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ABSTRACT

Estimation accuracy of Horn and Schunck’s classical optical flow algorithm depends
on many factors including the brightness pattern of the measured images. Since some
applications can select brightness functions with which to “paint” the object, it is desirable
to know what patterns will lead to the best motion estimates. In this paper we present a
method for determining this pattern a priori using mild assumptions about the velocity field
and imaging process. Our method is based on formulating Horn and Schunck’s algorithm as a
linear smoother and rigorously deriving an expression for the corresponding error covariance
function. We then specify a scalar performance measure and develop an approach to select
an optimal brightness function which minimizes this performance measure from within a
parametrized class. Conditions for existence of an optimal brightness function are also given.
The resulting optimal performance is demonstrated using simulations, and a discussion of

these results and potential future research is given.
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I. INTRODUCTION

The algorithm developed by Horn and Schunck [1] for estimating the optical flow between
image pairs, which we will refer to as standard optical flow (SOF), has been widely studied
in the computer vision community. It is generally accepted that SOF produces a good
overall qualitative picture of the motion field, but lacks good quantitative behavior, especially
when the images involve rigid body motion with possible occlusion [2, 3]. In these cases,
parametric methods such as those reported in [4, 5, 6, 7, 8, 9, 10] and modified Horn and
Schunck methods such as those reported in [2, 3, 11, 12, 13, 14, 15, 16, 10] show superior
quantitative performance. When the images show an object undergoing deformable motion
with no occlusion, however, SOF may still provide a high-resolution, accurate estimate of
the motion field. In these cases there are many parameters affecting the performance of SOF
including spatial and temporal sampling, the regularization coefficient, the nature of the
motion and — what is of primary interest in this paper — the spatial pattern of brightness
of the object itself.

In general, one cannot control the spatial pattern of brightness of the object within an
image sequence since it is an inherent part of the underlying physics and imaging process. In
some applications, however, it is possible to control this brightness function. For example,
consider the estimation of left ventricular motion from a sequence of magnetic resonance
(MR) images of the heart. Recent developments in MR tagging [17, 18, 19, 20| make it
possible to modulate the MRI brightness function to make a spatial pattern appear in other-
wise homogeneous tissue (see Section VI for more information). Prince et al. [21, 22, 23, 24]
have shown that such patterns can be exploited using optical flow processing to detect
motion that would otherwise be obscured by the aperture problem (cf. [25]). This work
also revealed that the performance of SOF is strongly affected by the spatial frequency of
the spatial pattern placed in the images. This observation leads naturally to the general
question: what brightness function results in the best estimate of motion given that SOF is
used to process the image pairs? In this paper we deal with the somewhat more restricted
problem of the a priori selection of the parameters that will optimize SOF performance given
a parameterized class of brightness functions. We call the pattern specified by the optimal
parameters the optimal brightness function.

The primary difficulty in determining the optimal brightness function is the development
of a measure of SOF performance. Horn and Schunck’s optical flow algorithm is based on a
variational formulation that has no inherent performance measure. Several error analyses of

optical flow and related motion estimation procedures have been formulated for rigid-body



motion [26, 4, 2, 5]; however, these results do not apply to deformable objects. Kearney, et al.
[27, 28] discussed error sources in SOF which depend on the brightness function and proposed
heuristic methods for quantifying these errors. These results, however, do not provide a
rigorous framework for the development of an overall performance measure. Simoncelli,
et. al. [29] developed a gradient-based estimation algorithm for general motion which uses
Gaussian models for the velocity field and noise sources, and this algorithm provides a
performance measure for the resulting velocity estimate. Their algorithm, however, is not
SOF. Chin [30] derived a discrete version of Horn and Schunck’s optical flow equations for
deterministic motions in 2D using a maximum-likelihood (ML) approach, and this approach
does provide an expression for the estimation error covariance which can be used as a
performance measure. As part of our development in this paper, we present an alternate
derivation of Chin’s error covariance starting with the linear smoothing formulation of Rougee
et al. [31, 32]. We show in Section IV, however, that for the estimation error covariance to
be an accurate performance measure, a new measurement noise model must be developed.

In this paper, we use the estimation error covariance and a new measurement noise model
to develop a criterion for brightness function optimality, and we develop a method to select
the optimal brightness function from a parametrized class of functions. Knowledge of (or
assumptions about) the velocity field smoothness, maximum velocity, and imaging noise
variance are required; however, this information is generally available or easily deduced in
any application. Furthermore, we show empirically that the optimal brightness function
choice is relatively robust to modeling errors. Our general approach was previously reported
in [33], where we considered a one-dimensional analog to the optical flow problem. In this
paper, however, we present a comprehensive treatment of brightness function optimization
in two dimensions, a subject which to our knowledge has not been previously addressed in
the literature.

This paper is organized as follows. In Section II we present some background on the
motion of deformable objects and on the linear smoothing formulation of SOF. In Section 111
we derive an expression for the optical flow error covariance based on this optimal linear
smoother. In Section IV we develop an a priori performance measure for SOF based on the
error covariance and describe how to determine the optimal brightness function. We present
some simulation results in Section V and provide a discussion of our results and of possible

future research directions in Section VI.



II. BACKGROUND

A. Motion Model

Since we are concerned with estimating the motion of deformable objects, we will use notation
and terminology from continuum mechanics [34]. In this theory, the body is the object
undergoing motion; it consists of material points, which may be thought of as small physical
particles. A motion as shown in Figure 1 is a function that maps the material points to
spatial points in the image at time ¢t. We write r = r(p,t) to indicate that the material
point p has moved to the spatial point r at time f. There exists an inverse function called
the reference map (see Figure 1) which gives the material point for each spatial point in
the image at time ¢. We write p = p(r,¢) to indicate that the spatial point r at time ¢

corresponds to the material point p. The reference map and motion map satisfy

r(p(r,t),t) = r (1a)
p(r(p.1).t) = p. (1b)
The spatial velocity v(r,t) = [ p(r,t) , v(r,t) |7 is the function estimated by SOF; it is

related to the motion map by the equation

5y5(B.0) = (e (p. 1)) 2)

The image of the body at time t is described by a brightness function p(r,t). At time
t = 0, the body is said to be in the reference configuration, which means that the spatial

points and the material points are identical, i.e.

r(p,0) = p
p(r,0) = r.

Therefore, denoting the image of the body in the reference configuration as f(p), it follows
that

and

As an example, consider the reference configuration

f(p) = sin(wp,) sin(wpy),



and the constant velocity v = [p v]7. It follows that the motion map is
r=r(p,t) =p+ vt,

the reference map is
p =p(r,t) =r —vt,

and the brightness function is

o(r,t) = f(p(r,t)) = sin(w(ry — pt)) sin(w(ry, — vt)).

Finally, we note that

which agrees with Equation (2).

B. Variational Formulation

In general, the motion estimation problem involves estimating the velocity v(r,t) of each
point in an image from the brightness function ¢(r,#). If the brightness of each material
point p is constant in time, using the chain rule to differentiate ¢(r,?) with respect to
time while holding the material coordinate p constant [34] yields the Brightness Constraint
Equation (BCE) (cf. [1])

V(r,t) - v(r,t) + ¢i(r,t) =0, (4)

where the subscript ¢ denotes partial differentiation with respect to ¢t. Note that in the
continuous case, the BCE is exact [34]. We address the effects of discretization in Section IV.
In two dimensions, solving (4) for the velocity is an ill-posed problem because there are
two components to the velocity at each spatial point and only one (linear) equation relating
these components. Horn and Schunck [1] solved this problem by imposing a spatial regularity
condition and using the calculus of variations to show that the two components of the velocity

estimate satisfy

2~ 1 N N

\? ZE;%MW+¢w+¢J (a)
. 1 . .

\% = —@leii+ oyl + @l (5b)

where ¢, and ¢, denote partial differentiation of ¢ with respect to x and y respectively.
Typically, these coupled Poisson equations are discretized, and the resulting large linear

system of equations represented by

SV =Y (6)



is solved by simultaneous over relaxation (SOR), Gauss-Seidel, or related relaxation methods
(cf. [35]). While the variational formulation of the SOF algorithm is relatively straight-
forward, it does not provide a way to predict the quality of the resulting velocity estimate.
The stochastic formulation developed below, however, will allow us to show in Section III

that the quality of the SOF estimate is ultimately determined by the matrix 3.

C. Stochastic Formulation

Rougee et al. [31, 32] showed that when the motion is modeled as a particular boundary
value random process and the multi-dimensional linear smoothing methods of Adams et
al. [36] are employed, the optimal linear smoother is also given by (5). This derivation is
particularly important in our work because the linear smoother has analytic expressions for
the velocity estimation error which we use to derive a performance measure. In this section
we give an alternate derivation of Rougee et al.’s result which closely follows the work of
Adams et al. [36]. In the process we provide a notation and conceptual framework that is
used in subsequent sections.

Assume that the velocity is defined on a regular domain 2 with boundary 02 and has a

state model of the form

Lo(z,y,t) = u(z,y,t)  for (z,y) € Q (7a)
Fuy(s) = up(s)  for s € 082 (7b)

where u ~ N(0,021), up(s) ~ N(0,02), L = I®V, and F = d/ds. Here, the symbol ® means
Kronecker product and the subscript b implies a restriction of the variable to the boundary
0L). We now drop the explicit notation indicating spatial and temporal dependence. The

observations are a noisy version of the BCE [Equation (4)]

y=Cv+w onQ (8a)
yy = Cvp +wy,  on 08 (8b)

where w ~ N(0,02) and w, ~ N(0,02). To match the BCE, the output gain is the spatial
brightness gradient C' = Vi, and the measurements are the negative temporal brightness
gradient y = —p, and y, = —¢;. The adjoint of L, denoted by L', is defined by Green’s
Identity [36]

(Lx, A 12(0) = (7, LU\>L§(Q) + (T, ENo) ny, (9)

where L3(Q) and H, are Hilbert spaces of 2-vector square-integrable functions defined on

Q and 02 respectively. It can be shown that the adjoint of L is given by the modified



divergence operator LT = —I ® V- and that E = I ® n”(s), where n(s) is the unit vector
normal to J€) at the boundary point s.
Identifying A as the complementary process of v (cf. [36]), and X and 4 as their respective

estimates, the estimate Hamiltonian is given by

I I A O L B (10a)

gt Lt J[A] | F0Ty
| XCTC+ LF'F E | { Z’; } = %CT% on 09. (10b)

The estimate equation can be simplified by substituting the top row of (10a)

~ 1 N
)\Zo'_gLU

into the bottom row of (10a) and into (10b) (with a restriction to the boundary) yielding

O it O it
[—C C+ L'L)o = —C"y  onQ (11a)
U'LU U'LU
2 2
ZuCTC 4 F*F+ EL| 6, = 22C"y,  on 99, (11b)
O-'LU O-'LU

Note that ELt, = I ® n” Vi, the normal derivative of 9. Since LTL = —T ® V2, (11a) is
exactly (5), the optical flow equation of Horn and Schunck [1] with o = 02 /o2. Thus the
variational formulation and the stochastic formulation are equivalent in the sense that the
same set of equations must be solved to yield the velocity estimate. In addition, because
(11) results in the minimum mean-square-error (MSE) estimate, o can be interpreted as the
optimal regularization parameter. Finally, note that if the boundary smoothness is unknown
and there are no measurements on the boundary, the boundary conditions in (11b) reduce

to the standard Neumann boundary conditions used by Horn and Schunck [1].



III. Error Covariance

In this section we use the stochastic formulation of Section II to derive an expression for
the optical flow performance. We first derive equations for the continuous estimation error
covariance using the complementary model methods of Adams, et al. [36]. We then discretize
the error equations and put them in the nearest neighbor model (NNM) form of [37]. Next
we develop an expression for the discrete error covariance. Finally, we specify a scalar

performance measure based on the discrete error covariance and describe its calculation.

A. Estimation Error

We define the velocity estimation error as v = ¥ —v. The Hamiltonians involving the velocity

error on the interior and boundary are given by (cf. [36])

[ e[ e ] [ uw ]
sore 0 || )| gera| 0

Ju w

[ %C’TC’ + éF*F E } [ ﬁ;\ } = LQF*U,I, — JLQCwa on 012 . (12b)
—Ap

Solving the top row of (12a) for A and substituting into the bottom row of (12a) and into
(12b) yields

o2 o2
2 CTC+ L'L| o= L'y — 22C"™w  on Q (13a)
o2 o2
2 2
la—;C’TC’ + F*F + EL] Op = [F* + E|up — U—;‘Cwa. on 052 . (13b)
Ow Ow

It is possible to derive an expression for the continuous error covariance based on (13),
but this approach presents problems when the continuous error covariance is discretized
on a square lattice. Instead, our approach is to derive an expression for the discrete error

covariance directly from a discretized version of (13).

B. Discretization

We assume the velocity is defined on an N x N lattice {2 as shown in Figure 2. The boundary
Q, of this lattice is an index set containing the first and last two rows and columns of €2,
and the interior Q is an index set of the remaining points of €.

The general form of a nearest neighbor discrete operator L is [37]

L.T)ij = [Ag + A1D1 + Angl + A3D2 + A4D;1]J)ij (14)
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where Dyz;; = x;_1 ; and Dyx;; = 2, j_1. The adjoint of L, L', is defined using the discrete

form of Green’s Identity [37]
(Lz, N gy = (2, LT}‘)S(Q) + (26, Ep) s, (15)

where S(Q) and S, are the vector spaces of 2-vector functions defined over the index sets Q
and Q, respectively. The matrix F is determined by the domain €2 and the operator L [36]
and is explicitly defined in Appendix A. The resulting L' is defined by

Llaij = [AY + AIDy + ATDY + AT D, + AY DS Yayj. (16)

For optical flow, we define L as the forward difference gradient operating on each com-

ponent of the velocity. Thus,

I R R
AT R U A Pa
and A; = A3z = 0. Here, and in subsequent expressions, the identity matrix I without a

subscript denotes the 2 x 2 identity matrix. Equation (16) simplifies to

Lz = [A] + AT Dy + A} Dy)xyj, (17)
and it follows that
L'Lzy; = [A{ + AYDy + AL Dy)[Ag + ADy !t + AyD, Y
— [4] —ID, — ID;' — IDy, — ID;"|z;;. (18)

Note that LTL is the negative of the discrete Laplacian mask

+1
+1 -4 +1
A
which is often used to solve the coupled Poisson equations (5) which define the solution to
SOF. The boundary vector X, is defined as [37]

Xy
X

XN ( Tl T,

V? ~

3

XN Tio T3j
- i
where X; = | and 1zl =

=
I

(19)

Ty L TiN TN-1j
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Note that X; is the entire ith row of the image and r; is the jth column of the image with

the first and last pixels removed. Also, note that the entries xo1, T99, Tn_11, Tn_12, ToN,

ToaN-1, TN-1 N and IN—-1 N—1 appear twice in Xb-

C. Discrete Error Covariance

After some work we find that the discrete versions of the error equations (13) are given by

2 2
la—;CTc + LTL] ¥;j = Llug; — Z—;C%U 2<i,j<N-1 (20a)
2

2

[U—;‘HTH +FTF + EL] V)= (FTAp + E)U, - Z2HTW,  otherwise (20b)
O-'U) O-'U)

where H = Iygy_g) ® C and the matrices F' and Ap are defined in Appendix A. Equa-

tions (20a) and (20b) can also be expressed as
(21)

YW=x,U-%,W

where o
v

il
Il

and U and W are similarly defined. Note that Y is the same matrix used in the estimate

equation
~ 0’2
NV =1y @ —=CTy (22)
Uw
derived from a discrete version of (11).
The discrete error covariance
P=&{vvty (23)
can be computed from Equation (21). In Appendix A we show that
(24)

E{[ZU — S W2 U — S, W'} =023

Since ¥ is symmetric and, if the problem is well-posed, invertible, solving (21) for V,
substituting into (23), and taking expected values yields
P = oy 'uy!

 9e—1
= 0,2 .

(25)
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Thus the error covariance matrix is simply a scalar times the inverse of ¥, the matrix used
to compute the velocity estimates in (22). In light of the rather complicated preceding
development the simplicity of this result seems astonishing. It is not so surprising, however,
if we look at the problem in a slightly different light. In particular, if (22) is assumed to be
the linear minimum mean square error (LMMSE) estimate for a discrete (vector) stochastic
estimation problem, then (25) follows immediately by inspection (cf. [38]). In contrast, we
found (25) through discretization of the continuous error equations (13). The fact that (22)
implies (25) proves that (22) must be the LLMSE estimate for some discrete problem, but
to show this fact by deriving an explicit density for the discretized velocity would be at least
as complicated as our approach. Indeed, a less careful discretization will not lead to this

nice result.

D. Performance Measure

For typical image sizes the dimensions of ¥ 2N? x 2N?  make the computation of X!
impossible. For our purposes, however, all we need is a scalar characterization of the error
covariance. A reasonable choice is the velocity error at each pixel averaged across the entire
image. Accordingly, since the diagonal elements represent the variances of each component

of the velocity at each pixel, we use the scalar

P=5h tr[P], (26)

as a total measure of error. This quantity can be computed recursively by setting p° = 0

and using the following iteration
p e p T+ o2X! for i=1,...,2N?%, (27)

where X' is the solution of

VX =g (28)

and e; is the ith column of I,y2. The performance is then given by p = N7

Our global measure of optical flow performance, p, is obviously a function of both the
process noise variance o2 and 3. In turn ¥ is a function of the measurement noise variance
o2 and the output gain V. Since the output gain is specified by the brightness function, it
is clear that p is a function of the brightness function ¢ and that there might exist a ¢ that
will minimize p. This is the subject of Section IV. To those who have actually used optical

flow, however, it may seem odd that our error does not depend on v, the actual velocity. It
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turns out that this is due to an inadequacy in our modeling up to this point. In fact, it will
be shown in Section IV that modeling errors in the calculation of the temporal derivative of
brightness will lead to the expected dependence of the performance on velocity and to the

existence of an optimal brightness function.
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IV. BRIGHTNESS FUNCTION OPTIMIZATION

In this section we develop a method to determine brightness functions that yield opti-
mal performance. Specifically, we consider parametrized brightness functions of the form
o(r,t,0) = f(p(r,t),0) where 6 is a parameter vector. Our objective is to determine the
parameter vector 6° that gives the optimal performance.

The reasons why an optimal brightness might exist at all are not immediately apparent
from the development of Section III. For example, consider the ideal case where the output
gain V¢ is known exactly and the measurement —¢; is the exact temporal derivative de-
graded by additive white Gaussian noise (WGN) with zero mean and variance o2. According
to our development, as Vi — 0, the brightness function becomes a constant causing the
motion to be unobservable and p — oco. In contrast, if Vo — oo the signal-to-noise ratio
(SNR) increases without bound and p — 0. It seems therefore that in the ideal case, the
optimal brightness function is one where V¢ = oo. This result, however, ignores two critical
factors: first, that the elements of V¢ cannot simultaneously go to oo for all r and second,
that in practice the spatial and temporal derivatives are estimated from the data. In this
paper we ignore the first issue by considering classes of brightness functions with inherent
spatial diversity in their gradients; optimization across these classes is a subject of future
research. Instead, in this paper we treat the optimization within a single such class. To do
so we model the measurement of the gradient as exact and examine the effects of inexact
measurement of the temporal derivative.

The derivative of a function g(z) differentiable on the interval [a, b] can be expressed as

[35]

gl(x) _ g(x+h})L_ g(x) o gg”(C)

where ( € [a,b]. Therefore when ¢'(z) is approximated by the forward difference [g(x + h) —

g(x)]/h, the approximation error is a function of the sampling interval h and the second
derivative of the function. Accordingly, the temporal derivative of brightness, which is
considered to be our measurement, has an additional source of noise besides just additive
WGN. This temporal derivative approximation error (TDAE) can be modeled as an another
additive noise component, which happens to be dependent on the sampling interval and the
second derivative (the Hessian) of the brightness function. In this section we first develop a
model for the required additional measurement noise which accounts for the TDAE, and then
incorporate these results into the error covariance and performance measure p of Section III.

We conclude this section by showing the conditions under which, for a given parametrized
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brightness class, an optimal parameter exists.

A. Measurement Noise Model

We begin by deriving the output equation (8) starting from the discrete temporal derivative
approximation. Since in practice the reference configuration may be randomly placed relative

to the image frame, we will use

p(r,t,0) = f(p(r, 1) + ,0)

where ¢ is a random vector with known probability distribution. We assume that the bright-
ness function has been corrupted by additive white Gaussian “imaging” noise w, ~ N (0, c2).
Assuming a forward difference approximation of the temporal derivative, the measurement
is

1
y(r,t) = —E[go(r, t+ At 0) +we(r,t+ At) — o(r, t,0) — wy(r,t))]. (29)

Expanding ¢(r,t + At) in a Taylor series and rearranging terms yields

At At? We(r,t + At) — wq(r,t
y(r,t) = —pu(r, t,0) — [—pu(r,t,0) + ——pu(r, t,0)+- -]+ ( ) ( ) (30)
2 3! At
We can replace the additive noise terms with
o — we(r,t + At) — w,(r, 75)7 (31)

At
and since w, is white, w' ~ N(0,202/A#?). Substituting (4) into (30) and keeping only the
second derivative term yields

y(r,t) = V(r,t,0) -v(r,t) + w'(r,t) — %cptt(r,t, g). (32)

Now,
62
pulrt,0) = 5f(p(r,t) +6.0)
= p/ (L. OH[f(p(r, 1) + &, 0)|pi(r, 1) + VF(p(r, 1) +,0) - pu(r,t)  (33)

where 7[-] denotes the Hessian with respect to the spatial coordinates. Recall that the
reference map p and the velocity v are related through equations (1) and (2). Therefore for
a general v, we cannot compute a closed form expression for p or p;. If we assume, however,

that in a neighborhood of r, the motion is approximately a translation, then

p(r. ) ~ r + v(r)L,
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and
ou(r,t,0) = v (r)H[f(p(r,t) + ¢,0)]v(r). (34)

To keep things simple we let ¢ = 0, which results in
y(r,t) = Vo(r,0,0) - v(r) + w'(r,0) — —ov" (r)H(r,0)v(r) (35)

where
H(r,0) = H[f(p(r,0),0)] = H[f(r + ¢,0)].

In subsequent frames (¢ # 0) an estimate of the reference map can in principle be used to
compute H(r,0).

The term v Hv in (35) represents the effect of the TDAE on the output equation, and
can be incorporated into the measurement equation in (8) by re-defining the measurement
noise as

At

w(r) = w'(r) — - v (r)H(r,0)v(r). (36)

B. Performance Measure

Since p depends on o2 and by Equation (36) w(r) depends on v(r), we see that p inevitably
depends on the true velocity. This leads to the important conclusion: computation of p
requires prior knowledge about v(r). We also note that since this result comes from the
observation equation alone it is valid whether or not v is viewed as random (as in our model)
or deterministic and unknown (as in Horn and Schunck’s formulation). One simple idea
which would seem to take advantage of the random formulation is to derive a probability
density for v7 Hv using the state model in (7) and to use this result to derive a new density for
w(r). Unfortunately, (7) implies an infinite a priori variance for v, which renders the model

useless for such calculations. Instead, we assume that an a priori bound on the velocity

Vmax(T) = [max(T)  Vmax(r)]1 is available, and use
At
w(r) =w'(r) — ?vflax(r)H(r, ) Uimax (T). (37)

to model the measurement noise. We note that this assumption is a very weak statement
of a priori knowledge of v, and is generally available in many applications. More detailed
knowledge can certainly be employed, and can be expected to generate better estimates of
the optimal brightness function.

We assume that the random vector ¢ is uncorrelated with v and w, and that

E{H(r.0)} = 0.
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With this assumption, the mean of v Hv is

E{vl (r)H(r,0)vmax(r)} = 0. (38)

max

and the variance is

E{(Vmax () H (1, 0)0imax (1))} = Hiphiman (¥) + AH oo Hyy 15,0 (F) Vina ()
+(4H§y + QHIIHyy)/L?nax(r)V?nax(r)
+4HIyHyy:U’maX(r)V13nax(r) + Hg?yyilax(r)
= 0,°(r,0). (39)

Therefore substituting (39) into (36) yields

2 At?
= @02 + Taf(r, 9) (40)

2

ow (r,0)

Equation (40) implies that for a given vy, and fixed o2 and At, the measurement noise
variance increases with the curvature of the brightness function.

We now wish to use this new model for the observation noise variance in an expression

for the performance p. In Appendix A we show that

Y=Y, + T (41)
where
0_2
Y = Iy» @ VeV (42)
J’LU

and Yye is related to the discrete form of LTL. If we were to use (40) in place of o2 in (42),
Y2 would depend on both the parameter # and the spatial coordinate r, which is not what we
desire. We note, however, that (40) also implies a spatially varying optimal regularization
parameter a? = 02 /o2, which is not used in standard optical flow. Therefore, for each

parameter 6 we will pick the constant

2 _ 2
Uw(g) - III'lEaé( Oy (I‘, 0) ) (43)
which leads to the term
‘75 T
En(0) = In: ® — (9)V¢(9)V<ﬂ (9), (44)

and hence
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Defining

it follows from (26) that

p(0) = 55 01P(0)], (47)

and finally that the optimal parameter vector is
6° = argminp() . (48)
0

Since a closed-form expression for p(f) cannot be computed in general, §° must be computed

by numerical optimization methods [39].

C. Existence of 6°

We now discuss conditions under which an optimal parameter #° exists. We will assume for
this discussion that # is a scalar belonging to the interval J; the extension to vector 6 is
straightforward but more cumbersome to explain. We assume that f(r, ) is a continuously
twice differentiable function of # and that () is invertible at each 6. From these facts we
conclude that p(f) is a continuous function of # and finite on .J. Hence, from elementary
real analysis we know that if J is closed p(f) assumes a minimum at some point §° € J.
If J is not closed, however, then p(f) may be minimized on the interval or it may attain
its minimum at a limit point not in .J, in which case we say that 6° does not exist. In the
special case that p(f) is finite somewhere on .J and increases without bound as 6 approaches
a limit point not in J, then 6° is guaranteed to exist. This is the case in the example we
study below and use in the experiments of Section V, so it warrants further study.

Of the two terms comprising ¥(6) in (45) only %, () depends on #. Furthermore, it can
be shown that Yy2 by itself is not invertible but that in general (and by above assumption)
¥(0) = X,,(0) + X2 is invertible. Thus as ¥,,(6) — 0, 3(#) becomes singular. In addition,
we show in Appendix B that as ¥,,(6) — 0, p(8) = (1/2N?)tr[E71()] — oo. Therefore we

can conclude that #° is guaranteed to exist for an interval .J that is not closed if the condition
lim %, (0) =0, (49)
0—a

is satisfied at each limit point of .J not in J.

For example, consider the class of brightness functions

f(p,0) = é(sin(epx) sin(fp,) +1). (50)
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In this case 6 is the spatial frequency, J = (0,00), and we want to find the 6 that will
result in optimal performance. To see if #° will exist, we examine the value of ¥,,(0) as 0
approaches 0 and oo using Equation (44).

After adding a random shift to the position of the pattern, a simple calculation yields

the Hessian matrix

H(r.0) = H[f(r+¢,0)]
A_92 [ —sin(fr, + ¢,) sin(fr, + ¢,)  cos(Or, + ¢,) cos(0r, + ¢,) -I
2 [ cos(fry + ¢,) cos(fr, + ¢,)  —sin(0r, + ¢,) sin(fr, + ¢,) J :

If, for example, ¢ has a uniform distribution on any 27 x 27 square then
E{H(r,0)} =0,

and, after simplification, Equations (39) and (40) yield

A2
oy (r,0) = 1—694(ufnax(r) F 61t (1) Vit () + Vi (1)),
and : Ap g2
20 t
2 _ 40, 40 4 2 2 4
Ow (0) - A#2 + 6740 (:U’max + 6Mmaxymax + Vmax)'
The output gain outer product is
Vo(0) Ve (0) =
1202 cos®(0r, + ¢,) sin®(0r, + ¢,) % sin(2[0r, + ¢5]) sin(2[0r, + ¢,]) (51)
T4 :

1sin(2[0r, + ¢,]) sin(2[0r, + ¢,])  sin®(0r, + ¢,) cos®(Ory + By)

Then, since

o oh A
INoL0) 4
and
o2 A%0?
u :07

000 02 () 4
the optimal frequency 0° is guaranteed to exist on (0,00). In the next section we will show
numerical simulations of this example and comparisons of theoretical and actual performance.

We note that if the amplitude A in Equation (50) is selected as the parameter over which
to optimize, then (49) is satisfied at the limit point 0, but not at oc. Hence, the optimal A
is not guaranteed to exist, and in fact it turns out that p(¢) is minimized at A = oco. For
any practical application, this condition implies that if one is constrained to have a fixed
frequency pattern one should increase the amplitude (brightness) of the pattern as far as

possible to improve the overall optical flow performance.
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V. EXPERIMENTAL RESULTS

In this section we find the optimal spatial frequency 6 for the product-of-sinusoids brightness
function given in Equation (50), and we compare this with actual optical flow results. We

use the following true velocity field

—a —w

v(r,t) = [ -I r, (52)
[ v -]

where a = w = 0.02 sec™!'. This velocity field is a combination of a counter-clockwise rotation

and a contraction about the origin and is shown in Figure 3. Images of the brightness function

at time £ = 1 sec (not shown) are computed using Equation (50), where the reference map

is given by [see Equations (1) and (2)]

cos(wt) — sin(wt) ] . (53)

sin(wt)  cos(wt)

p(r,t) =e [

All images displayed and used in this section are 128 x 128 pixels, have values in the range
[0,255], and are corrupted by additive white Gaussian noise with mean zero and variance
02 =0.003125. The physical distance between pixels is assumed to be 1.0 cm.

Using the numerically efficient local relaxation method described in [40] and modified
for optical flow in [31, 32, 24|, we computed an SOF velocity estimate using image pairs
derived from the above procedure for each of 50 different values of #. The mean square error
(MSE) between the true velocity and the estimated velocity as a function of # is shown in
Figure 4 using a solid curve. It is clear from the figure that there is an optimal frequency
which is approximately § = 0.177 rad/cm. The location of this minimum was predicted
through calculation of p(f), shown using the dotted line in Figure 4. This performance
measure was computed using (47), where we assumed v, = 2.58 ¢cm/sec and o2 = 0.05
sec ?. Equation (52) was used to compute vy... The choice for o2 was empirical since
the velocity field described in (52) is not random. Together these parameters represent
our prior knowledge of the true velocity and are necessary inputs to the optimal frequency

13

algorithm. The experimental plot in Figure 4 shows a performance “well” of approximately
one-half decade of frequency where SOF is relatively insensitive to the spatial frequency of
the brightness function. In practical applications, therefore, one can expect some measure
of robustness in the selection of the a priori velocity model parameters.

While the locations of the optimal frequencies of the experimental and theoretical curves

match extremely closely in Figure 4, it is disturbing at first to find that the actual level of
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performance does not match the predicted level of performance and that the shape of the
two curves are quite different. It turns out that these differences are largely the result of the
numerical methods used to solve the optical flow equation. In particular, both SOF and the
optimal frequency algorithm are required to solve a large system of equations [(22) and (28),
respectively|, which must be solved iteratively. The matrix ¥(6) is ill-conditioned at both low
and high frequencies but not near the optimal frequency. Therefore, the rate of convergence
of the iterative numerical procedure is very slow away from the optimal frequency, and for
practical reasons we could not carry the calculations out to completion. Since this procedure
is repeated many times in the calculation of the theoretical curve, this curve is affected more
that the experimental curve. In simulations on very small images where exact inversion is
possible, we have shown that the experimental and theoretical curves match very well.

In Figure 5, we show the actual SOF estimation error separated into a percent average

velocity magnitude error given by
> i =19 1|
ij
§ : H Vij H
ij

x 100%

and an average velocity direction error given by
Vij - TA)ij

| vig I Dij |l

1
——> " | arccos .
N?m 5

While the magnitude curve shown in Figure 5a has roughly the same shape as the MSE curve
in Figure 4, the direction error curve in Figure 5b shows a much larger range of frequencies
over which it is nearly optimal. In fact, the direction error curve is within 5 degrees of
optimality over about 1.5 decades of spatial frequency. This result seems to confirm the
common observation that the qualitative performance of SOF is better than its quantitative
performance. Also note that the minimum direction error occurs at a higher frequency
than the minimum magnitude error. This phenomenon suggests first that a qualitative
performance measure would result in a different optimal frequency and, second, that in
practice it is better to err in favor of higher frequencies when determining the optimal
brightness function.

Three examples of SOF velocity estimates are shown in Figures 6b, 6d and 6f super-
imposed over their respective brightness functions shown at ¢t = 0. The true velocity field
is shown superimposed over the same brightness functions in Figures 6a, 6¢c and 6e for
comparison purposes. Figures 6a and 6b correspond to a frequency of # = 0.05 rad/cm;
Figures 6¢ and 6d to # = 0.177 rad/cm; and Figures 6e and 6f to # = 0.5 rad/cm. When the
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frequency is too low as in Figure 6b, the SOF estimate tends to exhibit directional errors
because there is little variation in the brightness function gradient across the image. This is
a good example of the effects of the aperture problem. Because the output equation (4) only
provides information about the velocity in the direction of the brightness gradient at each
pixel, information about the orthogonal component must be obtained by smoothing. But if
there is little local variation in the direction of the gradient, as in this low-frequency image,
smoothing will fail to capture the detailed fluctuations of the local velocity field.

In contrast, the high frequency fluctuations of the brightness function in Figure 6f have
plenty of local gradient variations. The poor performance of SOF in this case results from in-
creased effective noise in the calculation of the temporal derivative at each pixel, as described
by Equation (40). Here, the larger curvature of the brightness function causes larger effective
observation noise, thus requiring a larger regularization parameter o? = o2 /o2. Therefore,
at high frequencies the SOF estimate tends to be oversmoothed, and since the velocity mean
is zero this typically means that the velocity estimates will be too small. Figure 6d shows the
optimal result; comparing this velocity field to the true velocity shown in Figure 6¢ reveals

a nearly perfect result.
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VI. DISCUSSION

We have described a method for finding the optimal brightness function by formulating SOF
as an optimal linear smoothing problem and deriving an a priori performance measure based
on the estimation error covariance and the effect of the temporal derivative approximation
error. Our results show that the performance of SOF is mainly a function of the curvature
of the brightness function. At low curvatures, there is little variation in the spatial gradient
across the image and the underlying motion is obscured by the aperture problem. At high
curvatures, the numerical computation of the temporal derivative increases the measurement
noise variance and the resulting optimal estimate is oversmoothed. The optimal brightness
function represents the optimal tradeoff between these two effects. This effect of frequency
on the performance of SOF suggests that our methods may have applications in the area of
multiscale computation of optical low. Since resolution reduction has the effect of modifying
the frequency content of an image, it is possible that our methods may be used to determine
the optimal resolution at which to process images using SOF. In addition, the stochastic
formulation of SOF presented in this paper has potential applications in the areas of recursive
estimation for incremental problems and the derivation of confidence measures.

One interpretation suggested by the results of Section V is that the performance of SOF
is determined by the condition of the matrix ¥. In particular, X(#) is ill-conditioned at low
frequencies because the entries of Vip(0)V' (#) are small [see (51)]. At high frequencies,
¥(0) is ill-conditioned because the high curvature of the brightness function increases the
measurement noise variance causing o2/02 () to be small. Based on this observation, it
seems likely that the brightness function yielding the most well-conditioned ¥ is nearly the
same as that which minimizes p(f). This relationship between the condition of ¥(¢) and the
error covariance makes sense from a stochastic viewpoint also. When () is ill-conditioned,
small perturbations in the input (measurements) can result in large perturbations in the
estimate which corresponds to a large error covariance. This relationship clearly deserves
further investigation.

Although our method depends on the parameters o2 and vnyax, which often must be
determined empirically, our simulation results indicate that SOF is fairly insensitive to these
parameters provided that they fall in the proper range. We have also shown that the direction
of optical flow velocity estimates is more robust to nonoptimal brightness functions than the
magnitude. This result confirms the common observation that the qualitative performance
of SOF is better than its quantitative performance.

One disadvantage of our model is that while the calculations required to compute the
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performance measure are straight-forward, they are computationally burdensome due to the
large dimension of ¥. Any application requiring real-time or near-real-time modification
the brightness pattern, depending on time-varying velocity information for example, would
require extensive precalculation to build up tables of optimal patterns which depend on the
input parameters. In such cases, further effort to reduce the computational burden (perhaps
through examination of the relationship of condition to error) would be fruitful. Another
limitation of our approach is that it depends on the a priori specification of a particular
parametric class of brightness functions. Although the results of Section IV.C show that the
existence of a finite parameter that will provide optimal performance can be shown, we have
no idea whether there may exist another class with better overall performance. In future
work we therefore plan to examine brightness function optimization over non-parametric
functional classes.

At present, the only application of our parameter optimization algorithm is in the area
of MR tagging. Other potential applications include estimation of fluid flow where the
brightness function may be changed by injecting dyes and biomechanical studies of limb
motion where the brightness function may be changed by painting the body. In MR tagging
applications, the spatially modulated magnetization (SPAMM) brightness function can be
applied to a given tissue using a standard MR scanner [18, 19, 24|. The SPAMM brightness
function is similar to the product-of-sinusoids pattern used in this paper and can be param-
eterized by spatial frequency. In separate simulation experiments we have shown that an
optimal spatial frequency exists for SPAMM and the optimization methods presented in this
paper predict the optimal frequency with an accuracy comparable to that shown in Section V
for a product-of-sinusoids. In tagging applications, however, the brightness function can
only be controlled in the initial image. The brightness function in subsequent images will
be distorted by the motion of the tissue, and may no longer be optimal. Future work in this
area should include the development of a scheme for optimizing the parameter vector over
multiple image frames and MR experiments to study the performance and robustness of our

algorithm in a practical setting.
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APPENDIX A

In this appendix we prove Equation (24). We begin by defining the matrices F' and Ap
in Equation (20b), then derive explicit equations for the estimate boundary conditions, and
finally combine the estimate boundary conditions with the interior equations of (20a) to form
the error system of (21). Equation (24) then follows immediately.

1) Definition of F' and A

The matrices F' and Ag are required for the discrete version of the continuous velocity field
state model of (7). When (7) is discretized on an N x N lattice as shown in Figure 2 the

resulting discrete state model is

g,
Lvij = Ujj = [ ta -| — ta (54)
[ Uy Jij uly
Uy .
for ij € Q, and the boundary condition is of the form
FVy = Aply, (55)

where Vj, and Uy, are boundary vectors as defined in (19).

The boundary condition must be carefully constructed so that the continuous and discrete
state models agree. In particular Figure 7 shows a 5 x5 pixel lattice with the nearest neighbor
differences shown by the solid and dashed lines. Since the difference operator L is one-sided,
it can only specify the differences shown by the dashed lines. Therefore, the boundary
condition must specify the remaining differences shown by the solid lines. Accordingly, the

top boundary conditions are

TT‘/I + AT‘/Q + Alv'l == A2U1 (56)
where
Ay Ay }
Ay A
TT _ 0 4
L Ao Ag | 4(N—1)x2N
0 0
Ay 0
Ap = ’ .
L Ay 0
da(N-1)x2N
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Ay 0
0 0
AI —
L 0 0] 4(N—1)x2(N—2)
R '
I
AQ - !
L I 0 A(N-1)x4N
The left boundary conditions are
Yrv) + Arvy + AsVy = u} (57)
where -
| Ag A
Ay A,
TL —
Ay A
L Ao | 4(N—2)x2(N—2)
_ " -
A
Ap = '
L As | 4(N—2)x2(N—2)
00 0
0 0
A3 -
L A2 0 0] A(N—-2)x2N
The bottom boundary conditions are
TpVy =AUy (58)
where -
I
-1 I
Tp =
L —I 1] 2AN-1)x2N




27

AT g
AT
AB:
AT g
L do(N—1)x4aN
The right boundary conditions are
—eAVi+elvy = AU (59)
TRUEV—FARVN == AsUIN (60)
where
11 1
-1 1
Tgr=
-1 1
L 1
Jo(N-2)x2(N-2)
(00 - 0]
00 - 0
Ap=1|
100 I
42(N-2)x2N
er = [10---0]"
ex = [0---01]"
Ay = [0---0 ALY

A5 — ]N72®A;1

Finally, using (56) (60) the form of Equation (55) requires that

Tr Ay 0 0 A 0 0 0
0O 0 Yp 0 0 0 0 0
F=| 0 0 Ay 0 Y, Ay 0 0 (61)
—h 0 0 0 0 0 €' o
0 0 AR 0 0 0 Yp O]




and

Ap = 0

o O O O o

o
o o o o ©
=
i
N

2) Estimation Error Boundary Conditions

o O O o o
o O O O
o O O O o
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(62)

Having found the form of F' and Ag, we can now expand the estimation error boundary

conditions of (20b) in terms of the matrices defined in the previous section. The matrix £

is given by (cf. [37])

0 e
-6y 0
0 0
0 0
B =
0 0
0 0
0 0
00
where
and
I =

©,

O3
O

0 0 0
0 0 0
0 O, 0
—-0; 0 0
0 0 0
0 0 —0Oy4
0 0 0
0 0 0
= Iy ® A
= Iy ®A;
= ]N72®A3T
= ]N72®A4T
1
1
0_

|

0 0 0 |
0 0 0
0 0 0
0 0 0
O, 0 0
0 0 0
0 0 6
0 —0; 0 |
NxN

Performing the matrix multiplications in (20b) and applying the identities

e

T T
1 = Ve



T o T
eny_oV; = e Vy_q
T 1 _ A
e1vy = eyVa
T _ T
exy oUn = exVnoa
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derived from duplicate entries in the boundary vectors (see Section III. B.), yields the

boundary conditions

2
o ~ ~
u =T = ~1 T T
(02 _V—i—Av) — Uy —ere; Vi —eney Vy =
w
52
u—=T—= ~/ ~/ ARY Ty,
(U—Q:V:V +Ay)iy — Oy —ereyVi —eneyVn =
w

where

Ep = In®C
Ev o= Ino®C

o1 1 ]
1 3 —I
Ay =
1 31 —I
_ 1 21
31 -1 1
7 31 I
Ay =
1 3 —I
I 03I

2

Oy
—S =W+ WU,
O-U)

0_2

- UHTWN‘F?BUN

T
+\111UN,1
2

o
=T T
;‘ wy + Ay AUy
O-'LU
T 1
= A
2
u =T T i
Eywy + TpAsuly

Q

< \

+@4’1L’N71 + 61A4U1

2N X2N

L do(N—2)x2(N—-2)

(63)

(64)

(65)

(66)
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Al 1
AT T
Tp = )
AL AL
L Af 0 Jonxan
A '
AL AY
Uy = :
AL AQ
L Al 4 Jonxan
and
U, =Iy® AL,

3) Total Error System
The interior equations given in (20a) and the left and right boundary conditions given in

(65) and (66) can be written in the form
2 2

% Oy =T = % ¥ Oy

D Via + (Do + U—QZH:H)Vi + @1 Vi = Ui + YoU; — o)

w

=W (67)

2
w

for 2 < i< N — 1 where

31 I }
—1 4 —1I
dy =
—I 41 -1
L 1 3L | N
and
Oy =Iy®—1.

Equation (67) and the top and bottom boundary conditions given in (63) and (64) can be

combined to form the system
SV =%,U -3, W, (68)



where

and the matrix ¥ can be decomposed into

where

and

Sor =

B2 '
U, ¥,
U, 0,
L vy g
0_2
Yo =Iy—®C",
J’LU
Y=Y, + Zoe,

0.2
Yo = Ine ® —;CTC
g,

Ay @
o, @,

|

w

Dy

Dy

o, P
d, AHJ

Since the random vectors U and W are uncorrelated and

E{UUT}

E{wwhy

2
— O'UI4N2

_ 2
— O'w]]\ﬂ7

it follows after a straightforward calculation that

E{ZU + S, WIEU + 2,0} =

4
025,50 4 Iy @ 22CTC
O-'LU

2
0,2
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(69)

(70)

(71)

(72)

(73)

(74)
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APPENDIX B

In this Appendix, we prove that as ¥,, — 0, tr[2!] — oco. We showed in Section IIT
that X! is the covariance matrix of the SOF estimate. Since X! is a covariance matrix, we
know that X! is symmetric and positive definite. It can be shown that ¢r[-] is a prenorm
on the set of symmetric positive definite matrices. Therefore we can lower bound #r[X '] by
[41]

Crl| X7 2 < tr[371]

where C,, is a positive constant and || - ||3 is the spectral norm. Since ¥ is also symmetric
and positive semidefinite,
S =U"AU

where U is a unitary matrix and

A = diag{)\l,)\Q, . ',)\QNQ}
AL < A < < Agpe.

Also,
Yy '=UATU".
Since ||271||2 = 1/)\17
Cm
tr(x 1 > = (75)
Ay
We can upper bound A; by [41]
A <A (Zvz) + Aoz (Z0). (76)

Since Yy is singular A\;(Xy2) = 0. Therefore using (76) in (75) yields

C
trx ' > — .
[ ] - )\QNZ(Zm)

Since A\gn2(X,,) = 0as 3, = 0, tr[X7!] = oo as &, — 0.
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Figure 1: Motion and Reference Maps.
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Figure 2: N x N discrete lattice.
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Figure 3: True Velocity Field.
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Figure 6: (e) 0.5 rad/cm Brightness Function with True Velocity Field. (f) 0.5 rad/cm
Brightness Function with SOF Velocity Field.
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Figure 7: 5 x 5 discrete lattice.



44

Figure Captions

Figure 1. Motion and reference maps.

Figure 2. N x N discrete lattice.

Figure 3. True velocity field.

Figure 4. Theoretical and actual SOF performance.

Figure 5. (a) Percent average velocity magnitude error in cm/sec. (b) Average velocity

direction error in degrees.

Figure 6. (a) 0.05 rad/cm brightness function with true velocity field. (b) 0.05 rad/cm
brightness function with SOF velocity field. (c¢) 0.177 rad/cm brightness function with
true velocity field. (d) 0.177 rad/cm brightness function with SOF velocity field. (e) 0.5
rad/cm brightness function with true velocity field. (f) 0.5 rad/cm brightness function
with SOF velocity field.

Figure 7. 5 x 5 discrete lattice.



