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Simultaneous Training of Negatively
Correlated Neural Networks in an Ensemble

Yong Liu, Student Member, IEEERNd Xin Yao, Senior Member, IEEE

Abstract—This paper presents a new cooperative ensemble ferent individual networks to learn different parts or aspects
learning system (CELS) for designing neural network ensembles. of a training data so that the ensemble can learn the whole

The ‘idea behind CELS s to encourage different individual = aining data better. CELS is different from previous work
networks in an ensemble to learn different parts or aspects of

a training data so that the ensemble can learn the whole train- ON designing neural network ensembles. It emphasizes in-
ing data better. In CELS, the individual networks are trained teraction and cooperation among the individual networks in
simultaneously rather than independently or sequentially. This the ensemble, and uses an unsupervised penalty term in the
provides an opportunity for the individual networks to interact  arror function to produce biased individual networks whose

with each other and to specialize. CELS can create negatively . . . .
correlated neural networks using a correlation penalty term in errors tend to be negatively correlated. This approach is quite

the error function to encourage such specialization. This paper different from existing ones [4], [5] which train the individual
analyzes CELS in terms of bias-variance-covariance tradeoff. networks independently or sequentially.
CELS .has also been tested on th_e Mackgy—GIass time series Rosen [6] proposed an ensemble learning algorithm using
prediction problem and the Australian credit card assessment yo.orrelated neural networks. The idea is that individual
problem. The experimental results show that CELS can produce L
neural network ensembles with good generalization ability. networks attempt to not only minimize the error between the
target and their output, but also decorrelate their errors from
previously trained networks. However, Rosen’s algorithm still
trains the individual networks sequentially. One major dis-
advantage of this algorithm is that training a network in an
|. INTRODUCTION ensemble cannot affect the previously trained networks in the
EURAL network ensembles [1], [2] have been usefnsemble so that the errors of the individual networks are
increasing|y in recent years to improve classifier’'s gerﬁlot necessarily negatively correlated. CELS extends Rosen’s
eralization. Both theoretical and experimental results [3], [4y0rk to simultaneous training of negatively correlated neural
have indicated that when individual networks in an enserfetworks. Such extension has produced significant improve-
ble are unbiased, average procedures are most effectivami@nt in neural network ensembles’ performance. Negatively
combining them when errors in the individual networks areorrelated neural networks can be easily obtained in CELS.
negatively correlated and moderately effective when the errdrBeoretical and empirical studies will be carried out in this
are uncorrelated. There is little to be gained from averagaper to show why and how CELS works.
procedures when the errors are positively correlated. CELS is also different from the mixtures-of-experts (ME)
There are several methods of designing neural netwaakchitecture [7] that consists of a gating network and a number
ensembles. Most of them follow the two-stage design processexpert networks although ME architecture can also produce
[1]; first generating individual networks, and then combiningiased individual networks whose estimates are negatively
them. Usually, the individual networks are trained independettrrelated. CELS does not need a separate gating network.
of each other. One of the disadvantages of such an approach igsses a totally different error function. The parameter in
the loss of interaction among the individual networks durinGELS provides a convenient way to balance the bias-variance-
learning. There is no feedback from the combination stagevariance tradeoff. ME architecture does not provide such
to the individual design stage. It is possible that some of th@entrol over the tradeoff.
independently designed individual networks do not make muchCELS attempts to train and combine individual networks in
contribution to the whole ensemble. the same learning process. That is, the goal of each individual
This paper proposes a new cooperative ensemble learnifining is to generate the best result for the whole ensemble.
system (CELS). The idea behind CELS is to encourage dffuch an approach is quite different from other ensemble
approaches which separate individual design from average
procedures.
Manuscript received June 19, 1998; revised January 15, 1999. This papeCELS has been analyzed in terms of bias-variance-
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The rest of this paper is organized as follows: Section With respect to the training sé?, we can get the well-known
briefly overviews the neural network learning and the biaseparation of the mean-squared error [9], [10]
variance tradeoff. Section Ill describes CELS and gives its
motivation based on the bias-variance-covariancegtradeoff. Ep|(Eld]z] - F(x, D))’]
Section IV analyzes CELS via the metrics of bias, variance, = (Ep[F(z,D)] - E[d|z])*
and covariance on a regression task. Section V presents the + Ep[(F(x,D) — Ep[F(x,D)])?]. (5)
experimental results on CELS and some discussions. Finally,

Section VI concludes with a summary of the paper and a felie first term of (5) is the square of the bias of the approximat-
remarks. ing function F'(z, D) measured with respect to the regression

function g(z) = E[d|z], and the second term represents the
variance of the approximating functiaki(«, D).

l. NEURAL NETWORK LEARNING Accordingly, (5) states that the mean-square value of the

Suppose that we have a training set estimation error between the regression functige) and
approximating functionF'(«, D) consists of the sum of two
D = {(x(1),d(1)), -, (&(N),d(N))} terms: bias squared and variance. To achieve good perfor-

wherex € R?, d is a scalar, andV is the size of the training mance, the bias and variance of the approxim_at?ng funct_ion

set. The assljmption that ,the outpdtis a scalar has beenF(.x’ D_) should both be small. In the case of a training set with
maﬁe merely to simplify exposition of ideas without loss 0fnlte size, although there can be negral networks with both
generality mall bias and variance, usgally thgre isa _tradeoff between the
The fuﬁctional relationship between and d can be ex- Fwo: attempts to decrease b|as'by mtroducmg more parameters
pressed as in the netv_vork often teno_l to increase variance; attempts to
reduce variance by reducing parameters in the network often

d=g(x)+e (1) tend to increase bias.

where g(x) is some function of vectog, ande¢ is a random [1l. ENSEMBLE NETWORK LEARNING
variable that reflects the fact that simultaneous specification

of a set of input vectorsiz(1), - -, 2(N)}, does not uniquely A. Bias-Variance-Covariance Tradeoff
specify an output value (unlesss a constant). The statistical
model described by (1) is called ragressive modelln this
model the functiorg(z) is defined by [8]

In this section, we consider estimatingz) = E[d|«] by
forming a simple averaging of a set &f(x, D) which are
trained on the same training data det
1
M

9(x) = E[d|z] )

F(x,D)= — M Fy(x,D) (6)

where E is the statistical expectation operator. here M is th b ¢ | K esti c
The exact functional relationship betweemndd is usually where M is the number of neural network estimators. Con-

unknown. The purpose of neural network learning is to ﬂsesequently, the eXPeCte‘?' mean-squgreq_error of the combined
to explain or predictl. It does so by encoding the empiricalsystem can be written in terms of individual network output

knowledge represented by the training detinto a set of (111, [7]
synapFic; V\./eig'htsw. One criterion for optimizing weights is g, [(E[d|z] — F(z, D))?]
the minimization of the mean-square error — (Ep[F(z,D)| - E[d|z])?
J(w) = E[(d - F 2 3 1
(w) [( (:c,w)) ] ( ) +Ep [W Eg\il(Fi(I,D) _ ED[E($7D)])2:|

where F'(z,w) is the actual response of the network. 1wy

The error functionJ(w) may be expressed as the sum of + Ep [W Yis1X#i(Fi(z, D) — Ep[Fi(x, D)])
two terms [9]

J(w) = Ef(d - g(2))"] + El(g(x) - Flz.w)’]. (&) * (@, D) = EplE(e. D)D} @

where the first term is the square of the bias of the combined
System, the second and third terms are the variance and covari-
ance of the outputs of the individual networks, respectively.
§imilar to the bias-variance tradeoff for a single network, there
s the bias-variance-covariance tradeoff for neural network

Note that the first term of (4) is independent af It is

sufficient to minimize the second term. To be explicit abo
dependence on the training g8t the approximating function
may be rewritten ag'(x, D). Consider then the mean-square
error of the function'(x, D) as an estimator of the regression)

f . _E hich i fi ensembles.
unction g(z) [dl=], which is defined by While the variance in (7) can be seen to decay/d, the
Ep[(E[d|z]) — F(z,D))?] covariance is finite unless the covariances between individual

networks are very small. It has been found that the combining
where the expectation operatby, represents the average overesults are weakened if the errors of individual networks
all the training sets) of given sizeN. Taking expectations are positively correlated [3], [4]. Common approaches to
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dealing with this issue are to obtain unbiased estimators whds®m (8), (10)—(13), we may make the following observations.

estimation errors are as weakly correlated as possible [5]. In1) During the training process, all the individual networks

contrast, this paper describes a new approach to create biased interact with each other through their penalty terms in
estimators whose estimation errors are negatively correlated.  the error functions.

2) For A = 0.0, there are no correlation penalty terms

B. Simultaneous Learning of Negatively in the error functions of the individual networks, and

Correlated Neural Networks the individual networks are just trained independently
CELS introduces a correlation penalty term into the error ~ USing BP. That is, independent training using BP for the

function of each individual network so that the individual individual networks is a special case of CELS.

networks can be trained simultaneously and interactively. The3) For A = 3, (13) can be rewritten as
error functionE; for individual network: in CELS is defined

by E(n) = $(Z}L, Fy(n) — Md(n))*. (14)
1 ) The right term in (14), denoted b¥,.., is the error
N : Fave )
By =5 Bnai Eiln) function of the ensemble. From this point of view, CELS
1 1 provides a novel way to decompose the learning task of
N 2 . .
=5 Sn=t |5 (d(n) = Fi(n))” + Api(n) 8 the ensemble into a number of subtasks for the different

individual networks.
whereN is the number of training patterng;(») is the value 4) For A = 1, the following equality holds
of the error of networki at presentation of theth training
8Eave _ aEZ(TL)

pattern,F;(n) is the output of network on thenth training = i (15)
pattern, and; is a correlation penalty function. The purpose OFi(n)  OFi(n)
of minimizing p; is to negatively correlate each individual's The minimization of the error function of the ensemble

error with errors for the rest of the ensemble. The parameter s achieved by minimizing the error functions of the
0 < A <1 is used to adjust the strength of the penalty. The  individual networks.
function p; can be chosen as

pi(n) = (Fi(n) — g(n)X;2 (F;(n) —g(n)) 9) IV. BIAS-VARIANCE-COVARIANCE ESTIMATION

This section analyzes CELS in terms of the bias-variance-
covariance tradeoff on a regression task in order to understand
why and how CELS works. The regression function is

where g(z) = E[d|z]. For the noise free data, i.eg{n) =
d(n), we have

pi(n) = (Fi(n) — d(n))Xjzi (F(n) —d(n)).  (10)

1
x) = —[10 sin(nz1z2) + 20(xs — 5)?
Unfortunately, the value of is unknown for noisy data. In /@) 13[ (re1z2) (#3=2)

such cases, the functign can be chosen as + 1024 + Sa5] — 1 (16)
pi(n) = (Fi(n) — F(n)) X2 (Fj(n) — F(n)) (11) wherex = [x1,---,x5) iS an input vector whose components
. ) lie between zero and one. The valuefgk) lies in the interval
where F'(n) is the output of the combined system on & [_; 1] This regression task has been used by Jacobs [7] to
training pattern. For the sake of convenience, the followingstimate the bias of ME architectures and the variance and
discussion of CELS is for the noise free data. covariance of experts’ weighted outputs.

InCELS, the standard back-propagation (BP) algorithm [12] The ensemble architecture used in our experiments consisted
with pattern-by-pattern updating has been used for weighfa set of networks. Each individual network was a multilayer
adjustments. The partial derivative & with respect to the perceptron with one hidden layer. All the individual networks
output of networki on thexth training pattern is had the same number of hidden nodes in an ensemble archi-

OF;(n) tecture. The hidden node function was defined by the logistic
OFi(n) Fi(n) = d(n) + A%jzi(Fj(n) —d(n)). - (12)  function

Weight updating of all the individual networks is performed o(y) 1

simultaneously using (12) after the presentation of each train- 1+ exp(=y)
ing pattern. Note that the correlation penalty term is veryhe network output was a linear combination of the outputs
easy to implement since it requires only a small change ¢ the hidden nodes.

the independent training without the correlation penalty term. Twenty-five training sets were created at random. Each set
One complete presentation of the entire training set during tbénsisted of 500 input—output patterns in which the compo-

17)

learning process is called &poch nents of the input vectors were independently sampled from a
The sum of E;(n) over alli is uniform distribution over the interval (0,1). The target outputs
E(n) = XM Ey(n) were not corrupted by noise for Experiments 1 and 2. In

Experiment 3, the target outputs were created by adding noise
sampled from a Gaussian distribution with a mean of zero

= (3 = VT (d(n) - Fi(n))?
: (13) and a variance of? to the functionz. A testing set of 1024

+ MM Fi(n)

|

=
/g
S
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input—output patternsit(n),y(n)), n = 1,---, N = 1024, TABLE |

was also generated. FEor this set, the components of the RESULTS OF INTEGRATED BIAS, INTEGRATED VARIANCE, INTEGRATED
. . . COVARIANCE, AND INTEGRATED MEAN-SQUARED ERROR ON THE
Input vectors were mdependently Sampled from a uniform TESTING SET IN CELS FOR DIFFERENT A VALUES AT EPOCH 2000

distribution over the interval (0,1), and the target outputs were

not corrupted by noise. The correlation penalty term given in A=00] A=025 A=05
(10) was used in Experiments 1 and 2. The correlation penalty Lbias 0.001310 | 0.000464 | 0.000263
term given in (11) was used in Experiment 3. ‘ZW‘ 0.000151 | 0.000451 | 0.001004
Twenty-five simulations of each ensemble architecture were = “’“E 8'888;3? _g'gggfgg _(0]'8888§;

conducted. In each simulation, the architecture was trained var + Preov ‘ : 0001
. - L . Ernse 0.001601 | 0.000653 | 0.000440

on a different training set from the same initial weights o =05 T
distributed inside a small range so that different simulations - —_ =10
. ; . Epias 0.000209 | 0.000172 | 0.001828

of an architecture yielded different performances solely due % -
; . . var 0.002145 | 0.003536 | 0.134295
to the use of different training sets. Such experimental setup 15 Z0.001969 | —0.003353 | —0.12078%,
. cov . . .

follows the suggestions from Jacobs [7]. B + ooy | 0000176 | 0.000183 | 0.004510
The average outputs of the ensemble system and network Fomee 0.000385 | 0.000355 | 0.006338

i on the nth pattern in the testing set¢(n),y(n)), n =
1,---, N, are denoted, respectively, By») andF';(n), which

are given by A. Experiment 1
_ 1wk The first experiment is aimed to investigate the dependence
F(n)= % Sh= (n) (18)  of Epjas, Evar, and Eeoy 0N the strength parameter. The
architecture of the ensemble was composed of eight individual
and networks. Each individual network had five hidden nodes. The

learning-rate; in BP was set to 0.1. The results of CELS for
the different values of\ at epoch 2000 are given in Table |
and Fig. 1. The results suggest titat,,. appeared to decrease
first and then increase with increasing value Jof It was

where F®)(n) and F* () are the outputs of the ensembIeIOlfndftha;.gbiaS Ior I)\ ~ (}\.9Hseemed tohb$t2e minir:wum
and networki on the nth patternt¢(n) in the testing set value Tor difierent vaiues oh. nowever, whem became 1oo

from the kth simulation, respectively, an& is the number big, Fi,:.s increased dramatically. In such cases the individual

of simulations. The integrated bids,;.s, integrated variance Itﬁarnlngs fma|rt\_ly m|n|$|ze(3hthe tﬁorrelatlonf ptﬁnalty terngf mlt
E,,, and integrated covarianc#.,, of the ensemble are € error functions rather than the error ot Iné ensemble.

. . seems thatt,,, increased as the value of increased, and
defined by, respectively, FE.., decreased as the value afincreased. It is important

1 - to note that the integrated covariance became negative during

—N_(F(n) —y(n))? (20) the training procedure.

N It is interesting that CELS controls not only the variance and
covariance of the individual networks, but also the bias of the
combined system. Compared with independent training using

1 *) o ) BP_(i.e., A = 0.0 in CELS), a_lthough CELS c_reated_larger

(F;7(n)— Fi(n))” (21) variance, the sum of the variance and covariance in CELS

was smaller because of the negative covariance. At the same
time, CELS reduced the bias of the ensemble significantly.
From (24), the integrated MSE consists of the sum of three
Mo 1oy 5 terms: the integrated bias, variance, and covariance. Therefore,
Feoy =X 20 1 =2 =¥ ; i ; i
cov i=17y=157 y “n=1Tp “k=1 CELS provides a control of bias, variance, and covariance
1 (k) _ (k) _ through the choice oA value to achieve good performance.

’ W(Fi (n) = Fi(m))(F;7(n) = F;(n)). (22)  For this regression task and the ensemble architecture used,

it was observed that the bias-variance-covariance tradeoff was

We may also define the integrated mean-squared error (MSEfimal for A = 0.9 in the sense of minimizing the MSE.

E.. as

— 1 - .
Fin) = 280 P (n) (19)

Ebias =

and
1 o1 -
Evar = Ei\ilﬁ EQ:IE Ef:lm

and

B. Experiment 2
Fow = Lon ig’{}’_l(p(k)(n) —yn)%  (23) There are two aims of Experiment 2. The first is to investi-

N LR TR gate the dependence BYf,;.., E..:, and E.,, on the individual
) ) ) network size. We used three different ensemble architectures,

individual networks. Each individual network it5, 419, and
Erse = Eyias + Evar + Eeoy. (24) A had 5, 10, and 15 hidden nodes, respectively. The second
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0007 — : ' T TABLE I
Bas — CompaRISON BETWEEN CELS (A = 0.5) AND INDEPENDENT TRAINING (i.€.,
A = 0.0 IN CELS) FOR THE DIFFERENT INDIVIDUAL NETWORK SiZES. THE
0006 | 3 RESULTS OF INTEGRATED BIAS, INTEGRATED VARIANCE, INTEGRATED

COVARIANCE, AND INTEGRATED MSE ON THE TESTING SET ARE AT EPOCH 2000

0005 | L A=05
As Ao Ass
oo Fhias 0.000263 | 0.000236 | 0.000244
! Eyar 0.001004 | 0.000390 | 0.000467
ol Eeon Z0.000827 | ~0.000291 | —0.000356
Evar + Feon | 0.000177 | 0.000099 | 0.000111
: Ermse 0.000440 | 0.000335 | 0.000354

0.002 + ; 1

)= 0.0
0.001 A5 Alg A15
Ebias 0.001310 | 0.000498 | 0.000415
. Eyar 0.000151 | 0.000049 | 0.000032
ooy 0.000140 | 0.000053 | 0.000056
(@) Foar + Feow | 0.000291 | 0.000102 | 0.000087
Ermse 0.001601 | 0.000600 | 0.000503

015 T T T T

Variance —
Covariance ---~

As, Ao, and Ay; were also independently trained using
BP without the correlation penalty terms (i.e.,= 0.0 in
CELS). The results are shown in Table Il. It is apparent that
the architectures trained with the correlation penalty terms
performed better in terms of the integrated MSE values.

In order to observe the effect of the correlation penalty
terms, Fig. 2 shows the correlations among the individual
networks in A;y trained with and without the correlation
penalty terms, respectively. The correlation between network
1 and networkj is given by

AR S

0.05

005 e
\

EANS l“r
| SN sK (F®(n) - F,
Cori ) (Y ) - Fi(n)
oy ofz o o ofs 1 \/ZA EA (k)( ) - Fz(”))2
® <F§’“><n> () 25
Fig. 1. (a) Progress of integrated bias and integrated MSE on the testing set x - ® — . (25)
at epoch 2000 for different values. The vertical axis is the value of the \/Z?L‘:lzi‘zl(Fj (n) — Fj(n))?

integrated bias and integrated MSE and the horizontal axis is the valke of
(b) Progress of integrated variance and integrated covariance on the testing

set at epoch 2000 for different values. The vertical axis is the value of the There are(’? = 28 correlations in total between different
Lnatﬁjqera(t)(fa(ji\.vanance and integrated covariance and the horizontal axis is H&WOfKS in Ayo. For the simultaneOl_Js training with the
correlation penalty terms, 21 correlations among them had
negative values. The results suggest that the correlation penalty
erms tend to lead to negatively correlated individual networks.
n contrast, for the independent training without the correlation
nalty terms, all the correlations were positive. Because every
ifdividual network learns the same task in the independent
) training, the correlations among them are generally positive.
0.5, respectively. In CELS, each individual network learns different parts or

The results of CELS ford;, Aio, and Ai5 at epoch 2000 45pects of the training data so that the problem of correlated
are given in Table Il. As expectedi;, and A5, which had grrors can be removed or alleviated.

more computational resources, performed slightly better than,:ig_ 3 shows the squared bias of the individual networks in
As. Itis worth pointing out that larger individual network size4, , using CELS and independent training. For the individual
does not necessarily improve the performance of the ensemid@works created by CELS, they were biased whose values
system. The choice of individual network size is problenyere much larger than those of the individual networks created
dependent. Interestingly, although the sum of the variance asngindependent training. Although the individual networks in
covariance did not change much amodg, A;q, and A;;, CELS were biased, the ensemble was unbiased at the end of
their variance and covariance were quite different. training.

is to compare the correlations among the individual networks
and the squared bias of the individual networks created
CELS and independent training, respectively. The learni
rate » in BP and strength parameter were set to 0.1 and
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Fig. 2. (a) Correlations among the individual networks4iny using CELS Fig. 3. (a) Squared biases of the individual networksdiry using CELS

(A = 0.5). (b) Correlations among the individual networks ityo using (A = 0.5). (b) Squared biases of the individual networks 4no using
independent training (i.eA = 0.0 in CELS). A correlation is represented by independent training (i.eA = 0.0 in CELS). The vertical axis is the value

a vertical bar with one end at zero and the other end point at the valuedjfthe estimated bias of an individual network and different bars correspond
the represented correlation. Different bars correspond to correlations betwiedlifferent individuals.

different individuals.

TABLE llI
. ResuLTs oF CELS wiTH DIFFERENT A VALUES IN THE MODERATE
C. Experiment 3 Noise CONDITION (VARIANCE o2 = 0.1). THE VALUES OF THE

This experiment investigated the effects of adding the noise INTEGRATED BIAS, INTEGRATED VARIANCE, INTEGRATED COVARIANCE,

. . . AND INTEGRATED MSE ON THE TESTING SET ARE AT EPOCH 2000
to the target function. Moderate noise (varianée= 0.1) and

large noise (variance? = 0.2) conditions were studied. The A=00] A=025 A=05
architecture of the ensemble was composed of eight individual FEbias 0.004595 | 0.004048 | 0.003766
networks. Each network had five hidden nodes. The learning- Lvar 0.001751 | 0.002002 } 0.002653
rate 7 in BP was set to 0.1 Eeow 0.007351 | 0.006752 | 0.005935
Tables Ill and IV compare the performance of CELS for Evar + Ecoy | 0.009102 | 0.008754 0'008"?8
. : . Ernse 0.013698 | 0.012802 | 0.012353
different strength parameters in both the moderate noise con- T =5 =10
dition and the large noise condition. The results show that — o A —
th imilar trends o £ dE- in both th Flias 0.002934 | 0.002214 | 0.002287
ere were simar trends 1@,jas, Lvar, aNd Loy N DOIN he Eoer | 0.004589 | 0.008262 | 0.210839
noise free cpndltlon and the noise conditions. That#s,, B 0005114 | 0.003342 | —0.184092
seemed to increase as the valu_e)oﬁncreased, an®eov Eoor + Eooy | 0.000703 | 0.011604 | 0.026747
seemed to decrease as the value ofcreasedF .. appeared Frmse 0.012637 | 0.013818 | 0.029033

to decrease first and then increase with increasing value of
A. However, in the large noise conditiot;,;,s appeared to

decrease with increasing value af In the moderate noise the tested values of in the sense of minimizing the MSE on
condition, Ey,;,s appeared to decrease first and then increag testing set. Tables V and VI compare the results of CELS
with increasing value of\. As demonstrated by the resultsyith A = 0.5 with those produced by ME architectures [7]
CELS with0 < A < 0.75 outperformed independent trainingand by Rosen’s algorithm [6]. For the moderate noise case,
in terms of the integrated MSE values. the integrated MSE of ME architectures was about 0.018,
Choosing a proper value of is important in CELS, and while the integrated MSE of CELS was 0.012. The integrated
also problem dependent. For the noise conditions used for tMSE achieved by ME architectures was about 0.038 for the
regression task and the ensemble architecture used, the be&ge noise case, while the integrated MSE for CELS was
variance-covariance tradeoff was optimal foe= 0.5 among 0.023. Although both ME architectures and CELS tend to
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ResuLTs oF CELS wiTH DIFFERENT A VALUES IN THE LARGE NOISE
CoNDITION (VARIANCE 02 = 0.2). THE VALUES OF THE INTEGRATED
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TABLE IV

BiAs, INTEGRATED VARIANCE, INTEGRATED COVARIANCE, AND
INTEGRATED MSE ON THE TESTING SET ARE AT EPOCH 2000

A=00| A=0.25 A=05
Epias 0.008261 | 0.007414 0.00609
Eoar 0.003103 | 0.003533 0.00479
Eeov 0.013517 | 0.012610 0.01196
Eyor + Eeou | 0.016620 | 0.016143 0.01675
Erse 0.024880 | 0.023557 0.02284
A=0.75| A=0.875 A=1.0
Eyias 0.005106 | 0.004686 0.004128
Eyar 0.008712 | 0.016792 0.326957
Eeov 0.010866 | 0.008491 | —0.267828
Eyor + Ecop | 0.019578 | 0.025283 0.059129
Erse 0.024684 | 0.029969 0.063257
TABLE V

CoMPARISON AMONG CELS, ME ARCHITECTURES[7], AND
ROSEN'S ALGORITHM [6] IN THE MODERATE NOISE CONDITION

Method Ebias Evar Ech Emse

CELS 0.004 | 0.003 0.006 | 0.012

ME 0.008 | 0.030 | —0.020 | 0.018

Rosen’s algorithm | 0.005 | 0.005 0.004 | 0.014
TABLE VI

CoMPARISON AMONG CELS, ME ARCHITECTURES[7], AND
ROSEN'S ALGORITHM [6] IN THE LARGE Noise CONDITION

Method Ebias Evar Eeoy Emse
CELS 0.006 | 0.005 0.012 | 0.023
ME 0.013 | 0.065 | —0.040 | 0.038
Rosen’s algorithm | 0.010 | 0.008 0.009 | 0.028

network

a1 ifi=4-1
o(i,j) = {0, otherwise. (28)

There are two essential differences between CELS and
Rosen’s algorithm. First, in CELS, each network was si-
multaneously trained to negatively correlate with the rest of
networks in the ensemble. In Rosen’s algorithm, each network
in the ensemble was sequentially trained to decorrelate with the
previously trained networks. Second, CELS used a different
correlation penalty function for noisy data. These two differ-
ences led to different performance between CELS and Rosen’s
algorithm. Tables V and VI summarize the comparison results.
The A(t) in (26) was set to the constant 1. We also tested
Rosen’s algorithm with different\. There was not much
improvement in the performance.

V. EXPERIMENTAL STUDIES

A. The Mackey—Glass Chaotic Time Series Prediction Problem

This section describes CELS’s application to a time series
prediction problem. The Mackey—Glass time series investi-
gated here is generated by the following differential equation

ax(t —7)
142100t —7)

wherea = 0.2, § = —0.1, 7 = 17 [13], [14]. As mentioned

by Martinetzet al. [15], =(¢) is quasiperiodic and chaotic with

a fractal attractor dimension 2.1 for the above parameters.
1) Experimental SetupThe input consists of four past data

points, z(t), xz(t — 6), x(t — 12), and z(t — 18). The output

is z(t + 6). In order to make multiple step prediction (i.e.,

At = 90) during testing, iterative predictions af(t + 6),

x(t+12),---,z(¢+90) will be made. During training, the true

value ofz(t+6) is used as the target value. Such experimental

#(t) = Br(t) + (29)

create negatively correlated networks, CELS can achieve go%‘dUp is the same as that used by Martirettal. [15].

performance by controlling bias, variance, and covariance
through the choice of value.

CELS's results are also better than those produced
Rosen’s algorithm [6]. In Rosen’s algorithm, the error functiofi

for an individual networkj is

where A(¢) is a (possibly) time-dependent scaling functio
(%, ) is an indicator function for decorrelation between net-
works ¢ and 7, and P is a correlation penalty function. The
correlation penalty functior? used in [6] is the product of

the jth and:th network error

P(z(n),d(n), I, Fy) = (d(n) - Fi(n))(d(n) -

F.

A(B)e(t, ) P(x(n), d(n), Fy, F)]

J

In the following experiments, the data for the Mackey—Glass
time series was obtained by applying the fourth-order
nge—Kutta method to (29) with initial conditiar{0) = 1.2,
t—7)=0for 0 <t < 7,and the time step is 1. The training
set consisted of points 118 to 617 (i.e., 500 training patterns).
The following 500 data points (starting from point 618) were
used as testing set. The values of training and testing data were
rescaled linearly to between 0.1 and 0.9. Such experimental
setup was adopted in order to facilitate comparison with other
existing work.

The normalized root-mean-square (RMS) etkbwas used
to evaluate the performance of CELS, which is determined by
he RMS value of the absolute prediction error fot, divided
I-E)y the standard deviation af(¢) [13], [15]

([Tprealt, At) — z(t + At)]?)1/2
(@~ @)

where z,..a(t, At) is the prediction ofx(t + At) from the

E= (30)

(n)). (27) current states(t) and (z) represents the expectation .of As

indicated by Farmer and Sidorowich [13], “IF = 0, the

One indicator function used in [6] is to penalize an individpredictions are perfect’! = 1 indicates that the performance
ual network for being correlated with the previously traine@ no better than a constant prediciQfea(t, At) = (x).”
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TABLE VII TABLE IX
AVERAGE ResuLTs ProbuceDp BY CELS OvER 25 RUNS FOR THE CoMPARISON OF ERROR RATES BETWEEN CELS (A = 1.0) AND INDEPENDENT
MACKEY-GLASS TIME-SERIES PREDICTION PROBLEM. THE “TESTING TRAINING UsING BP (i.e.,A = 0.0 IN CELS) ON THE AUSTRALIAN
RMS” IN THE TABLE REFERS TO THEERROR DEFINED BY (30) ON THE CREDIT CARD ASSESSMENTPROBLEM. THE RESULTS WEREAVERAGED
TeSTING SET. MEAN, SD, MIN,AND MAX INDICATE THE MEAN VALUE, OVER 25 RUNS. “SIMPLE AVERAGING” AND “WINNER-TAKE-ALL"
STANDARD DEVIATION, MINIMUM AND MAXIMUM VALUE, RESPECTIVELY INDICATE TWO DIFFERENT COMBINATION METHODS USED IN CELS
Testing RMS Simple Averaging | Winner-Take-All
Mean SD Min Max Training | Test Test
At=46 | 0.0100 | 0.0006 | 0.0090 | 0.0116 A=1.0 ] Mean | 0.0938 | 0.1337 0.1195
At =84 | 0.0326 | 0.0028 | 0.0279 | 0.0385 SD 0.0031 0.0068 0.0052
At =90 | 0.0368 | 0.0032 | 0.0305 | 0.0436 Min 0.0869 0.1163 0.1105
Max 0.0985 0.1454 0.1279
A=0.0 | Mean | 0.0883 0.1386 0.1384
o 5 CTABLE V'“A CELS, EPNt [16] SD 0.0308 | 0.0048 0.0049
ENERALIZATION RESULTS COMPARISON AMONG , e , .
BP, AND CC LEARNING [17] FOR THE MACKEY—GLASS TIME-SERIES Min 0'0793 0.1279 0.1279
PREDICTION PROBLEM. THE “TESTING RMS” IN THE TABLE Max 0.0965 0.1454 0.1512

REFERS TO THEERROR DEFINED BY (30) ON THE TESTING SET

Method Testing RMS the previous regression tasks whose outputs are continuous. It
At=6 At=84 is used to illustrate that CELS is applicable to a wide range
CELS 0.01 0.03 of problems since it does not assume angriori knowledge
EPNet 0.02 0.06 of the problem domain. The data set was obtained from the
BP 0.02 0.05 UCI machine learning benchmark repository. It is available
CC Learning | 0.06 0.32

by anonymous ftp at ics.uci.edu (128.195.1.1) in directory
/pub/machine-learning-databases.

1) Experimental SetupThe data set was partitioned into

The ensemble_ a.rc.h|tecture used in th? gxpenments V‘@% sets: a training set and a testing set. The first 518 examples
composed of 20 individual networks. Each individual networ ere used for the training set, and the remaining 172 examples

\rllvzz a ml:jltll?yert.perce%tront W;th (;nef h'dt(.j en Iayera ?.0 ‘i the testing set. The testing set was not seen by any neural
iaden node function and output node tunction were detingl, during the training phase. It was only used for testing
by the logistic function in (17). All the individual networks

had 6 hidden nodes. The number of training epochs was t?gr?:dnerahzatlon of neural network ensembles after they were

to 10000. The learning ratgin BP and strength parametar The input attributes were rescaled to between 0.0 and 1.0 by

\t/vere sgt to 'O.2ioand 1.0, re(]slpecttr:yely. Th? cor;elatlon penagYinear function. The output attributes of all the problems were
er2m glven n ( t)l I\;vas ﬁse (;InC IS ex_pe%?beln 'V” h encoded using a 1-of: output representation for. classes.
) Experimental Results and Compariso N Shows TPe output with the highest activation designated the class.

the average results of CELS over 25 runs. Each run o : . : .
. o . The ensemble architecture used in the experiments consisted
CELS was from different initial weights. Table VIII compares recture u ! xpen I

: of four multilayer perceptrons with one hidden layer. All
CELS's results with those produced by EPNet [16], BP and t L . . :
cascade-correlation (CC) learning [17]. It is obvious thatCELI e individual networks had ten hidden nodes in the hidden

ble t hi h lizati ‘ better t er. Both hidden node function and output node function
\tlr\:(: ?)f (e)tr?e?sc ieve the generalization performance better e defined by the logistic function in (17). The number of

i training epochs was set to 250. The learnin d strength
For a large time spam\t = 90, CELS's results also ning ep W Ing fede g

. . ter\ t to 0.1 d 1.0, tively. Th
compared favorably with those produced by Martinetzl. parametera were Set 1o an [ESPECVEly ese

. rameters were chosen after limited preliminary experiments.
[15] which had been shown to_bg better t'han Moody ar{%ﬁey are not meant to be optimal. The correlation penalty term
Darken [18]. For the same training set size of 500 da

. o . o en in (11) was used in CELS.
points, the smallest prediction error achieved by neura-z) Experimental ResultsTable [X shows CELS's results
gas” networks [15] was about 0.06. The smallest predicti(%p

. ver 25 runs. Each run of CELS was from different initial
error among 25 CELS runs was 0.00305, while the avera‘c%%ights. The same architecture with the same initial weight
prediction error was 0.0368.

setup was also independently trained using BP without the
correlation penalty terms (i.ed = 0.0 in CELS). Results
are also shown in Table IX. For classification problems, the
This section describes CELS’s application to a real-worlshme combination method used in the regression task, i.e.,
problem, i.e., the Australian credit card assessment probletme simple averaging defined in (6), was first applied to
The problem is to assess applications for credit cards baskstide the output of the ensemble system. For the simple
on a number of attributes [20]. There are 690 cases in totaleraging, it was surprising that the results of CELS with
The output has two classes. The 14 attributes include six= 1.0 were similar to those of independent training. This
numeric values and eight discrete ones, the latter having frgghenomenon seems contradictory to the claim that the effect of
2-14 possible values. The Australian credit card assessmiatcorrelation penalty term is to encourage different individual
problem is a classification problem which is different froometworks in an ensemble to learn different parts or aspects of

B. The Classification Problems
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TABLE X
Sizes oF THE CORRECT RESPONSESETS OF INDIVIDUAL NETWORKS CREATED
ResPECTIVELY BY CELS (A = 1.0) AND INDEPENDENT TRAINING (i.€.,
A = 0.0 IN CELS) oN THE TESTING SET AND THE SIZES OF THEIR
INTERSECTIONS FOR THEAUSTRALIAN CREDIT CARD ASSESSMENTPROBLEM.
THE ReEsuULTS WEREOBTAINED FROM THE FIRST RUN AMONG THE 25 RUNS

TABLE XI
CowmpPARISON AMONG CELS, EPNet [16]AN EVOLUTIONARY ENSEMBLE
LEARNINIG ALGORITHM (Envo-En-RLS) [19],AND OTHERS [20] IN TERMS OF
THE AVERAGE TESTING ERROR RATE FOR THE AUSTRALIAN CREDIT CARD
AsSESSMENTPROBLEM. TER STANDS FOR TESTING ERROR RATE IN THE TABLE

Algorithm TER | Algorithm | TER
A=10| D =147| Q=143] O3=138 CELS 0.120 | DIPOL92 | 0.141
Q4 =143 | Q=138 | (=124 EPNet 0.115 | Discrim | 0.141
g =141 | Sy =116 | {1 =133 Evo-En-RLS | 0.095 | Logdisc | 0.141
Q134 = 123 | Qp3 =115 | Qypq = 133 Cals 0.131 | CART 0.145
{hgs = 121 | Qasq = 113 | Qyaze = 113 TTrule 0.137 | RBF 0.145
A=00] =149 | Q=147| Q=148 CASTLE | 0.148 | NaiveBay | 0.151
g =148 | (hp =147 ) (3= 147 ThdCART | 0.152 | BP 0.154
Qg = 147 | Sloy = 147 | (laq = 146
934 = 146 9123 = 147 9124 = 146
Qg = 146 | Qozq — 146 | Slig3q = 146 because the individual networks created by the independent

training were all similar to each other.

Table XI compares CELS'’s results with those produced by
the training data. In order to verify and quantify this claimgther neural and nonneural algorithms, where EPNet is an
we compared the outputs of the individual networks traineglolutionary system for designing neural networks [16] and
with the correlation penalty term to those of the individuagEvo-En-RLS forms the final results by combining all the indi-
networks trained without the correlation penalty term. viduals in the last generation in EPNet based on the recursive

Two notions were introduced to analyze CELS. They ateast-square algorithm [19]. The other algorithms represent the
the correct response sets of individual networks and théiest 11 out of 23 algorithms tested in [20]. Although CELS
intersections. The correct response$eatdf individual network performed slightly worse than EPNet and Evo-En-RLS, it was
¢ on the testing set consists of all the patterns in the testisgnificantly faster in terms of training time. CELS performed
set which are classified correctly by the individual networketter than all other algorithms although they used ten-fold
. Let ©; denote the size of sef;, and {2, ;,...;, denote the cross-validation.
size of setS;, N S;, N---N S, . Table X shows the sizes
of the correct response sets of individual networks and their
intersections on the testing set, where the individual networksThis paper describes a new approach to designing neural
were, respectively, created by CELS and independent trainimgtwork ensembles for both regression and classification prob-

It is evident from Table X that different individual networkslems with noise. The approach can be regarded as one way
created by CELS were able to specialize to different pam$ decomposing a large problem into smaller and specialized
of the testing set. For instance, in Table X the sizes of botimes, so that each subproblem can be dealt with by an indi-
correct response set$, and 5y at A = 1.0 were 143, but vidual neural network relatively easily. A correlation penalty
the size of their intersectio¥; N S, was 133. The size of term in the error function was proposed to encourage the
S1NS2NS3nN S, was only 113. In contrast, the individualformation of specialists in the ensemble. The Mackey-Glass
networks in the ensemble created by independent trainitige series prediction problem and the Australian credit card
using BP were quite similar. The sizes of correct responassessment problem were used as examples to demonstrate the
setsSy, S92, S3, and Sy at A = 0.0 were from 146-149, while effectiveness of this approach.

the size of their intersection sg{ N S:NS3N .S, reached 146.  This paper has also analyzed CELS in terms of the bias-
There were only three different patterns correctly classified bgriance-covariance tradeoff in both the noise free condition
the four individual networks in the ensemble. and the noise conditions. Unlike other ensemble approaches

In simple averaging, all the individual networks have thehich try to create unbiased individual networks whose er-

same combination weights and are treated equally. Howevens are uncorrelated, CELS can produce biased individual
not all the networks are equally important. Because differenétworks whose errors tend to be negatively correlated. Very
individual networks created by CELS were able to specialimmmpetitive results have been produced by CELS in compari-
to different parts of the testing set, only the outputs of thesen with independent training, Rosen’s algorithm [6] and ME
specialists should be considered to make the final decisionaw€hitectures [7].
the ensemble for this part of the testing set. In this experiment,There are, however, some issues that need resolving. The
a winner-take-all method was applied to select such networkschitectures of individual neural networks and the size of
For each pattern of the testing set, the output of the ensembelesemble are predefined at the moment. It would be desirable
was only decided by the network whose output had the highéstdevelop a learning algorithm which can vary the ensemble
activation. Table 1X shows the average results of CELS ovarchitectures dynamically.
25 runs using the winner-take-all combination method. The
winner-take-all combination method improved CELS signifi-
cantly because there were good and poor networks for eacfThe authors are grateful to anonymous referees for their
case in the testing set and winner-take-all selected the best ammstructive comments which have helped to improve the
However it did not improved the independent training mucpaper.

VI. CONCLUSIONS
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