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Simultaneous Training of Negatively
Correlated Neural Networks in an Ensemble

Yong Liu, Student Member, IEEE,and Xin Yao,Senior Member, IEEE

Abstract—This paper presents a new cooperative ensemble
learning system (CELS) for designing neural network ensembles.
The idea behind CELS is to encourage different individual
networks in an ensemble to learn different parts or aspects of
a training data so that the ensemble can learn the whole train-
ing data better. In CELS, the individual networks are trained
simultaneously rather than independently or sequentially. This
provides an opportunity for the individual networks to interact
with each other and to specialize. CELS can create negatively
correlated neural networks using a correlation penalty term in
the error function to encourage such specialization. This paper
analyzes CELS in terms of bias-variance-covariance tradeoff.
CELS has also been tested on the Mackey–Glass time series
prediction problem and the Australian credit card assessment
problem. The experimental results show that CELS can produce
neural network ensembles with good generalization ability.

Index Terms—Generalization, negative correlation learning,
neural network ensembles.

I. INTRODUCTION

NEURAL network ensembles [1], [2] have been used
increasingly in recent years to improve classifier’s gen-

eralization. Both theoretical and experimental results [3], [4]
have indicated that when individual networks in an ensem-
ble are unbiased, average procedures are most effective in
combining them when errors in the individual networks are
negatively correlated and moderately effective when the errors
are uncorrelated. There is little to be gained from average
procedures when the errors are positively correlated.

There are several methods of designing neural network
ensembles. Most of them follow the two-stage design process
[1]; first generating individual networks, and then combining
them. Usually, the individual networks are trained independent
of each other. One of the disadvantages of such an approach is
the loss of interaction among the individual networks during
learning. There is no feedback from the combination stage
to the individual design stage. It is possible that some of the
independently designed individual networks do not make much
contribution to the whole ensemble.

This paper proposes a new cooperative ensemble learning
system (CELS). The idea behind CELS is to encourage dif-
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ferent individual networks to learn different parts or aspects
of a training data so that the ensemble can learn the whole
training data better. CELS is different from previous work
on designing neural network ensembles. It emphasizes in-
teraction and cooperation among the individual networks in
the ensemble, and uses an unsupervised penalty term in the
error function to produce biased individual networks whose
errors tend to be negatively correlated. This approach is quite
different from existing ones [4], [5] which train the individual
networks independently or sequentially.

Rosen [6] proposed an ensemble learning algorithm using
decorrelated neural networks. The idea is that individual
networks attempt to not only minimize the error between the
target and their output, but also decorrelate their errors from
previously trained networks. However, Rosen’s algorithm still
trains the individual networks sequentially. One major dis-
advantage of this algorithm is that training a network in an
ensemble cannot affect the previously trained networks in the
ensemble so that the errors of the individual networks are
not necessarily negatively correlated. CELS extends Rosen’s
work to simultaneous training of negatively correlated neural
networks. Such extension has produced significant improve-
ment in neural network ensembles’ performance. Negatively
correlated neural networks can be easily obtained in CELS.
Theoretical and empirical studies will be carried out in this
paper to show why and how CELS works.

CELS is also different from the mixtures-of-experts (ME)
architecture [7] that consists of a gating network and a number
of expert networks although ME architecture can also produce
biased individual networks whose estimates are negatively
correlated. CELS does not need a separate gating network.
It uses a totally different error function. The parameter in
CELS provides a convenient way to balance the bias-variance-
covariance tradeoff. ME architecture does not provide such
control over the tradeoff.

CELS attempts to train and combine individual networks in
the same learning process. That is, the goal of each individual
training is to generate the best result for the whole ensemble.
Such an approach is quite different from other ensemble
approaches which separate individual design from average
procedures.

CELS has been analyzed in terms of bias-variance-
covariance tradeoff. It has also been tested on the
Mackey–Glass time series prediction problem and the
Australian credit card assessment problem. The experimental
results obtained by CELS are better than those obtained by
other algorithms in terms of generalization.
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The rest of this paper is organized as follows: Section II
briefly overviews the neural network learning and the bias-
variance tradeoff. Section III describes CELS and gives its
motivation based on the bias-variance-covariance tradeoff.
Section IV analyzes CELS via the metrics of bias, variance,
and covariance on a regression task. Section V presents the
experimental results on CELS and some discussions. Finally,
Section VI concludes with a summary of the paper and a few
remarks.

II. NEURAL NETWORK LEARNING

Suppose that we have a training set

where is a scalar, and is the size of the training
set. The assumption that the outputis a scalar has been
made merely to simplify exposition of ideas without loss of
generality.

The functional relationship between and can be ex-
pressed as

(1)

where is some function of vector and is a random
variable that reflects the fact that simultaneous specification
of a set of input vectors, does not uniquely
specify an output value (unlessis a constant). The statistical
model described by (1) is called aregressive model. In this
model the function is defined by [8]

(2)

where is the statistical expectation operator.
The exact functional relationship betweenand is usually

unknown. The purpose of neural network learning is to use
to explain or predict It does so by encoding the empirical
knowledge represented by the training set into a set of
synaptic weights, One criterion for optimizing weights is
the minimization of the mean-square error

(3)

where is the actual response of the network.
The error function may be expressed as the sum of

two terms [9]

(4)

Note that the first term of (4) is independent of It is
sufficient to minimize the second term. To be explicit about
dependence on the training set the approximating function
may be rewritten as Consider then the mean-squared
error of the function as an estimator of the regression
function which is defined by

where the expectation operator represents the average over
all the training sets of given size Taking expectations

with respect to the training set we can get the well-known
separation of the mean-squared error [9], [10]

(5)

The first term of (5) is the square of the bias of the approximat-
ing function measured with respect to the regression
function and the second term represents the
variance of the approximating function

Accordingly, (5) states that the mean-square value of the
estimation error between the regression function and
approximating function consists of the sum of two
terms: bias squared and variance. To achieve good perfor-
mance, the bias and variance of the approximating function

should both be small. In the case of a training set with
finite size, although there can be neural networks with both
small bias and variance, usually there is a tradeoff between the
two: attempts to decrease bias by introducing more parameters
in the network often tend to increase variance; attempts to
reduce variance by reducing parameters in the network often
tend to increase bias.

III. ENSEMBLE NETWORK LEARNING

A. Bias-Variance-Covariance Tradeoff

In this section, we consider estimating by
forming a simple averaging of a set of which are
trained on the same training data set

(6)

where is the number of neural network estimators. Con-
sequently, the expected mean-squared error of the combined
system can be written in terms of individual network output
[11], [7]

(7)

where the first term is the square of the bias of the combined
system, the second and third terms are the variance and covari-
ance of the outputs of the individual networks, respectively.
Similar to the bias-variance tradeoff for a single network, there
is the bias-variance-covariance tradeoff for neural network
ensembles.

While the variance in (7) can be seen to decay at the
covariance is finite unless the covariances between individual
networks are very small. It has been found that the combining
results are weakened if the errors of individual networks
are positively correlated [3], [4]. Common approaches to
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dealing with this issue are to obtain unbiased estimators whose
estimation errors are as weakly correlated as possible [5]. In
contrast, this paper describes a new approach to create biased
estimators whose estimation errors are negatively correlated.

B. Simultaneous Learning of Negatively
Correlated Neural Networks

CELS introduces a correlation penalty term into the error
function of each individual network so that the individual
networks can be trained simultaneously and interactively. The
error function for individual network in CELS is defined
by

(8)

where is the number of training patterns, is the value
of the error of network at presentation of the th training
pattern, is the output of network on the th training
pattern, and is a correlation penalty function. The purpose
of minimizing is to negatively correlate each individual’s
error with errors for the rest of the ensemble. The parameter

is used to adjust the strength of the penalty. The
function can be chosen as

(9)

where For the noise free data, i.e.,
we have

(10)

Unfortunately, the value of is unknown for noisy data. In
such cases, the function can be chosen as

(11)

where is the output of the combined system on theth
training pattern. For the sake of convenience, the following
discussion of CELS is for the noise free data.

In CELS, the standard back-propagation (BP) algorithm [12]
with pattern-by-pattern updating has been used for weight
adjustments. The partial derivative of with respect to the
output of network on the th training pattern is

(12)

Weight updating of all the individual networks is performed
simultaneously using (12) after the presentation of each train-
ing pattern. Note that the correlation penalty term is very
easy to implement since it requires only a small change in
the independent training without the correlation penalty term.
One complete presentation of the entire training set during the
learning process is called anepoch.

The sum of over all is

(13)

From (8), (10)–(13), we may make the following observations.

1) During the training process, all the individual networks
interact with each other through their penalty terms in
the error functions.

2) For there are no correlation penalty terms
in the error functions of the individual networks, and
the individual networks are just trained independently
using BP. That is, independent training using BP for the
individual networks is a special case of CELS.

3) For (13) can be rewritten as

(14)

The right term in (14), denoted by is the error
function of the ensemble. From this point of view, CELS
provides a novel way to decompose the learning task of
the ensemble into a number of subtasks for the different
individual networks.

4) For the following equality holds

(15)

The minimization of the error function of the ensemble
is achieved by minimizing the error functions of the
individual networks.

IV. BIAS-VARIANCE-COVARIANCE ESTIMATION

This section analyzes CELS in terms of the bias-variance-
covariance tradeoff on a regression task in order to understand
why and how CELS works. The regression function is

(16)

where is an input vector whose components
lie between zero and one. The value of lies in the interval

This regression task has been used by Jacobs [7] to
estimate the bias of ME architectures and the variance and
covariance of experts’ weighted outputs.

The ensemble architecture used in our experiments consisted
of a set of networks. Each individual network was a multilayer
perceptron with one hidden layer. All the individual networks
had the same number of hidden nodes in an ensemble archi-
tecture. The hidden node function was defined by the logistic
function

(17)

The network output was a linear combination of the outputs
of the hidden nodes.

Twenty-five training sets were created at random. Each set
consisted of 500 input–output patterns in which the compo-
nents of the input vectors were independently sampled from a
uniform distribution over the interval (0,1). The target outputs
were not corrupted by noise for Experiments 1 and 2. In
Experiment 3, the target outputs were created by adding noise
sampled from a Gaussian distribution with a mean of zero
and a variance of to the function A testing set of 1024
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input–output patterns,
was also generated. For this set, the components of the
input vectors were independently sampled from a uniform
distribution over the interval (0,1), and the target outputs were
not corrupted by noise. The correlation penalty term given in
(10) was used in Experiments 1 and 2. The correlation penalty
term given in (11) was used in Experiment 3.

Twenty-five simulations of each ensemble architecture were
conducted. In each simulation, the architecture was trained
on a different training set from the same initial weights
distributed inside a small range so that different simulations
of an architecture yielded different performances solely due
to the use of different training sets. Such experimental setup
follows the suggestions from Jacobs [7].

The average outputs of the ensemble system and network
on the th pattern in the testing set,

are denoted, respectively, by and which
are given by

(18)

and

(19)

where and are the outputs of the ensemble
and network on the th pattern in the testing set
from the th simulation, respectively, and is the number
of simulations. The integrated bias integrated variance

and integrated covariance of the ensemble are
defined by, respectively,

(20)

and

(21)

and

(22)

We may also define the integrated mean-squared error (MSE)
as

(23)

It is clear that the following equality holds

(24)

TABLE I
RESULTS OFINTEGRATED BIAS, INTEGRATED VARIANCE, INTEGRATED

COVARIANCE, AND INTEGRATED MEAN-SQUARED ERROR ON THE

TESTING SET IN CELS FOR DIFFERENT � VALUES AT EPOCH 2000

A. Experiment 1

The first experiment is aimed to investigate the dependence
of and on the strength parameter The
architecture of the ensemble was composed of eight individual
networks. Each individual network had five hidden nodes. The
learning-rate in BP was set to 0.1. The results of CELS for
the different values of at epoch 2000 are given in Table I
and Fig. 1. The results suggest that appeared to decrease
first and then increase with increasing value of It was
found that for seemed to be the minimum
value for different values of However, when became too
big, increased dramatically. In such cases the individual
learnings mainly minimized the correlation penalty terms in
the error functions rather than the error of the ensemble. It
seems that increased as the value of increased, and

decreased as the value of increased. It is important
to note that the integrated covariance became negative during
the training procedure.

It is interesting that CELS controls not only the variance and
covariance of the individual networks, but also the bias of the
combined system. Compared with independent training using
BP (i.e., in CELS), although CELS created larger
variance, the sum of the variance and covariance in CELS
was smaller because of the negative covariance. At the same
time, CELS reduced the bias of the ensemble significantly.
From (24), the integrated MSE consists of the sum of three
terms: the integrated bias, variance, and covariance. Therefore,
CELS provides a control of bias, variance, and covariance
through the choice of value to achieve good performance.
For this regression task and the ensemble architecture used,
it was observed that the bias-variance-covariance tradeoff was
optimal for in the sense of minimizing the MSE.

B. Experiment 2

There are two aims of Experiment 2. The first is to investi-
gate the dependence of and on the individual
network size. We used three different ensemble architectures,
denoted by and which were composed of 8
individual networks. Each individual network in and

had 5, 10, and 15 hidden nodes, respectively. The second
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(a)

(b)

Fig. 1. (a) Progress of integrated bias and integrated MSE on the testing set
at epoch 2000 for different� values. The vertical axis is the value of the
integrated bias and integrated MSE and the horizontal axis is the value of�:

(b) Progress of integrated variance and integrated covariance on the testing
set at epoch 2000 for different� values. The vertical axis is the value of the
integrated variance and integrated covariance and the horizontal axis is the
value of �:

is to compare the correlations among the individual networks
and the squared bias of the individual networks created by
CELS and independent training, respectively. The learning
rate in BP and strength parameter were set to 0.1 and
0.5, respectively.

The results of CELS for and at epoch 2000
are given in Table II. As expected, and which had
more computational resources, performed slightly better than

It is worth pointing out that larger individual network size
does not necessarily improve the performance of the ensemble
system. The choice of individual network size is problem
dependent. Interestingly, although the sum of the variance and
covariance did not change much among and
their variance and covariance were quite different.

TABLE II
COMPARISON BETWEEN CELS (� = 0:5) AND INDEPENDENT TRAINING (i.e.,
� = 0:0 IN CELS) FOR THE DIFFERENT INDIVIDUAL NETWORK SIZES. THE

RESULTS OFINTEGRATED BIAS, INTEGRATED VARIANCE, INTEGRATED

COVARIANCE, AND INTEGRATED MSE ON THE TESTING SET ARE AT EPOCH 2000

and were also independently trained using
BP without the correlation penalty terms (i.e., in
CELS). The results are shown in Table II. It is apparent that
the architectures trained with the correlation penalty terms
performed better in terms of the integrated MSE values.

In order to observe the effect of the correlation penalty
terms, Fig. 2 shows the correlations among the individual
networks in trained with and without the correlation
penalty terms, respectively. The correlation between network

and network is given by

(25)

There are correlations in total between different
networks in For the simultaneous training with the
correlation penalty terms, 21 correlations among them had
negative values. The results suggest that the correlation penalty
terms tend to lead to negatively correlated individual networks.
In contrast, for the independent training without the correlation
penalty terms, all the correlations were positive. Because every
individual network learns the same task in the independent
training, the correlations among them are generally positive.
In CELS, each individual network learns different parts or
aspects of the training data so that the problem of correlated
errors can be removed or alleviated.

Fig. 3 shows the squared bias of the individual networks in
using CELS and independent training. For the individual

networks created by CELS, they were biased whose values
were much larger than those of the individual networks created
by independent training. Although the individual networks in
CELS were biased, the ensemble was unbiased at the end of
training.
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(a)

(b)

Fig. 2. (a) Correlations among the individual networks inA10 using CELS
(� = 0:5): (b) Correlations among the individual networks inA10 using
independent training (i.e.,� = 0:0 in CELS). A correlation is represented by
a vertical bar with one end at zero and the other end point at the value of
the represented correlation. Different bars correspond to correlations between
different individuals.

C. Experiment 3

This experiment investigated the effects of adding the noise
to the target function. Moderate noise (variance and
large noise (variance conditions were studied. The
architecture of the ensemble was composed of eight individual
networks. Each network had five hidden nodes. The learning-
rate in BP was set to 0.1.

Tables III and IV compare the performance of CELS for
different strength parameters in both the moderate noise con-
dition and the large noise condition. The results show that
there were similar trends for and in both the
noise free condition and the noise conditions. That is,
seemed to increase as the value ofincreased, and
seemed to decrease as the value ofincreased. appeared
to decrease first and then increase with increasing value of

However, in the large noise condition, appeared to
decrease with increasing value of In the moderate noise
condition, appeared to decrease first and then increase
with increasing value of As demonstrated by the results,
CELS with outperformed independent training
in terms of the integrated MSE values.

Choosing a proper value of is important in CELS, and
also problem dependent. For the noise conditions used for this
regression task and the ensemble architecture used, the bias-
variance-covariance tradeoff was optimal for among

(a)

(b)

Fig. 3. (a) Squared biases of the individual networks inA10 using CELS
(� = 0:5): (b) Squared biases of the individual networks inA10 using
independent training (i.e.,� = 0:0 in CELS). The vertical axis is the value
of the estimated bias of an individual network and different bars correspond
to different individuals.

TABLE III
RESULTS OFCELS WITH DIFFERENT � VALUES IN THE MODERATE

NOISE CONDITION (VARIANCE �2 = 0:1): THE VALUES OF THE

INTEGRATED BIAS, INTEGRATED VARIANCE, INTEGRATED COVARIANCE,
AND INTEGRATED MSE ON THE TESTING SET ARE AT EPOCH 2000

the tested values of in the sense of minimizing the MSE on
the testing set. Tables V and VI compare the results of CELS
with with those produced by ME architectures [7]
and by Rosen’s algorithm [6]. For the moderate noise case,
the integrated MSE of ME architectures was about 0.018,
while the integrated MSE of CELS was 0.012. The integrated
MSE achieved by ME architectures was about 0.038 for the
large noise case, while the integrated MSE for CELS was
0.023. Although both ME architectures and CELS tend to
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TABLE IV
RESULTS OFCELS WITH DIFFERENT � VALUES IN THE LARGE NOISE

CONDITION (VARIANCE �
2
= 0:2): THE VALUES OF THE INTEGRATED

BIAS, INTEGRATED VARIANCE, INTEGRATED COVARIANCE, AND

INTEGRATED MSE ON THE TESTING SET ARE AT EPOCH 2000

TABLE V
COMPARISON AMONG CELS, ME ARCHITECTURES[7], AND

ROSEN’S ALGORITHM [6] IN THE MODERATE NOISE CONDITION

TABLE VI
COMPARISON AMONG CELS, ME ARCHITECTURES[7], AND

ROSEN’S ALGORITHM [6] IN THE LARGE NOISE CONDITION

create negatively correlated networks, CELS can achieve good
performance by controlling bias, variance, and covariance
through the choice of value.

CELS’s results are also better than those produced by
Rosen’s algorithm [6]. In Rosen’s algorithm, the error function
for an individual network is

(26)

where is a (possibly) time-dependent scaling function,
is an indicator function for decorrelation between net-

works and and is a correlation penalty function. The
correlation penalty function used in [6] is the product of
the th and th network error

(27)

One indicator function used in [6] is to penalize an individ-
ual network for being correlated with the previously trained

network

if
otherwise.

(28)

There are two essential differences between CELS and
Rosen’s algorithm. First, in CELS, each network was si-
multaneously trained to negatively correlate with the rest of
networks in the ensemble. In Rosen’s algorithm, each network
in the ensemble was sequentially trained to decorrelate with the
previously trained networks. Second, CELS used a different
correlation penalty function for noisy data. These two differ-
ences led to different performance between CELS and Rosen’s
algorithm. Tables V and VI summarize the comparison results.
The in (26) was set to the constant 1. We also tested
Rosen’s algorithm with different There was not much
improvement in the performance.

V. EXPERIMENTAL STUDIES

A. The Mackey–Glass Chaotic Time Series Prediction Problem

This section describes CELS’s application to a time series
prediction problem. The Mackey–Glass time series investi-
gated here is generated by the following differential equation

(29)

where [13], [14]. As mentioned
by Martinetzet al. [15], is quasiperiodic and chaotic with
a fractal attractor dimension 2.1 for the above parameters.

1) Experimental Setup:The input consists of four past data
points, and The output
is In order to make multiple step prediction (i.e.,

) during testing, iterative predictions of
will be made. During training, the true

value of is used as the target value. Such experimental
setup is the same as that used by Martinetzet al. [15].

In the following experiments, the data for the Mackey–Glass
time series was obtained by applying the fourth-order
Runge–Kutta method to (29) with initial condition

for and the time step is 1. The training
set consisted of points 118 to 617 (i.e., 500 training patterns).
The following 500 data points (starting from point 618) were
used as testing set. The values of training and testing data were
rescaled linearly to between 0.1 and 0.9. Such experimental
setup was adopted in order to facilitate comparison with other
existing work.

The normalized root-mean-square (RMS) errorwas used
to evaluate the performance of CELS, which is determined by
the RMS value of the absolute prediction error for divided
by the standard deviation of [13], [15]

(30)

where is the prediction of from the
current state and represents the expectation of As
indicated by Farmer and Sidorowich [13], “If the
predictions are perfect; indicates that the performance
is no better than a constant predictor ”
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TABLE VII
AVERAGE RESULTS PRODUCED BY CELS OVER 25 RUNS FOR THE

MACKEY-GLASS TIME-SERIES PREDICTION PROBLEM. THE “TESTING

RMS” IN THE TABLE REFERS TO THEERROR DEFINED BY (30) ON THE

TESTING SET. MEAN, SD, MIN,AND MAX INDICATE THE MEAN VALUE,
STANDARD DEVIATION, MINIMUM AND MAXIMUM VALUE, RESPECTIVELY

TABLE VIII
GENERALIZATION RESULTS COMPARISON AMONG CELS, EPNet [16],
BP, AND CC LEARNING [17] FOR THE MACKEY–GLASS TIME-SERIES

PREDICTION PROBLEM. THE “TESTING RMS” IN THE TABLE

REFERS TO THEERROR DEFINED BY (30) ON THE TESTING SET

The ensemble architecture used in the experiments was
composed of 20 individual networks. Each individual network
was a multilayer perceptron with one hidden layer. Both
hidden node function and output node function were defined
by the logistic function in (17). All the individual networks
had 6 hidden nodes. The number of training epochs was set
to 10 000. The learning rate in BP and strength parameter
were set to 0.25 and 1.0, respectively. The correlation penalty
term given in (10) was used in this experiment.

2) Experimental Results and Comparisons:Table VII shows
the average results of CELS over 25 runs. Each run of
CELS was from different initial weights. Table VIII compares
CELS’s results with those produced by EPNet [16], BP and the
cascade-correlation (CC) learning [17]. It is obvious that CELS
was able to achieve the generalization performance better than
that of others.

For a large time span CELS’s results also
compared favorably with those produced by Martinetzet al.
[15] which had been shown to be better than Moody and
Darken [18]. For the same training set size of 500 data
points, the smallest prediction error achieved by “neural-
gas” networks [15] was about 0.06. The smallest prediction
error among 25 CELS runs was 0.003 05, while the average
prediction error was 0.0368.

B. The Classification Problems

This section describes CELS’s application to a real-world
problem, i.e., the Australian credit card assessment problem.
The problem is to assess applications for credit cards based
on a number of attributes [20]. There are 690 cases in total.
The output has two classes. The 14 attributes include six
numeric values and eight discrete ones, the latter having from
2–14 possible values. The Australian credit card assessment
problem is a classification problem which is different from

TABLE IX
COMPARISON OFERROR RATES BETWEEN CELS (� = 1:0) AND INDEPENDENT

TRAINING USING BP (i.e.,� = 0:0 IN CELS) ON THE AUSTRALIAN

CREDIT CARD ASSESSMENTPROBLEM. THE RESULTS WEREAVERAGED

OVER 25 RUNS. “SIMPLE AVERAGING” AND “WINNER-TAKE-ALL”
INDICATE TWO DIFFERENT COMBINATION METHODS USED IN CELS

the previous regression tasks whose outputs are continuous. It
is used to illustrate that CELS is applicable to a wide range
of problems since it does not assume anya priori knowledge
of the problem domain. The data set was obtained from the
UCI machine learning benchmark repository. It is available
by anonymous ftp at ics.uci.edu (128.195.1.1) in directory
/pub/machine-learning-databases.

1) Experimental Setup:The data set was partitioned into
two sets: a training set and a testing set. The first 518 examples
were used for the training set, and the remaining 172 examples
for the testing set. The testing set was not seen by any neural
network during the training phase. It was only used for testing
the generalization of neural network ensembles after they were
trained.

The input attributes were rescaled to between 0.0 and 1.0 by
a linear function. The output attributes of all the problems were
encoded using a 1-of- output representation for classes.
The output with the highest activation designated the class.

The ensemble architecture used in the experiments consisted
of four multilayer perceptrons with one hidden layer. All
the individual networks had ten hidden nodes in the hidden
layer. Both hidden node function and output node function
were defined by the logistic function in (17). The number of
training epochs was set to 250. The learning rateand strength
parameter were set to 0.1 and 1.0, respectively. These
parameters were chosen after limited preliminary experiments.
They are not meant to be optimal. The correlation penalty term
given in (11) was used in CELS.

2) Experimental Results:Table IX shows CELS’s results
over 25 runs. Each run of CELS was from different initial
weights. The same architecture with the same initial weight
setup was also independently trained using BP without the
correlation penalty terms (i.e., in CELS). Results
are also shown in Table IX. For classification problems, the
same combination method used in the regression task, i.e.,
the simple averaging defined in (6), was first applied to
decide the output of the ensemble system. For the simple
averaging, it was surprising that the results of CELS with

were similar to those of independent training. This
phenomenon seems contradictory to the claim that the effect of
the correlation penalty term is to encourage different individual
networks in an ensemble to learn different parts or aspects of
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TABLE X
SIZES OF THE CORRECT RESPONSESETS OF INDIVIDUAL NETWORKS CREATED

RESPECTIVELY BY CELS (� = 1:0) AND INDEPENDENT TRAINING (i.e.,
� = 0:0 IN CELS) ON THE TESTING SET AND THE SIZES OF THEIR

INTERSECTIONS FOR THEAUSTRALIAN CREDIT CARD ASSESSMENTPROBLEM.
THE RESULTS WEREOBTAINED FROM THE FIRST RUN AMONG THE 25 RUNS

the training data. In order to verify and quantify this claim,
we compared the outputs of the individual networks trained
with the correlation penalty term to those of the individual
networks trained without the correlation penalty term.

Two notions were introduced to analyze CELS. They are
the correct response sets of individual networks and their
intersections. The correct response setof individual network

on the testing set consists of all the patterns in the testing
set which are classified correctly by the individual network

Let denote the size of set and denote the
size of set Table X shows the sizes
of the correct response sets of individual networks and their
intersections on the testing set, where the individual networks
were, respectively, created by CELS and independent training.
It is evident from Table X that different individual networks
created by CELS were able to specialize to different parts
of the testing set. For instance, in Table X the sizes of both
correct response sets and at were 143, but
the size of their intersection was 133. The size of

was only 113. In contrast, the individual
networks in the ensemble created by independent training
using BP were quite similar. The sizes of correct response
sets and at were from 146–149, while
the size of their intersection set reached 146.
There were only three different patterns correctly classified by
the four individual networks in the ensemble.

In simple averaging, all the individual networks have the
same combination weights and are treated equally. However,
not all the networks are equally important. Because different
individual networks created by CELS were able to specialize
to different parts of the testing set, only the outputs of these
specialists should be considered to make the final decision of
the ensemble for this part of the testing set. In this experiment,
a winner-take-all method was applied to select such networks.
For each pattern of the testing set, the output of the ensemble
was only decided by the network whose output had the highest
activation. Table IX shows the average results of CELS over
25 runs using the winner-take-all combination method. The
winner-take-all combination method improved CELS signifi-
cantly because there were good and poor networks for each
case in the testing set and winner-take-all selected the best one.
However it did not improved the independent training much

TABLE XI
COMPARISON AMONG CELS, EPNet [16],AN EVOLUTIONARY ENSEMBLE

LEARNINIG ALGORITHM (Envo-En-RLS) [19],AND OTHERS [20] IN TERMS OF

THE AVERAGE TESTING ERROR RATE FOR THE AUSTRALIAN CREDIT CARD

ASSESSMENTPROBLEM. TER STANDS FOR TESTING ERROR RATE IN THE TABLE

because the individual networks created by the independent
training were all similar to each other.

Table XI compares CELS’s results with those produced by
other neural and nonneural algorithms, where EPNet is an
evolutionary system for designing neural networks [16] and
Evo-En-RLS forms the final results by combining all the indi-
viduals in the last generation in EPNet based on the recursive
least-square algorithm [19]. The other algorithms represent the
best 11 out of 23 algorithms tested in [20]. Although CELS
performed slightly worse than EPNet and Evo-En-RLS, it was
significantly faster in terms of training time. CELS performed
better than all other algorithms although they used ten-fold
cross-validation.

VI. CONCLUSIONS

This paper describes a new approach to designing neural
network ensembles for both regression and classification prob-
lems with noise. The approach can be regarded as one way
of decomposing a large problem into smaller and specialized
ones, so that each subproblem can be dealt with by an indi-
vidual neural network relatively easily. A correlation penalty
term in the error function was proposed to encourage the
formation of specialists in the ensemble. The Mackey–Glass
time series prediction problem and the Australian credit card
assessment problem were used as examples to demonstrate the
effectiveness of this approach.

This paper has also analyzed CELS in terms of the bias-
variance-covariance tradeoff in both the noise free condition
and the noise conditions. Unlike other ensemble approaches
which try to create unbiased individual networks whose er-
rors are uncorrelated, CELS can produce biased individual
networks whose errors tend to be negatively correlated. Very
competitive results have been produced by CELS in compari-
son with independent training, Rosen’s algorithm [6] and ME
architectures [7].

There are, however, some issues that need resolving. The
architectures of individual neural networks and the size of
ensemble are predefined at the moment. It would be desirable
to develop a learning algorithm which can vary the ensemble
architectures dynamically.
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