit class should not be confusedwith returning of stale responses to \reload" client requests. Correctlycon�gured proxy honors \reload" requests and fetches the object directlyfrom the origin server.diskhit 200 hits that were resolved by reading content from disk.memoryhit 200 hits that were resolved by sending content from memory. The requesteddocument was in the \hot memory" bu�er and, thus, no disk activity wasnecessary.

A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0 3negativehit A hit for a negatively cached document.miss A client request that is not a hit.swaprequest Swap-In or Swap-Out request. May result in more than one disk I/O. Not allHTTP requests result in swap requests. Moreover, one HTTP request mayresult in many swap requests, depending on the HTTP request propertiesand cache condition.swap-inrequest An internal request to load an object from disk into memory.swap-outrequest An internal request to store an object from memory to disk.hit ratio(DHR) Document Hit Ratio is a ratio of the number of hits to the total number ofrequests received by a proxy within a given time interval.byte HR(BHR) A ratio of the total size of all hits to the total size of all replies sent by aproxy within a given time interval.swap-inratio A ratio of the number of Swap-In requests to the total number of swaprequests performed within a given time interval.4 METHODOLOGY4.1 The PatchPerformance data was collected using a patched version of Squid caching proxy [Rousskov 1997]. Thepatch enabled Squid to log detailed per request measurements of network and disk I/O activities. For eachprocessing stage, the patch recorded the following three measurements.� The start of the activity: A timestamp when the activity is about to begin with microsecond1)resolution.� The �rst delay: For example, the time it took to read the �rst page of a �le or to receive the �rstblock of data over the network. The delay is measured from the start of the activity with microsecondresolution.� Total delay: the time it took to complete the activity with microsecond resolution. For example,the total time to read a document from a disk or receive a document from a server. All delays thathappened after the start of the activity are included.Some �elds may contain null values if the corresponding request did not participate in a certainactivity.For each HTTP GET request, the patch logged information on the following request stages.Client connect: Accepting a connection from a client and reading client request. Client-side delays are notmeasured. Network interface card queuing time prior to the accept() system call is not measured.Proxy connect: Establishing a connection with a server and then sending a request for a document. DNSlookup delays are not included.Server reply: Receiving a reply from a server and closing the connection.1)To record start of \client start" and swap activities, the patch re-uses standard log �elds that have millisecond resolution.

4 A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0Proxy reply: Sending a reply to a client and closing the connection.Swap-In: Swapping a document from a disk into memory. Includes a delay for opening a �le. Note thatwe can measure �le system performance, not raw disk I/Os.Swap-Out: Swapping a document out from memory to disk. Includes a delay for creating a �le.It is important to note that the patch itself did not increase the proxy load. Time measurements wereperformed using Squid internal time, without extra system calls. Total memory consumption did not changesince measurements were kept in a compact form, for pending requests only; a negligible addition especiallycompared to all static information that had to be maintained by Squid. Overhead from adding extra bytesto standard log entries is considered to be negligible because the cost of I/O for small log entries does notdepend on their actual size. The total disk space requirement was increased. However, it was not a problemfor the participants since logs were usually kept on a separate disk with enough space2).4.2 Experiment FrameworkFor each participating proxy, we collected at least one day worth of logs. When log �les were collected,we ran several analyzing scripts to extract useful statistics. For a 24 hour log, we performed about 200measurements. A measurement is a trace or distribution of a single performance parameter like \clientconnect delay trace" or \distribution of network transfer size". Related measurements were grouped in plots.For example, the \File Size Distribution" plot contains size distributions for various classes of documents.To produce meaningful results, we used percentiles and distributions whenever possible. The median(50th percentile) was used as an estimate of an average value (instead of the mean which is often unreliablewith data that includes large isolated peaks).Most of the measurements were grouped using 20 minute slots. These slots allowed us to detect spikesin proxy performance while still having enough entries to produce a meaningful median. That is, signi�cantlylonger slots would make the graphs too \smooth", and shorter slots may not have enough measurements tocalculate reliable statistics.On some proxies, there was virtually no load at night and early in the morning. We �ltered out thoseperiods as neither interesting for this study nor statistically representative.In a few instances, we have discussed unusual patterns with the proxy administrator to isolate inter-esting performance phenomena from anomalies caused by con�guration bugs, network outages, etc.5 PARTICIPATING PROXIESSeven Squid proxies participated in our study3)(Table 1). The proxies represented all levels ofcaching hierarchy from leaf university proxies to top-level proxies serving large country-wide networks to theroot proxy of NLANR international hierarchy. Information about Squid con�guration and general tra�ccharacteristics are summarized in Tables 2 and 3.Squid uses a two-level cache. Very popular and recently requested objects are kept in a small \hotmemory" bu�er. The majority of the documents reside in disk cache. High and low watermarks control thebu�er management algorithms. In short, when the high watermark is reached, Squid starts removing objectsmore rapidly. When current level is below low watermark, a more aggressive caching mode is enabled. Inpractice, utilization levels should uctuate between the two watermarks.Proxies cache objects according to an algorithm similar to LRU-Threshold. The threshold parameteris usually set to 4 or 8 MB, admitting the majority of cachable objects. CGI and other \dynamic" documentsare usually not cached.The reader is referred to Squid documentation [Wessels 1998] for other numerous implementationdetails. Clearly, some Squid-speci�c hacks could inuence the collected data. However, we believe that mostperformance patterns are typical for many other caching proxies currently in use.2)The latter also explains the negligible e�ect of logging, if done properly, on Squid performance.3)After the experiments were launched, the number of participants actually increased to 11 proxies.

A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0 5Proxy Country Type Machine RAM #Disks Storage OSMB GBsv USA root DEC 512 7 26 DECAlphaserver UNIX1000, V3.2D-1266Mhz (Rev. 41)surfnet Netherlands top IBM RS6000 256 12 6 AIX v4.2level model 960ruu Netherlands leaf Sun 160 3 6 SunOSSparcstation 4.1.44 sun4muninett Norway top SGI 256 3 9 IRIX 5.3level Challenger S200MhzMIPS R4400uit Norway leaf SGI 256 4 13 IRIX 5.3Challenger200MhzMIPS R4400mexcom Mexico inter- Intel 128 3 7.5 FreeBSDmediate Pentium 2.2133MHzadfa Australia leaf Sparc 20, 284 4 8 SunOS2 x 150MHz 5.5Table 1: Proxy Con�guration.Proxy Squid Hot memory bu�er #disks Cache capacityversion MB low-high% for cache GB low-high%sv 1.1.17 20 85-95 5 16.0 75-95surfnet 1.1.15 24 85-90 6 6.2 90-95ruu 1.1.15 32 75-90 2 5.6 90-95uninett 1.1.16 32 90-90 2 6.4 90-95uit 1.1.16 32 75-75 2 3.8 90-95mexcom 1.1.17 48 75-90 2 1.8 90-95adfa 1.1.17 32 75-90 2 5.8 85-95Table 2: Squid Con�guration.Proxy documents unique documents unique clients unique serverssv 991,085 542,568 95 39,144surfnet 356,322 223,992 29 12,383ruu 151,881 75,564 518 4,548uninett 212,419 145,729 90 9,690uit 147,927 65,152 378 3,759mexcom 53,202 41,592 21 2,541adfa 248,104 120,999 798 7,308Table 3: Daily Tra�c.

6 A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.06 RESULTSWe have collected 18 days worth of logs. Most participating proxies submitted one { three day logswhile sv was pro�led for more than a week. Most experiments were conducted in October 1997. All logswere analyzed. We selected days when the load was high and Squid was running without problems forseveral days. In this section, we compare plots from di�erent proxies or di�erent days of one proxy. Thesecomparisons reveal consistent patterns and identi�ed performance anomalies.The number of possible comparisons was very large. We had to automate the process of generatingthe graphs and grouping the results. It was not technically feasible to present all our plots for all proxiesin this paper. Thus, we selected three proxies for a base line presentation: sv, surfnet, and ruu. Thethree selected proxies represented the three levels of caching hierarchy and were the busiest proxies in ourcollection.The entire set of plots is publicly available along with many interesting comparisons [Rousskov andSoloviev 1998].This section presents a series of comparisons. For each comparison, we include three plots, one perselected proxy. It is essential to note that other proxies express similar performance patterns unless notedotherwise. As we shall see, most patterns are shared by all proxies despite the di�erences in absolute numbers.We use the same Y-scale plots within a comparison whenever possible. However, on some graphs we had touse di�erent Y-scales to show important details. To enhance the presentation, some distributions are shownwith y-axis starting above 0. Unadjusted graphs are available on the Web [Rousskov and Soloviev 1998]. Alltime-of-day measurements are in Coordinated Universal Time (UTC), not local time.6.1 Tra�c PatternsIn this section, we group measurements that do not depend much on the hardware or software usedfor proxying. These measurements describe environmental factors such as distribution of �les sizes or tra�cintensity. Environmental factors are important for estimating system requirements and tuning con�gurationparameters. Relevant in-depth studies can be found elsewhere [Arlitt and Williamson 1996; Barford andCrovella 1998].6.1.1 Transfer Size Distribution

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64

cu
m

ul
at

iv
e

%

file size (KB)

root: sv

all
hits

misses
swap all
swap in

swap out
30

40

50

60

70

80

90

100

1 2 4 8 16 32 64

file size (KB)

top-level: surfnet

all
hits

misses
swap all
swap in

swap out
30

40

50

60

70

80

90

100

1 2 4 8 16 32 64

file size (KB)

leaf: ruu

all
hits

misses
swap all
swap in

swap outFigure 1: Transfer sizes.We start our presentation by plotting the distributions of transfer sizes4) for various categories (Fig-ure 1). To show the real tra�c rather than �le size distribution, we count every access to a document. Thus,a document that had 3 accesses would be counted once as a miss (if the document was not cached before)

A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0 7and twice as a hit (if the document was still in the cache). The \all" curve counts both hits and misses. The\swap all" curve shows the size distribution for all cached documents counting both swap-in and swap-outrequests.Transfer sizes are essential in estimating network and disk bandwidth requirements. Figure 1 showsthat more than 50% of all network transfers are smaller than 1 KB. About half of the disk transfers aresmaller than 2 KB. Note that all network and disk transfers are counted. Squid uses 8 KB pages for thesetransfers.Misses are larger than hits (have more large transfers) because large documents are not popular (bigunpopular �les are always counted at least once as misses but rarely counted as hits) and every access toa document is counted (small popular �les are counted many times for hits and only one for misses). Notethat participating proxies do cache large �les (up to 8 MB). However, 99% of transfers are smaller than 64KB. Thus, the existence of an upper limit for cachable objects has a negligible impact on Figure 1.Swap-in requests are larger than hits because of a signi�cant number of IMS hits that are very smallbut are never retrieved from the disk. Swap-out transfers are probably larger than misses because the numberof relatively small but uncachable documents is high. Further measurements are needed to support the laststatement.6.1.2 File Size Distribution

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64

cu
m

ul
at

iv
e

%

file size (KB)

root: sv

all
hits

misses
swap all
swap in

swap out
30

40

50

60

70

80

90

100

1 2 4 8 16 32 64

file size (KB)

top-level: surfnet

all
hits

misses
swap all
swap in

swap out
30

40

50

60

70

80

90

100

1 2 4 8 16 32 64

file size (KB)

leaf: ruu

all
hits

misses
swap all
swap in

swap outFigure 2: File sizes.Disk capacity requirements depend on what �les are cached, not on what �les are transferred orswapped. The \File Sizes" graph (Figure 2) shows the distribution of �le sizes for hits, misses, and swaprequests. That is, all misses contribute to the \miss" curve, all swap-ins to the \swap in" curve, etc. Toshow �le size distribution rather than tra�c, we count only the �rst access to a document. A �le size rarelychanges signi�cantly from one access to another and does not change at all for hits. Thus, counting only the�rst access to a document is valid.Distribution of �le sizes is important for estimating memory requirements for Squid. A commonapproach is to estimate the average size of a document by considering all entries in an access log �le (i.e.calculating average transfer size). Thus, a single popular document may be counted many times. Also,non-cachable documents that are never stored in a hash table will be counted. Using transfer sizes instead of�le sizes may lead to underestimation of memory requirements and severe degradation in performance dueto swapping.On average, proxies swap-out larger objects than they swap-in. This asymmetry is, however, in-evitable. Proxies have to cache large objects to get a decent Byte Hit Ratio. The latter is created byrelatively few popular large objects.4)Squid logs the total number of bytes transfered, including HTTP headers. Also, HTTP headers are stored together withdocuments.

8 A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.06.1.3 Proxy Tra�c Intensity

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22

re
qu

es
ts

 p
er

 s
ec

hour

root: sv

all
hits

misses

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20 22

hour

top-level: surfnet

all
hits

misses

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18 20 22

hour

leaf: ruu

all
hits

misses

Figure 3: Tra�c Intensity.The number of client requests received by a proxy (Figure 3) determines the stress on each proxycomponent such as network or disk storage subsystem. As we shall see, performance patterns always followtra�c intensity.We have detected two types of proxy load. Root proxy (sv) experiences relatively small variations inload during a 24-hour period. Other proxies have bell-shaped curves with highest load during the day andlowest load at night. It is possible to utilize a proxy during idle hours for improving its performance duringpeak load. For example, an alternative caching policy can use idle time to refresh the content of a cachebased on last day statistics [Rousskov and Soloviev 1997]. Prefetching of documents into the cache is also apossibility.Root proxy serves international tra�c for all time zones. Consequently, it does not have idle periods.One may speculate that there may be a tendency to \constantly loaded" top level servers as the share ofinternational Web tra�c grows and tra�c becomes more uniformly distributed.It is important to analyze the performance of a proxy throughout the day. The presence of idle periodsis important to algorithms that rely on lazy garbage collection or do other \o�-line" activities [Rousskov andSoloviev 1997]. Peak periods often correspond to excessive load and should be studied with care; real proxiesmay be overloaded and show extreme performance patterns that should not happen in normal conditions.6.2 Aggregate PerformanceIn this section, we present measurements that show the aggregate proxy performance. That is, per-formance that depends on several proxy components at once. Contributions of individual components arestudied in the following sections.6.2.1 Concurrent RequestsThe number of concurrent requests (Figure 4) reect the ability of a proxy to handle tra�c5). Lesspowerful or overloaded proxies have larger average request response time. And larger request response timecorresponds to more concurrent requests pending in the system. For any proxy, the request response timeincreases with load. The actual increase depends on the request type and is hard to predict.The concurrency level has a theoretical lower bound of the number of concurrent clients or clientssubmitting requests at the same time. In reality, the number of concurrent requests being processed wellexceeds that limit. That is, the number of concurrent requests assuming zero proxying delay (unrealisticbest-case scenario) would be signi�cantly lower than the measured value.5)It also reects the di�erence between client and server transfer speed if any.

A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0 9

0

50

100

150

200

250
0 2 4 6 8 10 12 14 16 18 20 22

m
ed

ia
n

#c
c

re
qu

es
ts

hour

root: sv

all
hits

misses

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16 18 20 22

hour

top-level: surfnet

all
hits

misses

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20 22

hour

leaf: ruu

all
hits

misses

Figure 4: Concurrent Requests.The ratio of concurrent hits to misses is quite di�erent from the same ratio for tra�c intensity. Misses(middle curve on all graphs) are much slower than hits (lowest curve) because they are retrieved from otherservers rather than directly from proxy. Recall that hits rarely contact other servers (only when the cacheddocument becomes stale). The ratio of concurrent misses to hits present in the system may be as high as7:1, which is much higher than the ratio of misses to hits in the tra�c.Slow speed makes misses the major consumer of proxy resources. It may seem that slow, virtually idleTCP connections would have little if any impact on proxy performance. That is not true for several reasons.A connection (idle or not) does consume memory. A proxy must keep various in-memory metadata aboutthe request being processed and, perhaps, some I/O bu�ers for the connection. Moreover, select(2)-basedimplementations, must check \idle" TCP sockets for readiness all the time. Large number of potentially ready�le descriptors make select loops very expensive [Banga and Mogul 1998] and jeopardize the performance of\busy" connections (e.g., hits). The situation becomes even worse when a slow server connection leaks datain small portions. A proxy spends two-three I/Os to process every small chunk of data, increasing delays forother connections to be processed.Identifying the major source of resource consumption is essential for optimization purposes. Forexample, one could increase the Squid I/O page size for hit requests to reduce the number of I/Os per hit.Reduction in disk I/Os may improve hit response time while preserving total memory requirement becausethe number of concurrent hits is much smaller than misses and their memory impact is negligible. On theother hand, a similar increase for misses may signi�cantly increase total memory requirement.Another important observation is at least 100% increase in the number of concurrent request on theroot proxy during peak load. Sv works here at the limit of its resources. Even a small increase in tra�cintensity may lead to severe performance degradation. This behavior is typical for several other proxies wehave studied. Ideally, such a proxy requires an upgrade.6.2.2 Request Response TimeDecreasing response time is a major function of a caching proxy. Our results (Figure 5) show thatmedian response time of a hit may be �ve times smaller than of a miss. Thus, a proxy does decrease responsetime for some requests. The average improvement (i.e., savings in average response time compared to all-misses case) depends on the Hit Ratio. Sv proxy improved response time of an average request by 28%.Leaf proxies can achieve a 60% improvement. It is not clear, however, how the combination of fast hits andslow misses a�ects user perception of QoS. User perception is hard to estimate quantitively, especially whenperformance data from client-side is not available.Ideally, a separate study should compare the response time of proxied versus direct tra�c. However,it is important to note that presence of proxies is often determined by factors other than response time. Forexample, network bandwidth costs or �rewalls may mandate proxying. Thus, comparison with direct tra�cis certainly interesting but not essential for proxy performance analysis.

10 A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0

0

2000

4000

6000

8000

10000

12000

14000
0 2 4 6 8 10 12 14 16 18 20 22

m
ed

ia
n

re
sp

on
se

 ti
m

e
(m

se
c)

hour

root: sv

all
hits

misses

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2 4 6 8 10 12 14 16 18 20 22

hour

top-level: surfnet

all
hits

misses

0

500

1000

1500

2000

2500

3000

3500

4000

0 2 4 6 8 10 12 14 16 18 20 22

hour

leaf: ruu

all
hits

misses

Figure 5: Request Response Time.Both hit and miss response times increase sharply during peak load. Further measurements willidentify network and proxy components responsible for this e�ect.6.2.3 Request Response Time vs. Transfer Size

0.1

1

10

100

1000

10000

1 4 16 64 25
6

10
24

40
96

16
38

4

m
ed

ia
n

re
sp

. t
im

e
(s

ec
)

file size (KB)

root: sv

all
hits

misses
0.1

1

10

100

1000

10000

1 4 16 64 25
6

10
24

40
96

16
38

4

file size (KB)

top-level: surfnet

all
hits

misses
0.1

1

10

100

1000

10000

1 4 16 64 25
6

10
24

40
96

16
38

4

file size (KB)

leaf: ruu

all
hits

missesFigure 6: Request Response Time vs. Transfer Size.Response time reduction for hits compared to misses depends on the document size. Interestingly,most savings in response time come from hits smaller than the size of TCP socket output bu�er (32 KB forsv and 16 KB for surfnet), see Figure 6. The e�ect of TCP bu�er is not visible on the ruu proxy. Ruuwas the only proxy where we did not observe this e�ect.The graphs suggest that increasing TCP bu�er for hits may be worthwhile. Low level analysis of TCPstack traces would be required to make the �nal conclusion. The actual improvement (if any) may dependon the OS and other factors. Also note that the number of �les that exceed TCP bu�er size is relativelysmall and may a�ect the precision of response time measurements.Large hits do not improve response time much. However, they are responsible for higher Byte HitRatio. Consequently, we have a fundamental tradeo� between improving response time (by limiting themaximum cachable document size and, thus, caching more smaller objects) and saving more bandwidth (bycaching more large objects). There is no general algorithm for solving the tradeo� because the optimalsolution depends, among other parameters, on a cost model, and cost models do vary a lot.

A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0 116.3 Hits AnalysisThis section concentrates on analysis of hit requests. Hits make deployment of proxies worthwhile.By increasing the number of hits and optimizing hit response time one can signi�cantly improve QoS. Hitshave a major impact on proxy performance.6.3.1 Hit Ratios

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22

%

hour

root: sv

doc
byte

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22
hour

top-level: surfnet

doc
byte

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22

hour

leaf: ruu

doc
byte

Figure 7: Hit Ratios.Document Hit Ratio (Figure 7) a�ects the savings in request response time as well as proportionbetween swap-in and swap-out requests. Byte Hit Ratio characterizes savings in network bandwidth anddetermines disk bandwidth requirements. DHR is usually 7-9% higher than BHR.Interestingly, neither ratio depend on the tra�c intensity. One may expect that the number of hitsincreases with the number of client requests because of the constant reference locality principle. This patternhas been observed [Gribble and Brewer 1997] and used in some simulation studies [Duska et al. 1997; Caoand Irani 1997]. However, this is not the case in the studied environments. Apparently, peak hours userpopulation has access patterns di�erent from light load hours (or the population itself is di�erent). Thisphenomenon requires further investigation.Hit ratios may depend on time of day which, again, implying that user population and/or accesspatterns vary with time. New models and further experiments are needed to study this variation.6.3.2 Hits Classi�cationBy pro�ling stages of individual requests, we are able to identify several classes of hits (Figure 8).For all hit classes, the original server could be contacted to check the freshness of a cached object. Thealgorithms that determine when freshness should be veri�ed are often complex and based on such factors asdocument expiration and last modi�cation times and even speci�c URLs.Note that classes do not intersect. For example, an IMS hit is a positive reply (not a negative hit)when the document body is not retrieved from disk or memory (not a disk or memory hit). There are alsosome rare cases not covered by our classi�cation.To illustrate relative importance of each class, we plot the percentage of all hits a class represents.Clearly, disk and IMS hits are responsible for more than 90% of all hits.Average share of IMS hits is large and increases with caching hierarchy level: about 14% on leaf,23% on top level, and 28% on root proxy. Optimizations must take into account the portion of IMS hits,and, thus, may require di�erent techniques depending on the hierarchy level.Low percentage of memory hits indicates that keeping documents in \hot" memory bu�er does notimprove performance of Squid. There is a belief that hits for the same object often come in \bursts". Thus, it

12 A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0

0

10

20

30

40

50

60

70

80

90

100
0 2 4 6 8 10 12 14 16 18 20 22

%

hour

root: sv

disk hits
ims hits

mem hits
neg hits

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22

hour

top-level: surfnet

disk hits
ims hits

mem hits
neg hits

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22

hour

leaf: ruu

disk hits
ims hits

mem hits
neg hits

Figure 8: Hits Classi�cation.may make sense to keep new documents in the memory bu�er for a short time in case they will be requestedagain soon. However, our measurements (not presented here, see \memory hit analysis" in [Rousskov andSoloviev 1998]) show that the number of such hits is usually below 5% of all memory hits6). Thus, forstudied hot bu�er sizes (typical for proxies), new objects could be swapped to disk as soon as possible tofree bu�er space for incoming tra�c or other alternative bu�ering policies should be considered [Rousskovand Soloviev 1999].Negative caching was always considered an important feature of Squid. Our measurements show thatthe percentage of negative hits is small. However, invalid requests (their results are negatively cached),unlike most other requests, may have very large response times. Thus, additional experiments are needed toshow if response time reduction for invalid requests is worth caching them.6.4 Outbound NetworkAll misses and some hits request data from other proxies or origin servers. This section studies theperformance of outbound network that has a crucial inuence on request response time and proxy resourcesconsumption.6.4.1 Concurrent Outgoing ConnectionsThe total number of outgoing concurrent connections on Figure 9 follows the tra�c intensity pattern.The number of outgoing connections for miss requests is close to the number of concurrent misses (Figure 3).This happens because every miss uses an outgoing connection to retrieve data.On the contrary, the number of outgoing connections for hits is noticeably lower than the numberof concurrent hit requests. Several factors a�ect this. First, only a few hit requests require an outgoingconnection to verify the freshness of a document. Second, the origin server con�rms such requests with asmall message without actually reading the document. Thus, network and server delays are minimal, and afast response time for hits further decreases the number of outgoing hit connections.6.4.2 Proxy Connect TimeProxy connect time (Figure 10) is the time it takes to send an HTTP request to an origin server orother proxy. Misses (lowest curve) send requests to retrieve documents. When a client requests an \old"cached object, a proxy may also send an If-Modified-Since request that can result in a hit (highest curve).6)Very low memory hit ratio was a surprise for many Squid developers and researchers. After completion of this study,professor Pei Cao from University of Wisconsin-Madison and her students discovered a Squid bug that lead to ine�cient bu�ermanagement.

A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0 13

0

20

40

60

80

100

120
0 2 4 6 8 10 12 14 16 18 20 22

m
ed

ia
n

#c
c

co
nn

ec
tio

ns

hour

root: sv

all
hits

misses

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18 20 22

hour

top-level: surfnet

all
hits

misses

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20 22

hour

leaf: ruu

all
hits

misses

Figure 9: Concurrent Outgoing Connections.

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10 12 14 16 18 20 22

m
ed

ia
n

co
nn

ec
t t

im
e

(m
se

c)

hour

root: sv

all
hits

misses

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16 18 20 22

hour

top-level: surfnet

all
hits

misses

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18 20 22

hour

leaf: ruu

all
hits

misses

Figure 10: Proxy Connect Time.Note that DNS lookup activity is not included in proxy connect time. Also, for this graph, we ignorerequests that did not make an outgoing connection.Interestingly, it takes longer for a hit to send an IMS request than for a miss to send a regular request.This e�ect is especially visible on leaf proxies, but can be also detected on higher levels of caching hierarchy.We speculate that there may be two reasons for this anomaly.First, hit documents may come from origin servers that are farther, on average, in network topologythan servers that deliver misses. For example, a leaf proxy in Europe would retrieve a lot of hits from afew popular servers in the USA using a slow transatlantic link. On the other hand, a hit ratio for localdocuments may be lower due to the higher document diversity.Second, hits are served mostly by popular servers. Popular servers are often overloaded and, thus,have high response time. Misses are served, on average, from less loaded servers.6.4.3 Server Reply TimeServer reply time (Figure 11) is the time it takes to receive a reply from an origin server or proxy.Clearly, server reply time is susceptible to load and network congestion. Note that hit replies are transmittedmuch faster because they are all small IMS acknowledgment regardless of the �le size.On average, hit replies are 40% faster than misses on sv proxy, 60% faster on surfnet, and 70% onruu. The di�erence in relative hit reply times on the three proxies is probably due to their position in thecaching hierarchy (similar reasons were discussed in the previous subsection). More analysis of hierarchicalrelationships needed to support this speculation.

14 A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0

0

500

1000

1500

2000

2500

3000

3500
0 2 4 6 8 10 12 14 16 18 20 22

m
ed

ia
n

re
pl

y
tim

e
(m

se
c)

hour

root: sv

all
hits

misses

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16 18 20 22

hour

top-level: surfnet

all
hits

misses

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22

hour

leaf: ruu

all
hits

misses

Figure 11: Server Reply Time.
0.01

0.1

1

10

100

1000

10000

1 4 16 64 25
6

10
24

40
96

16
38

4

m
ed

ia
n

re
pl

y
tim

e
(s

ec
)

file size (KB)

root: sv

all
hits

misses
0.01

0.1

1

10

100

1000

10000

1 4 16 64 25
6

10
24

40
96

16
38

4

file size (KB)

top-level: surfnet

all
hits

misses
0.01

0.1

1

10

100

1000

10000

1 4 16 64 25
6

10
24

40
96

16
38

4

file size (KB)

leaf: ruu

all
hits

missesFigure 12: Server Reply Time vs. Object Size.Server reply time for hits does not change with object size. The only possible server reply for a hitis a positive IMS reply that carries no content. Thus, the length of an IMS reply message does not dependon the actual document size. In an ideal world, the \hit" curve on Figure 12 would be a straight line on thegraph. Although not shown here, the IMS reply time is actually the same as miss reply time for very smalldocuments. This suggests that network congestion dominates in server reply time. We do not have de-tailed server-side measurements required to support this statement, but similar observations where reportedelsewhere [Manley and Seltzer 1997].6.4.4 Server Response TimeHits are slower than misses during the connect phase. The opposite is true during the reply phase.Server response time, depicted on Figure 13, measures the total network delay for communication with aserver (i.e., proxy connect time plus server reply time). In spite of a slower connect time, total server responsetime for hits is lower. Thus, even when hits have to verify the freshness of an object, they save time comparedto misses that have to fetch data over the network.Another important observation is that hierarchy level changes per request resource consumption ofmisses and hits (proportional to the median response time). The di�erence in hit and miss response timeson root proxy is usually less than on top-level proxy, with leaf proxy having the largest di�erence. Suchcooperation caused variation makes it harder to optimize caching algorithms.

A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0 15

0

2000

4000

6000

8000

10000

12000
0 2 4 6 8 10 12 14 16 18 20 22

m
ed

ia
n

re
sp

on
se

 ti
m

e
(m

se
c)

hour

root: sv

all
hits

misses

0

1000

2000

3000

4000

5000

6000

0 2 4 6 8 10 12 14 16 18 20 22

hour

top-level: surfnet

all
hits

misses

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18 20 22

hour

leaf: ruu

all
hits

misses

Figure 13: Server Response Time.6.5 Inbound NetworkThis section studies the performance of an inbound network. All clients are using the proxy's inboundnetwork connections to request a document and receive a reply. The major function of a proxy is todecrease total response time by reducing the number of outbound network transmissions. However, if inboundconnections are congested, savings in total response time may be marginal.6.5.1 Client Connect Time

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16 18 20 22

m
ed

ia
n

co
nn

ec
t t

im
e

(m
se

c)

hour

root: sv

all
hits

misses

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16 18 20 22

hour

top-level: surfnet

all
hits

misses

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20 22

hour

leaf: ruu

all
hits

misses

Figure 14: Client Connect Time.Client connect time (Figure 14) is the delay from the accept() system call on a proxy until receiving aparse-able HTTP request. The network connection remains open after the client request is received becauseit is reused to send the reply. Recall that we cannot measure the actual client-side delays or network cardqueuing time of the client request prior to the accept() system call.It may seem that client connect time cannot depend on the result of the request (hit or miss) becausethe result is not known during connect phase. This is not the case. On all participating proxies, we havedetected a small but persistent di�erence between client connect time for hits and misses. On most proxies,it takes longer for hits to connect. The root proxy, however, has an opposite pattern.The longer connect time for hits can be explained by the source of a (future) hit request. There aretwo sources for hits: clients and neighbor proxies (siblings). Sibling caches, which might be farther awaythan normal clients, contribute more to the hit statistics than to the miss statistics: By de�nition, siblings

16 A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0only fetch hits from each other. Thus, clients connect times are shorter than connect times for hit requestsoriginated from siblings. This e�ect is especially noticeable on leaf proxies where hit connect time is oftentwice as long as miss connect time. Additional experiments may be needed to verify this theory.On the root proxy, the opposite holds. Major sv siblings are connected via fast vBNS links whichmakes the hit connect phase shorter than misses.Client connect time is load dependent. This can be caused by outbound network congestion or Squidperformance. Following plots may help in identifying the real cause.6.5.2 Proxy Reply Time

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18 20 22

m
ed

ia
n

re
pl

y
tim

e
(m

se
c)

hour

root: sv

all
hits

misses

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20 22

hour

top-level: surfnet

all
hits

misses

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20 22

hour

leaf: ruu

all
hits

misses

Figure 15: Proxy Reply Time.Proxy reply time (Figure 15) is the time it takes to send a reply to a client after the document wasretrieved from the cache or another server. Note that due to pipelining, a reply process may start prior toreceiving the last byte from the disk or another server.It takes Squid less time to reply with a hit than with a miss. One apparent reason is that largepercentage of hits are IMS hits that have a very small content. To further investigate proxy reply time, weisolated IMS hits from 200 hits that transfer document content in reply.

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10 12 14 16 18 20 22

m
ed

ia
n

re
pl

y
tim

e
(m

se
c)

hour

root: sv

304 hits
200 hits
misses

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20 22

hour

top-level: surfnet

304 hits
200 hits
misses

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20 22

hour

leaf: ruu

304 hits
200 hits
misses

Figure 16: Proxy Reply Time (Detailed).Note that proxy reply time (Figure 16) varies with time. Increase in proxy reply time may be a�ectedby three factors:� degradation of outbound connections (slows delivery of a large miss)� proxy performance degradation (a�ects misses and 200 hits)

A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0 17� degradation of inbound connections (a�ects all replies)The behavior of the \304 hits" line is important. Neither outbound connections nor proxy performanceshould a�ect 304 replies much. If reply time for 304 hits goes up, then inbound connections are likely to becongested.200 hits and misses depend on performance of the proxy, and misses depend on outbound connections.Note that 200 hits and misses su�er from congestion more than 304 hits because of a larger size that mayrequire several network I/Os. We proceed by taking reply size into account (Figure 17).
0.1

1

10

100

1000

10000

1 4 16 64 25
6

10
24

40
96

16
38

4

m
ed

ia
n

re
pl

y
tim

e
(s

ec
)

file size (KB)

root: sv

all
hits

misses

0.01

0.1

1

10

100

1000

10000

1 4 16 64 25
6

10
24

40
96

16
38

4

file size (KB)

top-level: surfnet

all
hits

misses

0.01

0.1

1

10

100

1000

10000

1 4 16 64 25
6

10
24

40
96

16
38

4

file size (KB)

leaf: ruu

all
hits

misses

Figure 17: Proxy Reply Time vs. Reply Size.6.6 Disk Storage SubsystemMost hits are retrieved from the disk. The performance of the disk storage subsystem has direct impacton request response time improvement achieved by a proxy. In this section, we present disk performancemeasurements. Squid does not support raw disk I/O and relies on Unix �le system performance.Note that our measurements do not distinguish individual disks. Thus, the results in this sectionanalyze the performance of the disk storage subsystem or �le system as a whole. We will often use a shorterword \disk" to name the disk storage subsystem.6.6.1 Disk Tra�c Intensity

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

0 2 4 6 8 10 12 14 16 18 20 22

re
qu

es
ts

 p
er

 s
ec

hour

root: sv

swap in
swap out

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18 20 22

hour

top-level: surfnet

swap in
swap out

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18 20 22

hour

leaf: ruu

swap in
swap out

Figure 18: Disk Tra�c Intensity.

18 A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0Figure 18 shows the number of swap requests per second for three proxies. In spite of hit ratiosusually being lower than 50%, the rate of swap-out requests may be lower than the rate of swap-ins sincenot all misses are cachable. The rate of swap-in and swap-out requests is determined by tra�c intensity,Document Hit Ratio, and caching policy7). The rate of swap-in requests is usually higher on leaf proxies.The opposite is true for top level caches that have lower hit rates than leaves. On the root proxy, swap-in(swap-out) requests dominate half of the day! Moreover, the Swap-In Ratio signi�cantly changes with timeon all participating proxies. These changes make performance tuning harder because static optimizationsmay not work.The rate of incoming swap requests determines the stress on the disk storage subsystem. Squid treatsswap requests equally regardless of their direction. However, swap-in and swap-out requests have di�erentpriorities if QoS factors and Squid memory requirements are considered. Indeed, swap-in request contributeto response time of hits. Thus, by reducing their response time we can improve QoS. A better response timecan be achieved, for example, by giving a higher priority to swap-in requests. However, delaying swap-outrequests may increase the total memory requirement because incoming documents will not be swapped outto disk. Knowing the swap request rate helps in solving this tradeo�.6.6.2 Concurrent Disk Requests

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16 18 20 22

#c
c

re
qu

es
ts

hour

root: sv

50%
75%

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18 20 22

hour

top-level: surfnet

50%
75%

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20 22

hour

leaf: ruu

50%
75%

Figure 19: Concurrent Disk Requests.Figure 19 depicts the number of concurrent swap requests present in a proxy server. We count thenumber of requests in the system using 2 msec intervals and calculate the median based on 20 minutegrouping. Small 2 msec intervals assure that we count the number of concurrent requests rather than totalnumber of requests per [large] interval. Note that this is not a \disk request per second" graph.We plot the 50th and 75th percentiles. The 50th percentile is the same as median. Our measurementscannot distinguish individual disks. Thus, we actually measure the total number of concurrent requests inthe disk storage subsystem. However, this number directly a�ects the length of queues to individual disks.The number of concurrent swap requests increases sharply during peak load. The increase is notproportional to the incoming swap requests rate. This is a direct e�ect of large queuing time of swaprequests.6.6.3 Disk UtilizationDisk utilization on Figure 20 is measured in the percentage of times where there was at least one activeswap request. The measurements are done using 2 msec intervals. Actual disk utilization is represented bythe \all" curve. Curves for swap-in and swap-out requests are given to compare the contribution of eachclass towards disk utilization.7)Note that object sizes do not a�ect the rate of swap requests, but may a�ect the number of concurrent swap-ins andswap-outs.

A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0 19

0

10

20

30

40

50

60

70

80

90

100
0 2 4 6 8 10 12 14 16 18 20 22

%

hour

root: sv

all
swap in

swap out

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22

hour

top-level: surfnet

all
swap in

swap out

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22

hour

leaf: ruu

all
swap in

swap out

Figure 20: Disk Utilization.Again, we do not measure per disk utilization. The graph represents the utilization of the disk storagesubsystem as a whole. In other words, if there is always one disk I/O in the system, then utilization is 100%regardless of the number of physical disks installed.Disk utilization often reaches 90% on root and top level proxies. Participating leaf proxies have atmost 40% utilization because the incoming tra�c is lighter.6.6.4 Disk Response Time

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16 18 20 22

m
ed

ia
n

re
sp

on
se

 ti
m

e
(m

se
c)

hour

root: sv

swap in
swap out

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16 18 20 22

hour

top-level: surfnet

swap in
swap out

0

20

40

60

80

100

120

140
0 2 4 6 8 10 12 14 16 18 20 22

hour

leaf: ruu

swap in
swap out

Figure 21: Disk Response Time.Disk response time (Figure 21) is the total time it takes to swap in/out a document from/into thedisk cache. Note drastic increases in response time that correspond to a higher number of concurrent swaprequests. These peaks sharply increase the total response time for hits.On most participating proxies, swap-out requests were somewhat faster than swap-in requests (in spiteof a larger average size). One may attribute this towards �le system level caching of disk write requests.An OS may postpone scheduling of a write request until the time when it can be completed faster. Suchoptimization is transparent to Squid and is perceived as a faster response time for writes. Of course, readrequests cannot be postponed. Low level disk scheduling di�ers among operating systems. These di�erencesmay explain faster swap-out requests on some proxies (not shown here). However, we do not have enoughdata to support this claim.

20 A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.06.6.5 Disk Response Time Anatomy

100

150

200

250

300

350

400

450

500

550

600

1 2 3 8 16 32 64

m
ed

ia
n

re
sp

. t
im

e
(m

se
c)

file size (KB)

root: sv

1st delay: swap in
swap out

Total: swap in
swap out

50

100

150

200

250

300

350

400

450

1 2 3 8 16 32 64

file size (KB)

top-level: surfnet

1st delay: swap in
swap out

Total: swap in
swap out

50

100

150

200

250

300

1 2 3 8 16 32 64

file size (KB)

leaf: ruu

1st delay: swap in
swap out

Total: swap in
swap out

Figure 22: Disk Response Time Anatomy.To further understand the performance of the disk storage subsystem, we plot disk response timeversus �le size (Figure 22). Squid swaps �les using 8 KB I/O pages. For each swap direction, we plot thetotal request response time and the time it takes to swap the �rst page. The \total" and \1st delay" curvesfor �les smaller than 8 KB are the same.Since various per I/O delays dominate disk transfer time, the size of an I/O is not very important(the number of I/Os is). This fact explains the step-like shape of the \total" curves: the times to read �lesup to 8 KB are approximately the same.The �rst delay must be the same for any �le size. However, when we �rst ran our patch, we discoveredthat it was not the case. The �rst delay dropped for surfnet and ruu proxies. Our �rst suspicion was thatour measurements were incorrect. After many hours of searching for a bug, we found it in ... Squid. Squidwas doing one extra I/O for the last page of every document. Thus, the �rst delay for multi-page documentsdid not include this extra I/O and had smaller response times. After our bug report [Rousskov 1997], thebug was �xed in Squid version 1.1.17. All participating proxies but surfnet and ruu �xed the bug beforerunning our experiments8).The �rst disk delay always includes OS overhead on opening a �le. Consecutive I/Os for the same�le (if any) do not have this overhead. Thus, one may compute both I/O duration and OS overhead usingthe following simple model (assuming that all overheads do not depend on the �le size for small �les):1st Delay = Overhead + I=OTotal(8KB) = 1st DelayTotal(16KB) = 1st Delay + I=O=> I=O = Total(16KB) � Total(8KB)Overhead = Total(8KB) � I=OThe model is based on very reasonable assumptions. However, we have discovered that, for manyproxies, the model does not have a positive solution for the overhead component (i.e., computed overhead isnegative). One of the main reasons for our model failure is probably queuing delays for individual I/Os inSquid. Squid attempts to process all ready swap requests in interleaved fashion, one I/O page of one swaprequest at a time. Thus, when the number of ready requests is large, a single disk request may wait for allothers to be completed. The number of ready requests is very unstable, and large \random" delays it causesmay a�ect our model. We are currently working on other ways of OS overhead estimation.8)Our measurements on sv proxy (not presented in this study) show that the inuence of that bug on disk response wasinsigni�cant, probably because the extra I/O was not going all the way to the disk but was intercepted by the OS on EOFcondition.

A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0 21One way of detecting Squid queuing delays is to analyze the second I/O time for swap requests. Notethat the second I/O does not include OS overhead for opening a �le but includes Squid queuing delays. Wemeasure the duration of the �rst I/O and total response time. For two page �les (16 KB), the di�erencebetween the two gives the second I/O duration.

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16 18 20 22

m
ed

ia
n

re
sp

on
se

 ti
m

e
(m

se
c)

hour

root: sv

swap in
swap out

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10 12 14 16 18 20 22

hour

top-level: surfnet

swap in
swap out

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22

hour

leaf: ruu

swap in
swap out

Figure 23: Second I/O Duration.The duration of the second I/O on Figure 23 experiences the same peaks as the total swap responsetime. This observation supports the hypothesis that Squid queuing delays dominate disk response timeduring peak loads.Squid enqueues a disk request after opening a �le. Thus, one page documents are served in two steps.First, a �le is opened, and a page is scheduled for an I/O. Second, an actual I/O is performed. Each stagemay experience a queuing delay. Thus, even one page documents may su�er from two queuing delays.There is usually about 80% of one page swap requests. Squid was designed to handle multi-pagedocuments in a fair fashion: Every swap request is split into several small steps, and steps execution isinterleaved. We have demonstrated that this interleaving may lead to huge extra queuing delays for one pagedocuments. Using measurements collected during this study, we currently investigate ways of improving diskresponse time while preserving fairness.6.7 Proxy Response Time ComponentsWe conclude our study by analyzing the relative impact of request processing stages. Such analysisis essential for performance optimization since it helps in identifying performance bottlenecks.

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22

%

hour

root: sv

client connect
proxy connect

server reply
proxy reply

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22

hour

top-level: surfnet

client connect
proxy connect

server reply
proxy reply

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22

hour

leaf: ruu

client connect
proxy connect

server reply
proxy reply

Figure 24: Proxy Response Time Components (Misses).For misses (Figure 24), we distinguish four major stages: client connect, proxy connect, server reply,

22 A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0and proxy reply. The graphs show relative contribution of each stage towards total delay. Total delay iscalculated as a sum of all stages9).For performance optimization, both absolute level of contribution and its change with time are impor-tant. The former tells us what contributes to the total delay the most. The latter may help in identifyingperformance problems that arise during peak load. For example, the server reply component dominates inmiss response time (50-60%). However, its relative contribution decreases during peak loads. On sv, serverreply time component becomes even less important than proxy connect stage (which sharply increases itsrelative value during peak loads). In other words, it actually takes longer to send a small request to a serverthan to receive a (potentially large) reply.The contribution of client connect stage is usually 10% or less, but it increases by more than twiceduring peak load. Interestingly, proxy reply time is responsible for the same portion of the total delayregardless of the load.Our analysis implies that connect times are most susceptible to tra�c intensity. Using persistentconnections (HTTP/1.1) is a promising way to reduce the impact of load on response time10).

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22

%

hour

root: sv

client connect
swap in

proxy reply

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22

hour

top-level: surfnet

client connect
swap in

proxy reply

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22

hour

leaf: ruu

client connect
swap in

proxy reply

Figure 25: Proxy Response Time Components (Hits).For hits (Figure 25), we distinguish three major stages: client connect, swap-in, and proxy reply. Forthe purpose of this analysis, we consider 200 hits only. We also ignore communication with other serversbecause the majority of 200 hits (70-80%) do not verify their freshness.The curves for hits are more stable than for misses. On sv proxy reply time dominates, and swap instage takes approximately the same time as client connect. On surfnet, all three components are equallyimportant. Client connect time is the least stable component for both proxies. This pattern is consistentwith misses.An important observation is that disk delays contribute about 30% towards total response time.Network performance is often beyond control of a caching proxy. On the contrary, disk I/O performance isisolated from external factors and can be optimized.Note that we cannot account for pipelining a�ects that may change relative contributions for largerequests. However, more than 80% of requests cannot be pipelined due to small document sizes. We believethat our estimations are close to actual performance.7 SHORTCOMINGS OF THIS STUDYIt must be noted that performance data collected is based on the HTTP/1.0 tra�c and HTTP/1.0proxy. HTTP/1.1 has several important features that are designed speci�cally to improve client-proxyinteraction. Persistent connections, request pipelining, explicit caching control, and other additions will9)Median total delay may di�er from median response time because of pipelining and such non-accounted activities as DNSlookups.10)The current Squid versions (Squid 2.x) support persistent connections.

A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0 23improve proxy performance when implemented and used widely. However, many observations and conclusionsin this paper do not depend on the connection model. Moreover, the actual deployment of HTTP/1.1 takestime. For example, only about 20-25% of connections to NLANR caches are persistent11). Up-to-dateinformation about HTTP deployment is available from W3C Web Characterization Activity site [WWWConsortium 1998].Besides locating volunteers for this study, our major problem was a \one shot" approach during tracecollection. For various reasons that we could not control, it was impossible to run more than one or twoexperiments on most of participating proxies. Thus, we had to predict future points of interest and programpro�ling patch accordingly. We did manage to get a very interesting and informative sample. However,several important measurements were not performed or not properly recorded. They include:� OS level measurements reported by such widely used Unix tools as netstat, vmstat, iostat, etc. TCPstack performance analyzed with tcpdump or similar software.� ICP tra�c measurements [Wessels and Cla�y 1997]. Clearly, ICP overheads may signi�cantly a�ectnetwork tra�c and delays.� DNS lookup delays.� Squid internal scheduling delays such as \select loop" delay.We consider the following research areas very important, but out of the scope of this study:� Comparison of direct tra�c delays with those of proxied tra�c.� Analysis of proxy software other than Squid and non-Unix operating systems.� Long term analysis of historical trends and such.We encourage other researches in the area of caching develop these topics for a complete picture andanswer a few questions we failed to answer or con�rm our speculations.Finally, the volume of collected information and number of possible comparisons made any signi�cantmanual analysis impractical. We had to rely on our automated tools to collect statistics and plot the graphs.Clearly, in some cases, the presentation quality su�ered.8 RELATED WORKCaching in general has been studied intensively in Operating Systems and Databases. Complexhierarchical caches can be found in any modern CPU, and good performance of a database engine is impossiblewithout a tuned bu�er manager. However, attempts to migrate classic caching techniques to Web applicationsusually fail. Speci�cs of Web tra�c are well-known. Highly variable object sizes, delay sensitivity, highlyskewed popularity distributions with heavy tails, short and long range dependencies, huge number of objects,etc. created challenges that traditional algorithms could not overcome. For example, classic LRU policy thatwork well in most database applications is a poor choice for a Web cache because LRU does not accountfor object sizes (LRU-threshold should be used). A lot of other examples of inapplicability of traditionalcaching techniques can be found elsewhere.Web caching research has concentrated primarily on caching policies and caching hierarchies [Bestavroset al. 1995; Abrams et al. 1995; Rizzo and Vicisano 1998; Cao and Irani 1997]. Surprisingly little attentionwas paid to performance analysis. Most of the work in this area is currently done by administrators oflarge caching proxies that study their systems in order to detect potential problems and improve perfor-mance. However, these e�orts are badly documented, and optimization recommendations are often basedon anecdotal evidence.One of the pioneer works in performance analysis of caching proxies was benchmarking of HarvestObject Cache [Chankhunthod et al. 1996]. The authors used a simulated workload generated by severallocal clients to compare Harvest performance with CERN. This work contains many important insights onHarvest architecture. However, performance measurements were made in a small, simulated environment.The most related research publication is a performance study of two caching proxies conducted onDigital's Palo Alto Gateway [Maltzahn and Richardson 1997]. The authors analyzed performance of CERN

24 A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0This Study Study at DECPer request measurements We use detailed perrequest measurements of network and disk delays.This allows for performance analysis based on re-quest categories (e.g. misses, IMS hits, or smallswap-in requests). We have demonstrated that re-quest classes signi�cantly di�er in their performancecharacteristics. Aggregate statistics are often mean-ingless and can even be misleading.
System state snapshots The authors e�ectivelyutilized several Unix tools to collect snapshots ofsystem activities. These snapshots contain impor-tant information on low level system performancethat is not available in Squid. For example, actualnetwork queues and raw disk delays can be mea-sured.Our approach lacks low level OS measurementsthough. It is often desirable to combine Squid levelmeasurements with OS statistics to describe certaine�ects precisely. Organizational reasons (our patchwas run in environments we have no control over)prevented us from performing such measurements. A drawback of this approach is that connection be-tween Squid actions and system performance is of-ten lost. This loss, on top of the rapidly changingsystem states, makes it very hard to summarize thecollected data in a meaningful form. The resultsmay look messy and inconclusive.Fixed caching software (Squid); Variety ofenvironments We concentrated our research onone state-of-the-art proxy in various environments.It was essential for us to show that most of our ob-servations hold regardless of proxy hardware, op-erating system, con�guration, etc. Also, note thatSquid software is extremely popular (e.g., more than70% of European caching proxies surveyed wererunning Squid [European Caching Task Force 1996]
Squid and CERN proxies; Fixed environmentThe authors studied two proxies in a �xed environ-ment to test alternative design decisions. They wereable to show several important di�erences in perfor-mance caused by proxies' architecture. However, itis not clear how applicable their �ndings will be toother environments, especially to other levels of hi-erarchy.Cooperative caches, several hierarchy levelsAll studied proxies were actively involved in coop-eration with other caches. This cooperation is typi-cal for modern proxies. We have demonstrated thatcooperation does a�ect proxy performance. Partic-ipating proxies represented all levels of caching hi-erarchy. Single isolated cache The authors concentratedon the performance of a leaf proxy. They did notstudy a�ects of hierarchical caching.

Compact time range We base our analysis onmeasurements collected within a short time inter-val (about 5 weeks). Compact time range makescomparison between di�erent proxies more realistic.However, we did not analyze trends in Web tra�cand their impact on proxy performance. Six months time range Web tra�c handled bythe studied proxy almost doubled from the timethe CERN proxy was tested to the last experimentswith Squid. This makes the performance compar-ison questionable. On the other hand, long timerange allowed for interesting observations based onhistorical trends.Table 4: Comparison with the study at DEC.and Squid proxies on real workloads. They measured proxy resource consumptions using snapshots of systemactivities. Our study is orthogonal to that work (Table 4).There were also several studies on the performance on origin Web servers [Luotonen et al. 1996;Tatarinov et al. 1997]. However, the results obtained on a Web server cannot be directly applied to a proxy.Modern Web servers rely mostly on the �le system bu�ers to keep popular documents in memory (e.g., usingmmap() interface). This approach is not applicable to caching proxies that cache most of the tra�c on disk.However, a few CPU and network related observations (e.g., single process design versus a forked processper request approach) are relevant for proxy performance optimization.Recent development in Web caching is introduction of performance benchmarks. Major cachingvendors and research groups are working on testing existing caching proxies [Rousskov and Wessels 1998;Almeida and Cao 1998]. There are all reasons to believe that interesting and powerful benchmarks will soonbecome standard tools in Web caching research.11)Measured with Squid 2.x, after this study was completed

A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0 259 CONCLUSIONSWe have presented a performance study of Squid caching proxy. Our approach, based on measur-ing per request network and disk activities, allowed for in-depth analysis of major proxy subsystems. Bycarefully classifying requests, we were able to identify and quantify degradation of network and disk storagesubsystems during high load periods. Many common performance patterns were detected across variousproxy environments. By studying proxies on di�erent levels of caching hierarchy, we analyzed the impactof cooperative caching on proxies. Our data and analysis are essential in understanding, modeling, andenhancing performance of a proxy server.We believe that per request pro�ling tools should be incorporated in caching proxies because theyprovide developers with essential information that is not available by other means. In fact, the success ofour project was based, in part, on the lack of detailed performance statistics for Squid: The vacuum in thisimportant area encouraged cache administrators to participate in our experiments.Several performance observations presented in this paper suggest signi�cant improvements in Squidarchitecture. We are investigating alternatives in this direction [Rousskov and Soloviev 1999]. We are alsoconsidering studying the impact of a large number of ICP requests on cooperative proxies (ICP requestswere ignored for the purpose of this study).10 ACKNOWLEDGMENTSWe are very thankful to all cache admins who managed to squeeze time to run our experiments on theirproxies and discuss the results: Henny Bekker (Utrecht University, the Netherlands), Edwin Culp (MexCom,Mexico), Brian Denehy (ADFA, Australia), Lars Slettjord (University of Troms�o, Norway), Ton Verschuren(SURFNet, the Netherlands), and Duane Wessels (NLANR, the USA). The discussions with them were veryhelpful. Special thanks to Duane Wessels and K Cla�y for commenting on drafts of this paper.We encourage cache administrators to actively participate in the research experiments like this study.Our experience shows that such collaboration bene�ts both researchers and practitioners. Together, we canmake the Internet a better place to live.REFERENCESAbrams, M., C. R. Standridge, G. Abdulla, S. Williams, and E. A. Fox (1995), \Caching Proxies: Limitationsand Potentials," In Proceedings of the Fourth International WWW Conference, Boston, MA,http://www.w3j.com/1/abrams.155/paper/155.html.Almeida, J. and P. Cao (1998), \Wisconsin Proxy Benchmark,"http://www.cs.wisc.edu/~cao/wpb1.0.html.Arlitt, M. and C. Williamson (1996), \Web Server Workload Characterization: The Search for Invariants," InProceedings of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems ,ftp://ftp.cs.usask.ca/pub/discus/paper.96-3.ps.Z.Banga, G. and J. C. Mogul (1998), \Scalable Kernel Performance for Internet Servers under Realistic Loads,"Technical Report TR-98-6, Digital Equipment Corporation,http://www.research.digital.com/wrl/techreports/abstracts/98.6.html.Barford, P. and M. Crovella (1998), \Generating Representative Web Workloads for Network and ServerPerformance Evaluation," In Proceedings of the Joint International Conference on Measurement andModeling of Computer Systems , Madison, WI.Bestavros, A., R. Carter, M. Crovella, et al. (1995), \Application Level Document Caching in the Internet,"In The Second International Workshop on Services in Distributed and Networked Environments ,http://www.cs.bu.edu/~best/res/papers/sdne95.ps.Cao, P. and S. Irani (1997), \Cost-Aware WWW Proxy Caching Algorithms," In Proceedings of the USENIXSymposium on Internet Technology and Systems ,http://www.cs.wisc.edu/~cao/publications.html.

26 A. Rousskov and V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0Chankhunthod, A., P. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Worrell (1996), \A HierarchicalInternet Object Cache," In Proceedings of the USENIX Technical Conference, San Diego, CA,http://excalibur.usc.edu/cache-html/cache.html.Duska, B. M., D. Marwood, and M. J. Feely (1997), \The Measured Access Characteristics of WWW ClientProxy Caches," In Proceedings of the USENIX Symposium on Internet Technologies and Systems ,http://www.cs.ubc.ca/spider/marwood/Projects/SPA/.European Caching Task Force (1996), \Survey Results,"http://w3cache.icm.edu.pl/survey/results/.Fielding, R., J. Gettys, J. C. Mogul, et al. (1998), \Hypertext Transfer Protocol { HTTP/1.1," InternetDraft draft-ietf-http-v11-spec-rev-06.Gribble, S. D. and E. A. Brewer (1997), \System Design Issues for Internet Middleware Services: Deductionsfrom a Large Client Trace," In Proceedings of the USENIX Symposium on Internet Technologies andSystems ,http://www.cs.berkeley.edu/~gribble/papers/sys trace.ps.gz.Luotonen, A., H. F. Nielsen, and T. Berners-Lee (1996), \CERN httpd 3.0A,"http://www.w3.org/pub/WWW/Daemon/.Maltzahn, C. and K. J. Richardson (1997), \Performance Issues of Enterprise Level Web Proxies," In Pro-ceedings of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems ,ACM Press, Seattle, WA,http://www.cs.Colorado.edu/carlosm/sigmetrics.ps.gz.Manley, S. and M. Seltzer (1997), \Web Facts and Fantasy," In Proceedings of the USENIX Symposium onInternet Technologies and Systems ,http://www.eecs.harvard.edu/~margo/papers/.Rizzo, L. and L. Vicisano (1998), \Replacement policies for a proxy cache," Technical Report RN/98/13,Department of Computer Science, University College London,http://www.iet.unipi.it/~luigi/research.html.Rousskov, A. (1997), \Performance Pro�ling Patch,"http://www.cs.ndsu.nodak.edu/~rousskov/research/cache/squid/profiling/.Rousskov, A. and V. Soloviev (1997), \Static Caching for Proxy Servers," In Second Web Caching Workshop,http://ircache.nlanr.net/Cache/Workshop97/.Rousskov, A. and V. Soloviev (1998), \Squid Pro�ling Statistics,"http://www.cs.ndsu.nodak.edu/~rousskov/research/cache/squid/profiling/stats/.Rousskov, A. and V. Soloviev (1999), \Caching Policies for Reducing Disk I/O," In Communication Networksand Distributed Systems Modeling and Simulation Conference,http://www.cs.ndsu.nodak.edu/~research/cache/papers/save io/.Rousskov, A. and D. Wessels (1998), \Web Polygraph { a High-Performance Proxy Benchmark,"http://ircache.nlanr.net/Polygraph/.Tatarinov, I., A. Rousskov, and V. Soloviev (1997), \Static Caching in Web Servers," In Proceedings of theIEEE Conference on Computer Communications and Networks .Tewari, R., M. Hahlin, H. M. Vin, and J. S. Kay (1998), \Beyond Hierarchies: Design Considerations forDistributed Caching on the Internet," Technical Report TR98-04, Department of Computer Science,University of Texas at Austin,http://www.cs.utexas.edu/users/tewari/papers.html.Wessels, D. (1998), \Squid Internet Object Cache Documentation,"http://squid.nlanr.net/Squid/.Wessels, D. and K. Cla�y (1997), \Internet Cache Protocol (ICP), version 2," RFC 2186,http://squid.nlanr.net/Squid/rfc2186.txt.WWW Consortium (1998), \Web Characterization Activity site,"http://www.w3.org/WCA/.

