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2OPTIMAL BRIGHTNESS FUNCTIONSFOR OPTICAL FLOW ESTIMATIONOF DEFORMABLE MOTIONThomas S. Denney Jr. and Jerry L. PrinceABSTRACTEstimation accuracy of Horn and Schunck's classical optical ow algorithm dependson many factors including the brightness pattern of the measured images. Since someapplications can select brightness functions with which to \paint" the object, it is desirableto know what patterns will lead to the best motion estimates. In this paper we present amethod for determining this pattern a priori using mild assumptions about the velocity �eldand imaging process. Our method is based on formulating Horn and Schunck's algorithm as alinear smoother and rigorously deriving an expression for the corresponding error covariancefunction. We then specify a scalar performance measure and develop an approach to selectan optimal brightness function which minimizes this performance measure from within aparametrized class. Conditions for existence of an optimal brightness function are also given.The resulting optimal performance is demonstrated using simulations, and a discussion ofthese results and potential future research is given.T.S. Denney Jr. is with the Department of Electrical and Computer Engineering, JohnsHopkins University, Baltimore, MD 21218.J.L. Prince is with the Department of Electrical and Computer Engineering, Johns HopkinsUniversity, Baltimore, MD 21218.Permission to publish this abstract separately is granted.



3I. INTRODUCTIONThe algorithm developed by Horn and Schunck [1] for estimating the optical ow betweenimage pairs, which we will refer to as standard optical ow (SOF), has been widely studiedin the computer vision community. It is generally accepted that SOF produces a goodoverall qualitative picture of the motion �eld, but lacks good quantitative behavior, especiallywhen the images involve rigid body motion with possible occlusion [2, 3]. In these cases,parametric methods such as those reported in [4, 5, 6, 7, 8, 9, 10] and modi�ed Horn andSchunck methods such as those reported in [2, 3, 11, 12, 13, 14, 15, 16, 10] show superiorquantitative performance. When the images show an object undergoing deformable motionwith no occlusion, however, SOF may still provide a high-resolution, accurate estimate ofthe motion �eld. In these cases there are many parameters a�ecting the performance of SOFincluding spatial and temporal sampling, the regularization coe�cient, the nature of themotion and | what is of primary interest in this paper | the spatial pattern of brightnessof the object itself.In general, one cannot control the spatial pattern of brightness of the object within animage sequence since it is an inherent part of the underlying physics and imaging process. Insome applications, however, it is possible to control this brightness function. For example,consider the estimation of left ventricular motion from a sequence of magnetic resonance(MR) images of the heart. Recent developments in MR tagging [17, 18, 19, 20] make itpossible to modulate the MRI brightness function to make a spatial pattern appear in other-wise homogeneous tissue (see Section VI for more information). Prince et al. [21, 22, 23, 24]have shown that such patterns can be exploited using optical ow processing to detectmotion that would otherwise be obscured by the aperture problem (cf. [25]). This workalso revealed that the performance of SOF is strongly a�ected by the spatial frequency ofthe spatial pattern placed in the images. This observation leads naturally to the generalquestion: what brightness function results in the best estimate of motion given that SOF isused to process the image pairs? In this paper we deal with the somewhat more restrictedproblem of the a priori selection of the parameters that will optimize SOF performance givena parameterized class of brightness functions. We call the pattern speci�ed by the optimalparameters the optimal brightness function.The primary di�culty in determining the optimal brightness function is the developmentof a measure of SOF performance. Horn and Schunck's optical ow algorithm is based on avariational formulation that has no inherent performance measure. Several error analyses ofoptical ow and related motion estimation procedures have been formulated for rigid-body



4motion [26, 4, 2, 5]; however, these results do not apply to deformable objects. Kearney, et al.[27, 28] discussed error sources in SOF which depend on the brightness function and proposedheuristic methods for quantifying these errors. These results, however, do not provide arigorous framework for the development of an overall performance measure. Simoncelli,et. al. [29] developed a gradient-based estimation algorithm for general motion which usesGaussian models for the velocity �eld and noise sources, and this algorithm provides aperformance measure for the resulting velocity estimate. Their algorithm, however, is notSOF. Chin [30] derived a discrete version of Horn and Schunck's optical ow equations fordeterministic motions in 2D using a maximum-likelihood (ML) approach, and this approachdoes provide an expression for the estimation error covariance which can be used as aperformance measure. As part of our development in this paper, we present an alternatederivation of Chin's error covariance starting with the linear smoothing formulation of Rougeeet al. [31, 32]. We show in Section IV, however, that for the estimation error covariance tobe an accurate performance measure, a new measurement noise model must be developed.In this paper, we use the estimation error covariance and a new measurement noise modelto develop a criterion for brightness function optimality, and we develop a method to selectthe optimal brightness function from a parametrized class of functions. Knowledge of (orassumptions about) the velocity �eld smoothness, maximum velocity, and imaging noisevariance are required; however, this information is generally available or easily deduced inany application. Furthermore, we show empirically that the optimal brightness functionchoice is relatively robust to modeling errors. Our general approach was previously reportedin [33], where we considered a one-dimensional analog to the optical ow problem. In thispaper, however, we present a comprehensive treatment of brightness function optimizationin two dimensions, a subject which to our knowledge has not been previously addressed inthe literature.This paper is organized as follows. In Section II we present some background on themotion of deformable objects and on the linear smoothing formulation of SOF. In Section IIIwe derive an expression for the optical ow error covariance based on this optimal linearsmoother. In Section IV we develop an a priori performance measure for SOF based on theerror covariance and describe how to determine the optimal brightness function. We presentsome simulation results in Section V and provide a discussion of our results and of possiblefuture research directions in Section VI.



5II. BACKGROUNDA. Motion ModelSince we are concerned with estimating the motion of deformable objects, we will use notationand terminology from continuum mechanics [34]. In this theory, the body is the objectundergoing motion; it consists of material points, which may be thought of as small physicalparticles. A motion as shown in Figure 1 is a function that maps the material points tospatial points in the image at time t. We write r = r(p; t) to indicate that the materialpoint p has moved to the spatial point r at time t. There exists an inverse function calledthe reference map (see Figure 1) which gives the material point for each spatial point inthe image at time t. We write p = p(r; t) to indicate that the spatial point r at time tcorresponds to the material point p. The reference map and motion map satisfyr(p(r; t); t) = r (1a)p(r(p; t); t) = p : (1b)The spatial velocity v(r; t) = [ �(r; t) ; �(r; t) ]T is the function estimated by SOF; it isrelated to the motion map by the equation@@tr(p; t) = v(r(p; t); t): (2)The image of the body at time t is described by a brightness function '(r; t). At timet = 0, the body is said to be in the reference con�guration, which means that the spatialpoints and the material points are identical, i.e.r(p; 0) = pp(r; 0) = r :Therefore, denoting the image of the body in the reference con�guration as f(p), it followsthat f(p) = '(r; 0) jr=p;and '(r; t) = f(p(r; t)):As an example, consider the reference con�gurationf(p) = sin(!px) sin(!py);



6and the constant velocity v = [� �]T . It follows that the motion map isr = r(p; t) = p + vt ;the reference map is p = p(r; t) = r� vt ;and the brightness function is'(r; t) = f(p(r; t)) = sin(!(rx � �t)) sin(!(ry � �t)):Finally, we note that @@tr(p(r; t)) = v ;which agrees with Equation (2).B. Variational FormulationIn general, the motion estimation problem involves estimating the velocity v(r; t) of eachpoint in an image from the brightness function '(r; t). If the brightness of each materialpoint p is constant in time, using the chain rule to di�erentiate '(r; t) with respect totime while holding the material coordinate p constant [34] yields the Brightness ConstraintEquation (BCE) (cf. [1]) r'(r; t) � v(r; t) + 't(r; t) = 0; (4)where the subscript t denotes partial di�erentiation with respect to t. Note that in thecontinuous case, the BCE is exact [34]. We address the e�ects of discretization in Section IV.In two dimensions, solving (4) for the velocity is an ill-posed problem because there aretwo components to the velocity at each spatial point and only one (linear) equation relatingthese components. Horn and Schunck [1] solved this problem by imposing a spatial regularitycondition and using the calculus of variations to show that the two components of the velocityestimate satisfy r2�̂ = 1�2'x['x�̂+ 'y�̂ + 't] (5a)r2�̂ = 1�2'y['x�̂+ 'y�̂ + 't]; (5b)where 'x and 'y denote partial di�erentiation of ' with respect to x and y respectively.Typically, these coupled Poisson equations are discretized, and the resulting large linearsystem of equations represented by �V̂ = Y (6)



7is solved by simultaneous over relaxation (SOR), Gauss-Seidel, or related relaxation methods(cf. [35]). While the variational formulation of the SOF algorithm is relatively straight-forward, it does not provide a way to predict the quality of the resulting velocity estimate.The stochastic formulation developed below, however, will allow us to show in Section IIIthat the quality of the SOF estimate is ultimately determined by the matrix �.C. Stochastic FormulationRougee et al. [31, 32] showed that when the motion is modeled as a particular boundaryvalue random process and the multi-dimensional linear smoothing methods of Adams etal. [36] are employed, the optimal linear smoother is also given by (5). This derivation isparticularly important in our work because the linear smoother has analytic expressions forthe velocity estimation error which we use to derive a performance measure. In this sectionwe give an alternate derivation of Rougee et al.'s result which closely follows the work ofAdams et al. [36]. In the process we provide a notation and conceptual framework that isused in subsequent sections.Assume that the velocity is de�ned on a regular domain 
 with boundary @
 and has astate model of the form Lv(x; y; t) = u(x; y; t) for (x; y) 2 
 (7a)Fvb(s) = ub(s) for s 2 @
 (7b)where u � N(0; �2uI), ub(s) � N(0; �2u), L = I
r, and F = d=ds. Here, the symbol
meansKronecker product and the subscript b implies a restriction of the variable to the boundary@
. We now drop the explicit notation indicating spatial and temporal dependence. Theobservations are a noisy version of the BCE [Equation (4)]y = Cv + w on 
 (8a)yb = Cvb + wb on @
 (8b)where w � N(0; �2w) and wb � N(0; �2w). To match the BCE, the output gain is the spatialbrightness gradient C = r', and the measurements are the negative temporal brightnessgradient y = �'t and yb = �'t. The adjoint of L, denoted by Ly, is de�ned by Green'sIdentity [36] hLx; �iL22(
) = hx; Ly�iL22(
) + hxb; E�biHb ; (9)where L22(
) and Hb are Hilbert spaces of 2-vector square-integrable functions de�ned on
 and @
 respectively. It can be shown that the adjoint of L is given by the modi�ed



8divergence operator Ly = �I 
 r� and that E = I 
 nT (s), where n(s) is the unit vectornormal to @
 at the boundary point s.Identifying � as the complementary process of v (cf. [36]), and �̂ and v̂ as their respectiveestimates, the estimate Hamiltonian is given by24 L ��2uI1�2wCTC Ly 35 24 v̂̂� 35 = 24 01�2wCTy 35 on 
 (10a)h 1�2wCTC + 1�2uF �F E i 24 v̂b̂�b 35 = 1�2wCTyb on @
. (10b)The estimate equation can be simpli�ed by substituting the top row of (10a)�̂ = 1�2uLv̂into the bottom row of (10a) and into (10b) (with a restriction to the boundary) yielding[�2u�2wCTC + LyL]v̂ = �2u�2wCTy on 
 (11a)"�2u�2wCTC + F �F + EL# v̂b = �2u�2wCTyb on @
. (11b)Note that ELv̂b = I 
 nTrv̂b, the normal derivative of v̂b. Since LyL = �I 
 r2, (11a) isexactly (5), the optical ow equation of Horn and Schunck [1] with �2 = �2w=�2u. Thus thevariational formulation and the stochastic formulation are equivalent in the sense that thesame set of equations must be solved to yield the velocity estimate. In addition, because(11) results in the minimum mean-square-error (MSE) estimate, �2 can be interpreted as theoptimal regularization parameter. Finally, note that if the boundary smoothness is unknownand there are no measurements on the boundary, the boundary conditions in (11b) reduceto the standard Neumann boundary conditions used by Horn and Schunck [1].



9III. Error CovarianceIn this section we use the stochastic formulation of Section II to derive an expression forthe optical ow performance. We �rst derive equations for the continuous estimation errorcovariance using the complementary model methods of Adams, et al. [36]. We then discretizethe error equations and put them in the nearest neighbor model (NNM) form of [37]. Nextwe develop an expression for the discrete error covariance. Finally, we specify a scalarperformance measure based on the discrete error covariance and describe its calculation.A. Estimation ErrorWe de�ne the velocity estimation error as ~v = v̂�v. The Hamiltonians involving the velocityerror on the interior and boundary are given by (cf. [36])24 L ��2uI1�2wCTC Ly 35 24 ~v��̂ 35 = 24 u� 1�2wCTw 35 on 
 (12a)h 1�2wCTC + 1�2uF �F E i 24 ~vb��̂b 35 = 1�2uF �ub � 1�2wCTwb on @
 : (12b)Solving the top row of (12a) for ~� and substituting into the bottom row of (12a) and into(12b) yields "�2u�2wCTC + LyL# ~v = Lyu� �2u�2wCTw on 
 (13a)" �2u�2wCTC + F �F + EL# ~vb = [F � + E] ub � �2u�2wCTwb: on @
 : (13b)It is possible to derive an expression for the continuous error covariance based on (13),but this approach presents problems when the continuous error covariance is discretizedon a square lattice. Instead, our approach is to derive an expression for the discrete errorcovariance directly from a discretized version of (13).B. DiscretizationWe assume the velocity is de�ned on an N�N lattice 
 as shown in Figure 2. The boundary
b of this lattice is an index set containing the �rst and last two rows and columns of 
,and the interior ~
 is an index set of the remaining points of 
.The general form of a nearest neighbor discrete operator L is [37]Lxij = [A0 + A1D1 + A2D�11 + A3D2 + A4D�12 ]xij (14)



10where D1xij = xi�1;j and D2xij = xi;j�1. The adjoint of L, Ly, is de�ned using the discreteform of Green's Identity [37]hLx; �iS(~
) = hx; Ly�iS(~
) + hxb; E�biSb (15)where S(~
) and Sb are the vector spaces of 2-vector functions de�ned over the index sets ~
and 
b respectively. The matrix E is determined by the domain 
 and the operator L [36]and is explicitly de�ned in Appendix A. The resulting Ly is de�ned byLyxij = [AT0 + AT2D1 + AT1D�11 + AT4D2 + AT3D�12 ]xij: (16)For optical ow, we de�ne L as the forward di�erence gradient operating on each com-ponent of the velocity. Thus,A0 = 24 �I�I 35 ; A2 = 24 I0 35 ; A4 = 24 0I 35 ;and A1 = A3 = 0. Here, and in subsequent expressions, the identity matrix I without asubscript denotes the 2� 2 identity matrix. Equation (16) simpli�es toLyxij = [AT0 + AT2D1 + AT4D2]xij; (17)and it follows thatLyLxij = [AT0 + AT2D1 + AT4D2][A0 + A2D�11 + A4D�12 ]= [4I � ID1 � ID�11 � ID2 � ID�12 ]xij: (18)Note that LyL is the negative of the discrete Laplacian maskr2 � 26664 +I+I �4I +I+I 37775 ;which is often used to solve the coupled Poisson equations (5) which de�ne the solution toSOF. The boundary vector Xb is de�ned as [37]
Xb =

266666666666666666664
X1X2XNXN�1x01x02x0Nx0N�1

377777777777777777775 where Xi = 266666664 xi1xi2...xiN
377777775 and x0j = 266666664 x2jx3j...xN�1 j

377777775 : (19)



11Note that Xi is the entire ith row of the image and x0j is the jth column of the image withthe �rst and last pixels removed. Also, note that the entries x21, x22, xN�1 1, xN�1 2, x2N ,x2 N�1, xN�1 N and xN�1 N�1 appear twice in Xb.C. Discrete Error CovarianceAfter some work we �nd that the discrete versions of the error equations (13) are given by"�2u�2wCTC + LyL# ~vij = Lyuij � �2u�2wCTwij 2 � i; j � N � 1 (20a)"�2u�2wHTH + F TF + EL# ~Vb = (F T�F + E)Ub � �2u�2wHTWb otherwise (20b)where H = I2(8N�8) 
 C and the matrices F and �F are de�ned in Appendix A. Equa-tions (20a) and (20b) can also be expressed as�~V = �uU � �wW (21)where ~V = 266666664 ~V1~V2...~VN
377777775 ;and U and W are similarly de�ned. Note that � is the same matrix used in the estimateequation �V̂ = IN2 
 �2u�2wCTy (22)derived from a discrete version of (11).The discrete error covariance P = Ef ~V ~V Tg (23)can be computed from Equation (21). In Appendix A we show thatEf[�uU � �wW ][�uU � �wW ]Tg = �2u�: (24)Since � is symmetric and, if the problem is well-posed, invertible, solving (21) for ~V ,substituting into (23), and taking expected values yieldsP = �2u��1���1= �2u��1 : (25)



12Thus the error covariance matrix is simply a scalar times the inverse of �, the matrix usedto compute the velocity estimates in (22). In light of the rather complicated precedingdevelopment the simplicity of this result seems astonishing. It is not so surprising, however,if we look at the problem in a slightly di�erent light. In particular, if (22) is assumed to bethe linear minimum mean square error (LMMSE) estimate for a discrete (vector) stochasticestimation problem, then (25) follows immediately by inspection (cf. [38]). In contrast, wefound (25) through discretization of the continuous error equations (13). The fact that (22)implies (25) proves that (22) must be the LLMSE estimate for some discrete problem, butto show this fact by deriving an explicit density for the discretized velocity would be at leastas complicated as our approach. Indeed, a less careful discretization will not lead to thisnice result.D. Performance MeasureFor typical image sizes the dimensions of � | 2N2 � 2N2 | make the computation of ��1impossible. For our purposes, however, all we need is a scalar characterization of the errorcovariance. A reasonable choice is the velocity error at each pixel averaged across the entireimage. Accordingly, since the diagonal elements represent the variances of each componentof the velocity at each pixel, we use the scalarp = 12N2 tr[P ] ; (26)as a total measure of error. This quantity can be computed recursively by setting p0 = 0and using the following iterationpi  pi�1 + �2uX ii for i = 1; : : : ; 2N2 ; (27)where X i is the solution of �X i = ei (28)and ei is the ith column of I2N2 . The performance is then given by p = p2N2 .Our global measure of optical ow performance, p, is obviously a function of both theprocess noise variance �2u and �. In turn � is a function of the measurement noise variance�2w and the output gain r'. Since the output gain is speci�ed by the brightness function, itis clear that p is a function of the brightness function ' and that there might exist a ' thatwill minimize p. This is the subject of Section IV. To those who have actually used opticalow, however, it may seem odd that our error does not depend on v, the actual velocity. It



13turns out that this is due to an inadequacy in our modeling up to this point. In fact, it willbe shown in Section IV that modeling errors in the calculation of the temporal derivative ofbrightness will lead to the expected dependence of the performance on velocity and to theexistence of an optimal brightness function.



14IV. BRIGHTNESS FUNCTION OPTIMIZATIONIn this section we develop a method to determine brightness functions that yield opti-mal performance. Speci�cally, we consider parametrized brightness functions of the form'(r; t; �) = f(p(r; t); �) where � is a parameter vector. Our objective is to determine theparameter vector �o that gives the optimal performance.The reasons why an optimal brightness might exist at all are not immediately apparentfrom the development of Section III. For example, consider the ideal case where the outputgain r' is known exactly and the measurement �'t is the exact temporal derivative de-graded by additive white Gaussian noise (WGN) with zero mean and variance �2w. Accordingto our development, as r' ! 0, the brightness function becomes a constant causing themotion to be unobservable and p ! 1. In contrast, if r' ! 1 the signal-to-noise ratio(SNR) increases without bound and p ! 0. It seems therefore that in the ideal case, theoptimal brightness function is one where r' =1. This result, however, ignores two criticalfactors: �rst, that the elements of r' cannot simultaneously go to 1 for all r and second,that in practice the spatial and temporal derivatives are estimated from the data. In thispaper we ignore the �rst issue by considering classes of brightness functions with inherentspatial diversity in their gradients; optimization across these classes is a subject of futureresearch. Instead, in this paper we treat the optimization within a single such class. To doso we model the measurement of the gradient as exact and examine the e�ects of inexactmeasurement of the temporal derivative.The derivative of a function g(x) di�erentiable on the interval [a; b] can be expressed as[35] g0(x) = g(x+ h)� g(x)h � h2g00(�)where � 2 [a; b]. Therefore when g0(x) is approximated by the forward di�erence [g(x+h)�g(x)]=h, the approximation error is a function of the sampling interval h and the secondderivative of the function. Accordingly, the temporal derivative of brightness, which isconsidered to be our measurement, has an additional source of noise besides just additiveWGN. This temporal derivative approximation error (TDAE) can be modeled as an anotheradditive noise component, which happens to be dependent on the sampling interval and thesecond derivative (the Hessian) of the brightness function. In this section we �rst develop amodel for the required additional measurement noise which accounts for the TDAE, and thenincorporate these results into the error covariance and performance measure p of Section III.We conclude this section by showing the conditions under which, for a given parametrized



15brightness class, an optimal parameter exists.A. Measurement Noise ModelWe begin by deriving the output equation (8) starting from the discrete temporal derivativeapproximation. Since in practice the reference con�guration may be randomly placed relativeto the image frame, we will use '(r; t; �) = f(p(r; t) + �; �)where � is a random vector with known probability distribution. We assume that the bright-ness function has been corrupted by additive white Gaussian \imaging" noise wa � N(0; �2a).Assuming a forward di�erence approximation of the temporal derivative, the measurementis y(r; t) = � 1�t ['(r; t+�t; �) + wa(r; t+�t)� '(r; t; �)� wa(r; t)]: (29)Expanding '(r; t+�t) in a Taylor series and rearranging terms yieldsy(r; t) = �'t(r; t; �)� [�t2 'tt(r; t; �)+ �t23! 'ttt(r; t; �)+ � � �]+ wa(r; t+�t)� wa(r; t)�t : (30)We can replace the additive noise terms withw0 = wa(r; t+�t)� wa(r; t)�t ; (31)and since wa is white, w0 � N(0; 2�2a=�t2). Substituting (4) into (30) and keeping only thesecond derivative term yieldsy(r; t) = r'(r; t; �) � v(r; t) + w0(r; t)� �t2! 'tt(r; t; �): (32)Now, 'tt(r; t; �) = @2@t2 f(p(r; t) + �; �)= pTt (r; t)H[f(p(r; t) + �; �)]pt(r; t) +rf(p(r; t) + �; �) � ptt(r; t) (33)where H[�] denotes the Hessian with respect to the spatial coordinates. Recall that thereference map p and the velocity v are related through equations (1) and (2). Therefore fora general v, we cannot compute a closed form expression for p or pt. If we assume, however,that in a neighborhood of r, the motion is approximately a translation, thenp(r; t) � r+ v(r)t;



16and 'tt(r; t; �) � vT (r)H[f(p(r; t) + �; �)]v(r): (34)To keep things simple we let t = 0, which results iny(r; t) � r'(r; 0; �) � v(r) + w0(r; 0)� �t2 vT (r)H(r; �)v(r) (35)where H(r; �) = H[f(p(r; 0); �)] = H[f(r+ �; �)]:In subsequent frames (t 6= 0) an estimate of the reference map can in principle be used tocompute H(r; �).The term vTHv in (35) represents the e�ect of the TDAE on the output equation, andcan be incorporated into the measurement equation in (8) by re-de�ning the measurementnoise as w(r) = w0(r)� �t2 vT (r)H(r; �)v(r) : (36)B. Performance MeasureSince p depends on �2w and by Equation (36) w(r) depends on v(r), we see that p inevitablydepends on the true velocity. This leads to the important conclusion: computation of prequires prior knowledge about v(r). We also note that since this result comes from theobservation equation alone it is valid whether or not v is viewed as random (as in our model)or deterministic and unknown (as in Horn and Schunck's formulation). One simple ideawhich would seem to take advantage of the random formulation is to derive a probabilitydensity for vTHv using the state model in (7) and to use this result to derive a new density forw(r). Unfortunately, (7) implies an in�nite a priori variance for v, which renders the modeluseless for such calculations. Instead, we assume that an a priori bound on the velocityvmax(r) = [�max(r) �max(r)]T is available, and usew(r) = w0(r)� �t2 vTmax(r)H(r; �)vmax(r): (37)to model the measurement noise. We note that this assumption is a very weak statementof a priori knowledge of v, and is generally available in many applications. More detailedknowledge can certainly be employed, and can be expected to generate better estimates ofthe optimal brightness function.We assume that the random vector � is uncorrelated with u and wa and thatE�fH(r; �)g = 0:



17With this assumption, the mean of vTHv isEfvTmax(r)H(r; �)vmax(r)g = 0: (38)and the variance isEf(vTmax(r)H(r; �)vmax(r))2g = H2xx�4max(r) + 4HxxHxy�3max(r)�max(r)+(4H2xy + 2HxxHyy)�2max(r)�2max(r)+4HxyHyy�max(r)�3max(r) +H2yy�4max(r)= �v2(r; �): (39)Therefore substituting (39) into (36) yields�w2(r; �) = 2�t2�2a + �t24 �v2(r; �): (40)Equation (40) implies that for a given vmax and �xed �2a and �t, the measurement noisevariance increases with the curvature of the brightness function.We now wish to use this new model for the observation noise variance in an expressionfor the performance p. In Appendix A we show that� = �m + �r2 (41)where �m = IN2 
 �2u�2wr'r'T (42)and �r2 is related to the discrete form of LyL. If we were to use (40) in place of �2w in (42),� would depend on both the parameter � and the spatial coordinate r, which is not what wedesire. We note, however, that (40) also implies a spatially varying optimal regularizationparameter �2 = �2w=�2u, which is not used in standard optical ow. Therefore, for eachparameter � we will pick the constant�2w(�) = maxr2
 �2w(r; �) ; (43)which leads to the term �m(�) = IN2 
 �2u�2w(�)r'(�)r'T (�) ; (44)and hence �(�) = �m(�) + �r2 : (45)



18De�ning P (�) = �2u��1(�) (46)it follows from (26) that p(�) = 12N2 tr[P (�)] ; (47)and �nally that the optimal parameter vector is�o = argmin� p(�) : (48)Since a closed-form expression for p(�) cannot be computed in general, �o must be computedby numerical optimization methods [39].C. Existence of �oWe now discuss conditions under which an optimal parameter �o exists. We will assume forthis discussion that � is a scalar belonging to the interval J ; the extension to vector � isstraightforward but more cumbersome to explain. We assume that f(r; �) is a continuouslytwice di�erentiable function of � and that �(�) is invertible at each �. From these facts weconclude that p(�) is a continuous function of � and �nite on J . Hence, from elementaryreal analysis we know that if J is closed p(�) assumes a minimum at some point �o 2 J .If J is not closed, however, then p(�) may be minimized on the interval or it may attainits minimum at a limit point not in J , in which case we say that �o does not exist. In thespecial case that p(�) is �nite somewhere on J and increases without bound as � approachesa limit point not in J , then �o is guaranteed to exist. This is the case in the example westudy below and use in the experiments of Section V, so it warrants further study.Of the two terms comprising �(�) in (45) only �m(�) depends on �. Furthermore, it canbe shown that �r2 by itself is not invertible but that in general (and by above assumption)�(�) = �m(�) + �r2 is invertible. Thus as �m(�)! 0, �(�) becomes singular. In addition,we show in Appendix B that as �m(�) ! 0, p(�) = (1=2N2)tr[��1(�)] !1. Therefore wecan conclude that �o is guaranteed to exist for an interval J that is not closed if the conditionlim�!a�m(�) = 0; (49)is satis�ed at each limit point of J not in J .For example, consider the class of brightness functionsf(p; �) = A2 (sin(�px) sin(�py) + 1): (50)



19In this case � is the spatial frequency, J = (0;1), and we want to �nd the � that willresult in optimal performance. To see if �o will exist, we examine the value of �m(�) as �approaches 0 and 1 using Equation (44).After adding a random shift to the position of the pattern, a simple calculation yieldsthe Hessian matrixH(r; �) = H[f(r+ �; �)]= A�22 24 � sin(�rx + �x) sin(�ry + �y) cos(�rx + �x) cos(�ry + �y)cos(�rx + �x) cos(�ry + �y) � sin(�rx + �x) sin(�ry + �y) 35 :If, for example, � has a uniform distribution on any 2� � 2� square thenEfH(r; �)g = 0;and, after simpli�cation, Equations (39) and (40) yield�2v(r; �) = A216 �4(�4max(r) + 6�2max(r)�2max(r) + �4max(r));and �2w(�) = 2�2a�t2 + �t2A264 �4(�4max + 6�2max�2max + �4max):The output gain outer product isr'(�)r'T (�) =A2�24 24 cos2(�rx + �x) sin2(�ry + �y) 14 sin(2[�rx + �x]) sin(2[�ry + �y])14 sin(2[�rx + �x]) sin(2[�ry + �y]) sin2(�rx + �x) cos2(�ry + �y) 35 : (51)Then, since lim�!0 �2u�2w(�)A2�24 = 0;and lim�!1 �2u�2w(�)A2�24 = 0;the optimal frequency �o is guaranteed to exist on (0;1). In the next section we will shownumerical simulations of this example and comparisons of theoretical and actual performance.We note that if the amplitude A in Equation (50) is selected as the parameter over whichto optimize, then (49) is satis�ed at the limit point 0, but not at 1. Hence, the optimal Ais not guaranteed to exist, and in fact it turns out that p(�) is minimized at A = 1. Forany practical application, this condition implies that if one is constrained to have a �xedfrequency pattern one should increase the amplitude (brightness) of the pattern as far aspossible to improve the overall optical ow performance.



20V. EXPERIMENTAL RESULTSIn this section we �nd the optimal spatial frequency � for the product-of-sinusoids brightnessfunction given in Equation (50), and we compare this with actual optical ow results. Weuse the following true velocity �eldv(r; t) = 24 �a �!! �a 35 r ; (52)where a = ! = 0:02 sec�1. This velocity �eld is a combination of a counter-clockwise rotationand a contraction about the origin and is shown in Figure 3. Images of the brightness functionat time t = 1 sec (not shown) are computed using Equation (50), where the reference mapis given by [see Equations (1) and (2)]p(r; t) = e�at 24 cos(!t) � sin(!t)sin(!t) cos(!t) 35 r : (53)All images displayed and used in this section are 128� 128 pixels, have values in the range[0; 255], and are corrupted by additive white Gaussian noise with mean zero and variance�2w = 0:003125. The physical distance between pixels is assumed to be 1:0 cm.Using the numerically e�cient local relaxation method described in [40] and modi�edfor optical ow in [31, 32, 24], we computed an SOF velocity estimate using image pairsderived from the above procedure for each of 50 di�erent values of �. The mean square error(MSE) between the true velocity and the estimated velocity as a function of � is shown inFigure 4 using a solid curve. It is clear from the �gure that there is an optimal frequencywhich is approximately � = 0:177 rad=cm. The location of this minimum was predictedthrough calculation of p(�), shown using the dotted line in Figure 4. This performancemeasure was computed using (47), where we assumed vmax = 2:58 cm/sec and �2u = 0:05sec�2. Equation (52) was used to compute vmax. The choice for �2u was empirical sincethe velocity �eld described in (52) is not random. Together these parameters representour prior knowledge of the true velocity and are necessary inputs to the optimal frequencyalgorithm. The experimental plot in Figure 4 shows a performance \well" of approximatelyone-half decade of frequency where SOF is relatively insensitive to the spatial frequency ofthe brightness function. In practical applications, therefore, one can expect some measureof robustness in the selection of the a priori velocity model parameters.While the locations of the optimal frequencies of the experimental and theoretical curvesmatch extremely closely in Figure 4, it is disturbing at �rst to �nd that the actual level of



21performance does not match the predicted level of performance and that the shape of thetwo curves are quite di�erent. It turns out that these di�erences are largely the result of thenumerical methods used to solve the optical ow equation. In particular, both SOF and theoptimal frequency algorithm are required to solve a large system of equations [(22) and (28),respectively], which must be solved iteratively. The matrix �(�) is ill-conditioned at both lowand high frequencies but not near the optimal frequency. Therefore, the rate of convergenceof the iterative numerical procedure is very slow away from the optimal frequency, and forpractical reasons we could not carry the calculations out to completion. Since this procedureis repeated many times in the calculation of the theoretical curve, this curve is a�ected morethat the experimental curve. In simulations on very small images where exact inversion ispossible, we have shown that the experimental and theoretical curves match very well.In Figure 5, we show the actual SOF estimation error separated into a percent averagevelocity magnitude error given byXij jk vij k � k v̂ij kjXij k vij k � 100%and an average velocity direction error given by1N2�Xij j arccos vij � v̂ijk vij kk v̂ij k j :While the magnitude curve shown in Figure 5a has roughly the same shape as the MSE curvein Figure 4, the direction error curve in Figure 5b shows a much larger range of frequenciesover which it is nearly optimal. In fact, the direction error curve is within 5 degrees ofoptimality over about 1:5 decades of spatial frequency. This result seems to con�rm thecommon observation that the qualitative performance of SOF is better than its quantitativeperformance. Also note that the minimum direction error occurs at a higher frequencythan the minimum magnitude error. This phenomenon suggests �rst that a qualitativeperformance measure would result in a di�erent optimal frequency and, second, that inpractice it is better to err in favor of higher frequencies when determining the optimalbrightness function.Three examples of SOF velocity estimates are shown in Figures 6b, 6d and 6f super-imposed over their respective brightness functions shown at t = 0. The true velocity �eldis shown superimposed over the same brightness functions in Figures 6a, 6c and 6e forcomparison purposes. Figures 6a and 6b correspond to a frequency of � = 0:05 rad=cm;Figures 6c and 6d to � = 0:177 rad=cm; and Figures 6e and 6f to � = 0:5 rad=cm. When the



22frequency is too low as in Figure 6b, the SOF estimate tends to exhibit directional errorsbecause there is little variation in the brightness function gradient across the image. This isa good example of the e�ects of the aperture problem. Because the output equation (4) onlyprovides information about the velocity in the direction of the brightness gradient at eachpixel, information about the orthogonal component must be obtained by smoothing. But ifthere is little local variation in the direction of the gradient, as in this low-frequency image,smoothing will fail to capture the detailed uctuations of the local velocity �eld.In contrast, the high frequency uctuations of the brightness function in Figure 6f haveplenty of local gradient variations. The poor performance of SOF in this case results from in-creased e�ective noise in the calculation of the temporal derivative at each pixel, as describedby Equation (40). Here, the larger curvature of the brightness function causes larger e�ectiveobservation noise, thus requiring a larger regularization parameter �2 = �2w=�2u. Therefore,at high frequencies the SOF estimate tends to be oversmoothed, and since the velocity meanis zero this typically means that the velocity estimates will be too small. Figure 6d shows theoptimal result; comparing this velocity �eld to the true velocity shown in Figure 6c revealsa nearly perfect result.



23VI. DISCUSSIONWe have described a method for �nding the optimal brightness function by formulating SOFas an optimal linear smoothing problem and deriving an a priori performance measure basedon the estimation error covariance and the e�ect of the temporal derivative approximationerror. Our results show that the performance of SOF is mainly a function of the curvatureof the brightness function. At low curvatures, there is little variation in the spatial gradientacross the image and the underlying motion is obscured by the aperture problem. At highcurvatures, the numerical computation of the temporal derivative increases the measurementnoise variance and the resulting optimal estimate is oversmoothed. The optimal brightnessfunction represents the optimal tradeo� between these two e�ects. This e�ect of frequencyon the performance of SOF suggests that our methods may have applications in the area ofmultiscale computation of optical ow. Since resolution reduction has the e�ect of modifyingthe frequency content of an image, it is possible that our methods may be used to determinethe optimal resolution at which to process images using SOF. In addition, the stochasticformulation of SOF presented in this paper has potential applications in the areas of recursiveestimation for incremental problems and the derivation of con�dence measures.One interpretation suggested by the results of Section V is that the performance of SOFis determined by the condition of the matrix �. In particular, �(�) is ill-conditioned at lowfrequencies because the entries of r'(�)r'T (�) are small [see (51)]. At high frequencies,�(�) is ill-conditioned because the high curvature of the brightness function increases themeasurement noise variance causing �2u=�2w(�) to be small. Based on this observation, itseems likely that the brightness function yielding the most well-conditioned � is nearly thesame as that which minimizes p(�). This relationship between the condition of �(�) and theerror covariance makes sense from a stochastic viewpoint also. When �(�) is ill-conditioned,small perturbations in the input (measurements) can result in large perturbations in theestimate which corresponds to a large error covariance. This relationship clearly deservesfurther investigation.Although our method depends on the parameters �2u and vmax, which often must bedetermined empirically, our simulation results indicate that SOF is fairly insensitive to theseparameters provided that they fall in the proper range. We have also shown that the directionof optical ow velocity estimates is more robust to nonoptimal brightness functions than themagnitude. This result con�rms the common observation that the qualitative performanceof SOF is better than its quantitative performance.One disadvantage of our model is that while the calculations required to compute the



24performance measure are straight-forward, they are computationally burdensome due to thelarge dimension of �. Any application requiring real-time or near-real-time modi�cationthe brightness pattern, depending on time-varying velocity information for example, wouldrequire extensive precalculation to build up tables of optimal patterns which depend on theinput parameters. In such cases, further e�ort to reduce the computational burden (perhapsthrough examination of the relationship of condition to error) would be fruitful. Anotherlimitation of our approach is that it depends on the a priori speci�cation of a particularparametric class of brightness functions. Although the results of Section IV.C show that theexistence of a �nite parameter that will provide optimal performance can be shown, we haveno idea whether there may exist another class with better overall performance. In futurework we therefore plan to examine brightness function optimization over non-parametricfunctional classes.At present, the only application of our parameter optimization algorithm is in the areaof MR tagging. Other potential applications include estimation of uid ow where thebrightness function may be changed by injecting dyes and biomechanical studies of limbmotion where the brightness function may be changed by painting the body. In MR taggingapplications, the spatially modulated magnetization (SPAMM) brightness function can beapplied to a given tissue using a standard MR scanner [18, 19, 24]. The SPAMM brightnessfunction is similar to the product-of-sinusoids pattern used in this paper and can be param-eterized by spatial frequency. In separate simulation experiments we have shown that anoptimal spatial frequency exists for SPAMM and the optimization methods presented in thispaper predict the optimal frequency with an accuracy comparable to that shown in Section Vfor a product-of-sinusoids. In tagging applications, however, the brightness function canonly be controlled in the initial image. The brightness function in subsequent images willbe distorted by the motion of the tissue, and may no longer be optimal. Future work in thisarea should include the development of a scheme for optimizing the parameter vector overmultiple image frames and MR experiments to study the performance and robustness of ouralgorithm in a practical setting.



25APPENDIX AIn this appendix we prove Equation (24). We begin by de�ning the matrices F and �Fin Equation (20b), then derive explicit equations for the estimate boundary conditions, and�nally combine the estimate boundary conditions with the interior equations of (20a) to formthe error system of (21). Equation (24) then follows immediately.1) De�nition of F and �FThe matrices F and �F are required for the discrete version of the continuous velocity �eldstate model of (7). When (7) is discretized on an N � N lattice as shown in Figure 2 theresulting discrete state model isLvij = uij = 24 uxuy 35ij = 26666664 u�xu�xu�yu�y
37777775ij (54)for ij 2 ~
, and the boundary condition is of the formFVb = �FUb ; (55)where Vb and Ub are boundary vectors as de�ned in (19).The boundary condition must be carefully constructed so that the continuous and discretestate models agree. In particular Figure 7 shows a 5�5 pixel lattice with the nearest neighbordi�erences shown by the solid and dashed lines. Since the di�erence operator L is one-sided,it can only specify the di�erences shown by the dashed lines. Therefore, the boundarycondition must specify the remaining di�erences shown by the solid lines. Accordingly, thetop boundary conditions are �TV1 +�TV2 +�1v01 = �2U1 (56)where �T = 266666664 A0 A4A0 A4. . . A0 A4

3777777754(N�1)�2N�T = 266666664 0 0A2 0. . . . . .A2 0
3777777754(N�1)�2N
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�1 = 266666664 A2 00 0. . . . . .0 0

3777777754(N�1)�2(N�2)�2 = 266666664 I4 I4 . . . I4 0
3777777754(N�1)�4N :The left boundary conditions are�Lv01 +�Lv02 +�3VN = u01 (57)where �L = 266666666664

A0 A2A0 A2. . . A0 A2A0
3777777777754(N�2)�2(N�2)�L = 266666664 A4 A4 . . . A4

3777777754(N�2)�2(N�2)�3 = 266666664 0 0 � � � 00 0 � � � 0...A2 0 � � � 0
3777777754(N�2)�2N :The bottom boundary conditions are �BVN = �BUN (58)where �B = 266666664 �I I�I I. . . �I I

3777777752(N�1)�2N
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�B = 266666664 AT4 0AT4 0. . . . . .AT4 0

3777777752(N�1)�4N :The right boundary conditions are�eTNV1 + eT1 v0N = �4U1 (59)�Rv0N +�RVN = �5u0N (60)where �R = 266666666664
�I I�I I. . . �I I�I

3777777777752(N�2)�2(N�2)�R = 266666664 0 0 � � � 00 0 � � � 0...0 0 � � � I
3777777752(N�2)�2Ne1 = [I 0 � � � 0]TeN = [0 � � �0 I]T�4 = [0 � � �0AT2 ]T�5 = IN�2 
 AT2 :Finally, using (56) { (60) the form of Equation (55) requires that

F = 26666666664
�T �T 0 0 �1 0 0 00 0 �B 0 0 0 0 00 0 �3 0 �L �L 0 0�eTN 0 0 0 0 0 eT1 00 0 �R 0 0 0 �R 0

37777777775 (61)



28and �F = 26666666664
�2 0 0 0 0 0 0 00 0 �B 0 0 0 0 00 0 0 0 I4(N�2) 0 0 0�4 0 0 0 0 0 0 00 0 0 0 0 0 �5 0

37777777775 : (62)
2) Estimation Error Boundary ConditionsHaving found the form of F and �F , we can now expand the estimation error boundaryconditions of (20b) in terms of the matrices de�ned in the previous section. The matrix Eis given by (cf. [37])

E =
266666666666666666664

0 �1 0 0 0 0 0 0��2 0 0 0 0 0 0 00 0 0 �2 0 0 0 00 0 ��1 0 0 0 0 00 0 0 0 0 �3 0 00 0 0 0 ��4 0 0 00 0 0 0 0 0 0 �40 0 0 0 0 0 ��3 0
377777777777777777775where �1 = I0N 
 AT1�2 = I0N 
 AT2�3 = IN�2 
 AT3�4 = IN�2 
 AT4and I0N = 266666666664

0 1 . . . 1 0
377777777775N�N :

Performing the matrix multiplications in (20b) and applying the identitieseT1 v01 = eT1 V2



29eTN�2v01 = eT1 VN�1eT1 v0N = eTNV2eTN�2v0N = eTNVN�1derived from duplicate entries in the boundary vectors (see Section III. B.), yields theboundary conditions (�2u�2w�TH�H +�H) ~V1 � ~V2 = ��2u�2w�THW1 +	0U1 (63)(�2u�2w�TH�H +�H) ~VN � ~VN�1 = ��2u�2w�THWN + �BUN+	1UN�1 (64)(�2u�2w�TV �V +�V )~v01 � ~v02 � e1eT1 ~V1 � eNeT1 ~VN = ��2u�2w�TVw01 +�T1�2U1+�TLu01 (65)(�2u�2w�TV �V +�V )~v0N � ~v0N�1 � e1eTN ~V1 � eNeTN ~VN = ��2u�2w�TVw0N +�TR�5u0N+�4u0N�1 + e1�4U1 (66)where �H = IN 
 C�V = IN�2 
 C
�H = 266666666664

2I �I�I 3I �I. . .�I 3I �I�I 2I
3777777777752N�2N�V = 266666666664

3I �I�I 3I �I. . .�I 3I �I�I 3I
3777777777752(N�2)�2(N�2)
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�B = 266666666664

�AT4AT4 �AT4 . . .AT4 �AT4AT4 0
3777777777752N�4N	0 = 266666666664

AT0AT4 AT0 . . .AT4 AT0AT4 �AT2
3777777777752N�4Nand 	1 = IN 
 AT2 :3) Total Error SystemThe interior equations given in (20a) and the left and right boundary conditions given in(65) and (66) can be written in the form�1 ~Vi�1 + (�0 + �2u�2w�TH�H) ~Vi + �1 ~Vi+1 = 	1Ui�1 +	0Ui � �2u�2w�THWi (67)for 2 � i � N � 1 where

�0 = 266666666664
3I �I�I 4I �I. . .�I 4I �I�I 3I

3777777777752N�2Nand �1 = IN 
�I:Equation (67) and the top and bottom boundary conditions given in (63) and (64) can becombined to form the system �~V = �uU � �wW; (68)



31where �u = 266666666664
	0	1 	0 . . .	1 	0	1 �B

377777777775 ; (69)
�w = IN2 �2u�2w 
 CT ; (70)and the matrix � can be decomposed into� = �m + �r2 ; (71)where �m = IN2 
 �2u�2wCTC (72)and �r2 = 266666666664
�H �1�1 �0 �1. . .�1 �0 �1�1 �H

377777777775 : (73)
Since the random vectors U and W are uncorrelated andEfUUT g = �2uI4N2EfWW Tg = �2wIN2 ;it follows after a straightforward calculation thatEf[�uU + �wW ][�uU + �wW ]Tg = �2u�u�Tu + IN2 
 �4u�2wCTC= �2u�: (74)2 2 2



32APPENDIX BIn this Appendix, we prove that as �m ! 0, tr[��1] ! 1. We showed in Section IIIthat ��1 is the covariance matrix of the SOF estimate. Since ��1 is a covariance matrix, weknow that ��1 is symmetric and positive de�nite. It can be shown that tr[�] is a prenormon the set of symmetric positive de�nite matrices. Therefore we can lower bound tr[��1] by[41] Cmk��1k2 � tr[��1]where Cm is a positive constant and k � k2 is the spectral norm. Since � is also symmetricand positive semide�nite, � = UT�Uwhere U is a unitary matrix and� = diagf�1; �2; � � � ; �2N2g�1 � �2 � � � � � �2N2 :Also, ��1 = U��1UT :Since k��1k2 = 1=�1, tr[��1] � Cm�1 : (75)We can upper bound �1 by [41] �1 � �1(�r2) + �2N2(�m): (76)Since �r2 is singular �1(�r2) = 0. Therefore using (76) in (75) yieldstr[��1] � Cm�2N2(�m) :Since �2N2(�m)! 0 as �m ! 0, tr[��1]!1 as �m ! 0. 2 2 2
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Figure 3: True Velocity Field.
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(a)

(b)Figure 6: (a) 0.05 rad/cm Brightness Function with True Velocity Field. (b) 0.05 rad/cmBrightness Function with SOF Velocity Field.
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(c)

(d)Figure 6: (c) 0.177 rad/cm Brightness Function with True Velocity Field. (d) 0.177 rad/cmBrightness Function with SOF Velocity Field.
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(e)

(f)Figure 6: (e) 0.5 rad/cm Brightness Function with True Velocity Field. (f) 0.5 rad/cmBrightness Function with SOF Velocity Field.
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