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Abstract resources¢)(N) behavior that was acceptable with=
Widely-used operating systems provide inadequaté0 is problematic whenv = 10000. This is especially

support for large-scale Internet server applicationsifThe true for system calls used for event management, such as
algorithms and interfaces fail to efficiently support eithe select() in UNIX.

event-driven or multi-threaded servers. They provide In most operating systems, scheduling and resource
poor control over the scheduling and management of mamanagement does not extend to the execution of signifi-
chine resources, making it difficult to provide robust andcant parts of kernel code. The application has no control
controlled service. We propose new UNIX interfaces toover the consumption of many system resources, such as
improve scalability, and to provide fine-grained schedul-kernel memory, that the kernel manages on behalf of the

ing and resource management. application. This makes it difficult or impossible to pre-
) vent low-priority clients from hogging resources.
1 Introduction Researchers have been aware of these problems for

The performance of Internet server applications on aseveral years [26, 29], and together with system vendors
general purpose operating system is often dismayinglj?ave devoted much effort to improving Internet server
lower than what one would expect from the underlying performance. Some of this has been as simple as tuning
hardware. Internet servers also suffer from other undekernel parameters; in other cases it has been necessary
sirable properties such as poor scalability, priority imve to improve the implementation of some kernel features,
sion, unfair resource allocation, susceptibility to livek ~ such as the protocol control block (PCB) lookup algo-
under excess load, instability under denial of service atfithm in BSD-based systems [27, 38], and wect()
tacks, and inability to prioritize handling of requests. ~ system call [6].

The cause of these problems is a fundamental mis- Application writers have also worked to make more
match between the original design assumptions of existefficient use of existing operating system services. While
ing operating system interfaces and algorithms and th&arly servers used a process-per-connection approach, re-
requirements of modern server applications. Most curcent servers [11, 39, 42, 44] use a single-process event-
rent operating systems (except for single-user desktoglriven architecture, to reduce context-switching ovechea
systems) were designed either for efficient timesharingEven these servers have some scalability problems [6, 18,
or for database or file service. In such applications, pro-25]-
cesses spend most of their time in user mode, infrequently The work cited above has generally assumed the use
invoking the kernel to access slow 1/0 devices. of the existing system-call interface, which limits the de-

In contrast, an Internet server application often man-gree to which performance problems can be addressed.
ages huge numbers of simultaneous network I/0 stream$;0r instance, the scalability of UNIX-based event-driven
with unpredictable event arrivals. The application makesservers is limited by the inherently linear-tinselect()
frequent system calls, spending significant time executsystem call [6].
ing in the kernel. We propose extending the UNIX system call interface

Many features of modern operating systems were deto provide more efficient support for Internet server ap-

signed without consideration of scaling to large sets offlications. We discuss two control models for servers
(event-driven and multi-threaded), and examine what they
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programming interfaces (APIs) to support these require\Web server. To make the construction of such auxiliary
ments. This paper does not address issues related to effirograms easier, several standard interfaces that govern
cient operating system support for data movement. Othethe communication between Web servers and such pro-
research has addressed those issues [2, 32, 36, 40]. grams have been defined. Examples include CGI [9]
. . and FastCGl [16]. The earlier interface, CGlI, creates a
2 Evolution of Internet server execution new process to handle each dynamic document request.
models The newer FastCGl allows persistent dynamic document

We begin by describing the evolution of Internet serverServer processes. Microsoft and Netscape have also de-
execution models. To be concrete, we focus on Welfined new library interfaces [21, 34] to allow the con-
servers. However, most of the issues we discuss app|§truction of third-party components that can reside in the
to other Internet servers such as proxy, mail, file, and di-main server process, when fault isolation is not an issue.
rectory servers. Internet servers are moving towards an architecture

The earliest Web servers forked a new process tgvhere a small set of processes implement the functional-
handle each HTTP connection, following the classicality of the server. There is one main server process, which
UNIX model. The forking overhead quickly became implementsthe functionality to serve all static documents
a problem, and subsequent servers (such as the NCSRynamic documents are created by either library code
httpd [33]) used a set of pre-forked processes. In thigvithin the main server process, or by auxiliary processes
model, a master server process accepts new connectioM§10se code needs to be kept apart from the other com-
and passes them to the pre-forked servers, using UNIyonents of the server for reasons of fault isolation. In
domain sockets. a sense, this is ideal because the overhead of switching

The nextinnovation eliminates the master process. Incontext between protection domains is incurred only if
stead, each pre-forked server callscept() directly to ~ absolutely necessary. However, structuring a server as
accept new connection requests. The Apache server [4 small set of processes leads to certain important prob-
has this architecture. lems. This is the subject of the next section.

Multi-process servers can suffer from large context- . .
switching overhead, so many recent servers use a singlg’- Missing operatmg system suppor_t
process event-driven architecture. (Event-driven server AS we noted in Section 2, current operating systems
designed for multiprocessors use one thread or proceggck efficient and scalable support for either event-driven
per processor.) An event-driven server usessilect() or multi-threaded servers. In this section, we describe
system call to simultaneously wait for events on all con-these inadequacies in detail, and their implications for
nections being handled by the server. Wreatect()  server performance.
delivers one or more events, the server’_s main Io_op iN3 1 Event-driven servers
vokes handlers for each ready connection. Squid [11,

39], Zeus [44], thttpd [42] and several research servers [5, The performar_we of eyent-drlven SErvers depends crit-
. : Ically on three things. First, the event delivery and han-
24, 36] all use an event-driven architecture.

Another alternative is the single-process multi- dling mechanisms must be efficient and scalable. Sec-

. . . ondly, the single thread of control must never block while
threaded architecture. In a simple multi-threaded server, !
handling an event. If an event-handler were to block,

each connection is assigned to a dedicated thread. The. : .
. . . . is would delay the delivery and handling of subsequent
thread scheduler is responsible for time-sharing the CP . . , .
-events. Finally, any changes in a server’s environment

between the various server threads. Since there is )
o .Should be reported to the server asynchronously; a server

only one server process, context-switching overhead i
: . .—__should never have to resort to a status poll on the re-

much lower than in a process-per-connection architec- . :
sources it manages for correct operation.

ture. However, efficient support for huge pools of threads A UNIX program can use either signals or the-

is not always available, and so some servers use a h3f' ) :
. . . : ect() (or poll()) system call to wait for events without
brid approach, in which a moderate-_5|ze pool of thread locking. The signal mechanism (for example, using

%IGIO to indicate an 1/O completion) is usually a poor

control the assignment of connections to threads. . : : . . o
. ; . choice, because the signal is delivered without any indi-

The discussion above assumes requests for static dog- .. . . . .

: Cation of which descriptor is now ready. Signals there-

uments. HTTP also supports requests for dynamic doc; : .
fore do not scale to support multiple connections.

uments, whose contents depend on the particular param- Although select() scales much better than signals,

eters and arrival time of the request. Dynamic docu- . " : .
ments are typically created by auxiliary third-party pro- both the interface and traditional implementatiorsef
lect() scale poorly with large numbers of descriptors.

grams, which run as separate processes. These pa . . : .
are subsequently transferred to the client through thge‘ﬁs]e implementation can be improved [6], but the inter



face inherently imposes costs linear in the number ofblocked user-level thread does not cause all other threads
descriptors (and makes optimizing the implementatiorof the process to stall.
difficult). The interface scales poorly because it passes Operating system thread support has other limitations
information aboutll established connections from user- peculiar to Internet servers. A multi-threaded Internet
space to the kernel at each wait-for-next-event request. Aerver may have hundreds or thousands of open con-
similar amount of information is passed from the kernelnections, so the kernel must efficiently support such
back to user-space at each event notification. Moreovefmassively-threaded” processes. Current thread imple-
the application must then scan a bitmap, whose size imentations, whether based on scheduler activations or
proportional to the number of established connectionsptherwise, do not scale to such huge numbers of threads.
to discover which descriptors are ready. The main technical challenge is to minimize the context-
The lack of non-blocking I/O support in current oper- switching overhead and the TLB miss rates that result
ating systems also limits the performance of event-driverfrom maintaining a large number of thread stacks. Ex-
servers. In UNIX, a single page-fault or disk read cancessive synchronization overhead can also be a prob-
cause the server process to be suspended for tens to huem. It is because of these overheads that some servers,
dreds of milliseconds. This prevents any progress, evesuch as the Inktomi traffic server, use a hybrid control
on unrelated connections that could be handled withmodel [43]. Such servers use a moderate humber of
out additional I/O. Although event-driven servers on fastthreads, each of which is an event-driven state machine.
SMP hardware today can otherwise handle at least 721%his gets around some problems of pure event-driven
requests/second [41] (i.e. a request every 280 even  servers, such as blocking disk 1/0 system calls, while
moderate amounts of disk 1/O can degrade performancstill keeping thread management overhead low.
to disk speed, i.e. 60-120 requests/sec. Unfortunately, very little has been published about the
Some system vendors have implemented the POSIXise and performance of purely multi-threaded servers,
aio interface for non-blocking disk 1/0O. This allows a even though several important high-performance servers,
server to avoid blocking on explicit disk reads and writes,such as the AltaVista front-end [8], have successfully
but it does not avoid other synchronous disk operationgdopted this approach. There has been a lot of research
(directory lookups, thatat() system call, etc.). Thaio in the runtime systems community on improving the per-
interface is not used by most libraries, making it diffi- formance of massively threaded applications [10, 15, 19]
cultto compose programs from independently-developedby reducing the storage management overhead. How-
components. ever, these approaches have not yet been applied to gen-
Perhaps most problematic, though, is thelect() can-  eral purpose operating systems. In this paper, we will
not be used to deteaio completion events, and tfzo concentrate on providing operating system support for
interface does not work with sockets. This forces an ap-an event-based control model.

plication to use cumbersome methods to wait simultane: .
; 3.3 Scheduling and resource management
ously for network and disk events.

Most operating systems treat a process, or a thread
3.2 Multi-threaded servers within a process, as the schedulable entity. The process
Previous research has exposed the limitations ofs also the “chargeable” entity for the allocation of re-
thread support in current operating systems [3]. Pure kersources, such as CPU time and memory. The system’s
nel threads impose the overhead of a kernel call for eaclscheduling and memory allocation policies attempt to
synchronization and context-switch operation. User-provide fairness among these entities, and graceful be-

level threads have efficient context-switching and syn-havior of the system under various load conditions.
chronization, but if any one user-level thread blocks on However, in most operating systems, the kernel gen-
an 1/O event, all of the threads in the process stall. Thiserally does not control or properly account for resources
is analogous to the blocking 1/0 problem in event-drivenconsumed during the processing of network traffic. Most
servers. systems do protocol processing in the context of soft-
To rectify these problems, Anderson et. al. [3] pro- ware interrupts, whose execution is either charged to the
posed “scheduler activations.” Scheduler activations ar@inlucky process running at the time of the interrupt, or
kernel thread-like schedulable entities which provide ex-to no process at all. Moreover, software interrupts have
ecution contexts to user level threads. Context-switchingtrictly higher priority than the execution of any user-
is usually handled at user-level without changing the undevel code. This can lead to scheduling anomalies, de-
derlying scheduler activation. When a user-level threaccreased throughput, and starvation or livelock [14, 30].
blocks in the kernel, the kernel provides another schedThis is particularly important for servers because they
uler activation so that other unblocked user-level threadsre, by their nature, particularly network intensive.
can continue to run. Thus context-switchingis fast,and a The LRP network subsystem architecture [14] was de-



signed to address these problems by more closely followabound on the Web, and will become more widespread,

ing the process-centric model. In this architecture, netservers running on traditional operating systems cannot

work processing is correctly integrated into the system’sprovide the needed QoS support.

global resource management. Resources spent in pro- Under overload conditions, this lack of effective re-

cessing network traffic are associated with and charged tesource management limits a server’s ability to service ex-

the application process that caused the traffic. Incomingsting connections instead of accepting new ones. This

network traffic is scheduled at the priority of the processleads to poor server throughput and instability under

that received the traffic, and excess traffic is discardecheavy load. This instability makes servers susceptible

early. LRP systems exhibit better fairness between apto denial-of-service attacks. For instance, a high rate of

plications, and provide stable overload behavior. connection establishment requests sent to a server can
However, even such a “faithful” implementation of potentially bring it to its knees [7].

the process-centric resource model fails to support single .

process Internet servers. This is because, in a proces§¢ Operating system support for server

centric model, the kernel does not generally distinguish ~ applications

between independent sub-activities within a process. For |n this section, we propose new operating system fea-
example, a process cannot specify the relative prioritiesures to support server applications. We first describe
of its various network connections, and the priority of €S- fine-grained resource management System for servers;
tablishing new connections relative to servicing the ex-this is the key to enabling robust and controlled ser-
isting connections. Thus, even though an applicationyice, independent of the execution model (thread-based
can prioritize the handling of connections in user-level or event-driven).
code, this does not go very far in controlling the relative  We then propose improved support for event-driven
progress rates of connections. This is because most of thgsrvers. While the choice between execution models re-
work performed in processing network packets is done inmains complex, in the limit a good event-driven imple-
the kernel, and cannot be controlled by the application. mentation might perform better than a good thread-based

For an event-driven server, this implies that the serveimplementation. We base this expectation on reasons
process cannot control the system resources consumegjven by Ousterhout [35]' inc|uding the necessity for
by the various open connections. These resources iNocking and context-switching in a thread-based system.
clude CPU time, network bUﬁerS, etc. Nor can the ServerA|50, an event-based program can use a Sing|e execu-
application control the order in which the kernel deliv- tion Stack; a thread-based program uses mu|t|p|e StaCkS,
ers network events. Thus the server cannot control thgutting more pressure on the data caches and TLB.
progress rates of its connections. However, even Ousterhout admits that threads are a

A multi-threaded server can exert some control overmore powerful abstraction, and argues against them pri-
the user-level CPU resources consumed by a particulamarily because of programming complexity. We also
connection, by adjusting the relative priority of the con- pelieve that the performance distinction between thread-
nection’s thread. However, as in the event-driven casepased and event-driven servers is probably secondary to
the kernel-mode CPU consumption of a particular con-many other design and implementation decisions, such as
nection is uncontrolled. Again, this is because the kernethe order in which events are handled. Because existing
does not distinguish between the protocol processing acoperating systems do not optimally support large-scale
thlty that it performs on behalf of different threads of a servers using either threads or events, we cannot yet use
process. Protocol processing for all threads is performegxperiments to decide which model inherently provides
in either the context of a software interrupt (as in vanillapetter performance.
UNIX), a generic kernel thread (as in, for example, Digi-  Certainly threads are necessary to exploit the full
tal UNIX), or by a per-process thread (as in LRP). More- power of a multiprocessor. A hybrid model, using a mod-
over, the consumption of other resources, such as buffesrate number of threads and an event-based notification
space, is also uncontrolled. mechanism, may be best for Internet servers.

This lack of control over kernel resources makes it  As mentioned in Section 3.2, the issues involved in
difficult to build a Web server to provide differentiated efficiently supporting threads are relatively well under-

quality of service (QoS) to its clients [1]. For exam- stood [3, 10, 19]. Thus, we concentrate here on efficient
ple, consider a Web server which would like to provide support for event-driven servers.

clients with differentiated service depending on a variety _

of factors, such as the difference in access fees paid b§-1 Resource containers

corporate and home-user clients, or the difference in fees We propose a new model for fine-grained resource
paid by the owners of various content provided by themanagement and scheduling. This model is based on a
server. Unfortunately, although such situations already€W operating system abstraction callegsburce con-
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Figure 1: A classical network intensive appli- Figure 2: A network intensive application in
cation. a LRP system.

tainer, which encompasses all system resources that thecal, and the current process abstraction suffices.
server uses to service a particular client connection. All  Figures 1 and 2 depict this situation. Figure 1 shows a
kernel processing for a particular connection is chargedlassical application, which uses a single process to per-
to the appropriate resource container, and scheduled &rm a single network-intensive coherent task. As de-
the priority of the container. scribed in Section 3.3, the kernel resource consumption

Each resource container has an associated prioritgf such applications in classical systems is largely un-
value, used to control the scheduling of any threads thatontrolled. LRP extends a process’s resource-container
are associated with the container. A container’s prior-into the kernel leading to the situation shown in Figure 2.
ity also controls the allocation of other resources, suchNote that even in LRP, the resource container abstraction
as kernel memory. The kernel carefully accounts for theis still firmly linked with the process abstraction.
CPU and memory resources it uses for a resource con- Sometimes a single application, performing a single
tainer. The application process can access this resouraherent task, is split up into multiple protection do-
usage information, and use it to adjust the priority of themains. Reasons for this include, for example, the provi-
container. sion of fault isolation between the different components

The notion of a resource container is a generalizatiorof an application, or the use of components supplied by
of the process model in current operating systems, wherseveral vendors. For these applications, the desired unit
the process itself is the resource container. (This is onlyof protection (the process) is different from the desired
approximately true in vanilla UNIX, where kernel re- unit of resource management (all the processes of the ap-
source utilization is often charged to the wrong processplication). A mostly user-mode multi-process applica-
or none at all; it is more nearly true using a mechanismtion trying to perform a single coherent task is shown in
such as LRP [14].) In current systems, a process has BRigure 3.
dual function: it serves as a protection domain, and as In yet another scenario, an application consists of a
a resource container. The protection domain aspect of aingle process, and yet tries to accomplish multiple in-
process provides a mechanism for isolation between apdependent coherent tasks. Such applications use a sin-
plications. The resource container aspect of a process, agle protection domain in order to have lower context-
the other hand, provides the resource management subwitching overhead. For these applications, the correct
system of the operating system with resource principalgnit of resource management is smaller than a process:
between which the system resources are to be shared.is the set of all resources being used by the applica-
Unfortunately, this equivalence between protection do-ion to accomplish a single task. Single-process Internet
mains and resource containers is not always appropriateervers are of this type. Figure 4 shows a single-process
as discussed below. multi-threaded Internet server.

Usually an application consists of a single process, In realistic single-process Internet server systems, the
and performs a single task. For such applications, the desituation is really a combination of the last two scenarios.
sired unit of isolation and resource consumption is iden-Usually, a single server process manages a large num-
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Figure 3: A classical multi-process applica- Figure 4: A single process multi-threaded
tion. server.

ber of connections. Sometimes, however, the situatiomescriptors, and hence resource containers, between pro-
resembles a multi-process scenario. This happens, fdection domains.
example, when the main server process forks off a CGl The kernel execution model in the new system is a
script to handle a dynamic document request, or whergeneralization of the LRP approach [14]. Like in LRP,
it retrieves a dynamic document from a persistent CGla variety of methods can be used to execute kernel code.
server [36]. In both cases, the desired unit of resourcd-or instance, a dedicated per-process kernel thread can
management differs from a process. This breakdown obe used to perform all kernel processing for each process.
equivalence between a protection domain and a resourdd/e are currently in the process of building and refining
container in server systems provides the motivation tahese mechanisms and interfaces.
develop an explicit resource container abstraction. Once the kernel explicitly supports resource contain-
In summary, the equivalence between “process” ancers, server applications can use them to implement re-
“resource container” is appropriate for classical proggam source management and provide robust and controlled
because they seldom need to control the rate of progredsehavior. Consider first a single-process multi-threaded
of distinct activities within themselves. Even when this Web server that uses a dedicated thread to handle each
is important, it can be adequately accomplished usinddTTP connection. Assume for now that kernel threads
user-level mechanisms, because kernel resource utilizare being used. In the new model, this kind of server
tion forms an insignificant part of the total resource us-will create a new resource container for each new con-
age of the process. As noted in Section 3.3, this is nohection. It will then pick a thread from its pool of free
true for a kernel-intensive server that needs to ensure ththreads to service this container. This situation is shown
controlled, potentially prioritized progress of its vau®  in Figure 5.
independent connections. Subsequently, any processing for this connection will
The implementation of resource containers in UNIX consume system resources from the resource context of
involves several changes to the process and thread mecthis container. If a particular connection (for example, a
anisms, and to the kernel execution model. SpecificallyJong file transfer to a well-connected client) is consum-
new system calls are needed to allow an application tang a lot of system resources, this would be reflected in
create a new resource container, and to create variousigh resource consumption values for this connection’s
types of association between threads and resource comesource container. The scheduling priority of the associ-
tainers. ated thread will decay and the system will preferentially
Resource containers are named within a process bgchedule threads handling other connections.
file descriptors. While we could instead have defined Consider next an event-driven server running on a
a new namespace for resource containers, the use of ahiprocessor. In the new resource management model,
file descriptors allows the use of several existing systenmsuch a server will create a resource container for each
calls to manipulate resource containers. For examplenew connection. The kernel will compute the scheduling
the sendmsg() system call can be used to transfer file priority of the single thread of this server based on the
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resource consumption of all the containers in the servebut with a different<template-address, CIDR-mask>
process. When the server does processing for some coffitter. Each filter then assigns all requests from a partic-
nection, it will dynamically charge the resources beingular client, or set of clients, to just one of these sockets.
consumed to the container corresponding to this connedy associating a different resource container with each
tion. Figure 6 depicts this situation. such socket, the server application can assign different
If any connection consumes a lot of resources, thigriorities to different sets of clients, prior to listenifoy
manifests itself as higher resource usage counter valueand accepting new connections on these sockets.
for the corresponding container. We provide an appli- This ability to differentiate between incoming requests
cation programming interface (API) to allow a processfrom different sources greatly increases the ability of a
to obtain resource usage for a container. The server cagerver to provide prioritized handling of clients. For ex-
then use this information to adjust the internal priority ample, a proxy server at an Internet service provider (ISP)
value for this container and control the resources that arean use this to control the priorities at which different
subsequently expended for this container. A server basedasses of clients are handled.
on multiple user-level threads may employ resource con- Placing the listen sockets into resource containers also
tainers in a similar manner. allows a server to control the priority of accepting new
In both kind of servers, when a request for a CGI doc-connections relative to servicing the existing ones. In
ument comes along, the connection’s container is passegrticular, by creating a listen socket with a priority of
to the process which creates the dynamic document. Ifero, whose socket filter is bound to a particular client,
traditional CGl is being used, in which a new processa server can protect itself from being overloaded by a
is forked for each CGI request, this container is simplydenial-of-service attack from a malicious client.
inherited by the child process. If persistent CGl is be- Resource containers have some properties that makes
ing used, the connection’s container is passed to the C&hem similar to a number of resource management mech-
server process along with the CGI request. anisms that have been developed in the context of some
Resource containers also enable the assignment @écent experimental operating systems [23, 31]. The key
different priorities to incoming requests for connectionsfactors that distinguish the resource container abstracti
from different sources. To support this, we define a newfrom these mechanisms are its generality and direct ap-
sockaddr namespace that includes not only the localplicability to current, general purpose operating systems
port number and Internet address, but also a filter specA comparison of resource containers and other mecha-
ifying a set of foreign addresses. The filter is specifiednisms is deferred until Section 5.
as a tuple consisting of a template address and a CIDIi
network mask [37]. The server application may then use
the bind() system call to bind multiple server sockets,
each with the same:local-address, local-port> tuple

2 Efficient event support

To improve the efficiency of event-based servers, we
propose two new APIs. One tells the kernel the file



and socket descriptors on which an application is wait-feel that the system call approach is closer to the APIs

ing for events. The other provides event notifications toprovided by current operating systems. For this reason,

the application, preserving the application’s priority as this approach might be easier to use, and reason about,
signments. Theelect() system call merges both func- than one based on upcalls or shared memory. Moreover,
tions; splitting them into separate calls increases fléxibi unlike the other two approaches it avoids the need for

ity while avoiding the inherent unscalability e&lect(). explicit synchronization on the programmer’s part. This

Once an application becomes interested in events ois important, since one of the primary advantage of an
a descriptor, it may remain interested in this descriptorevent-driven approach vis-a-vis a multi-threaded one is
for a lengthy period. Our first API allows the applica- that the former does not require the complexity of ex-
tion to inform the kernel when this period begins and plicit synchronization.
ends, rather than (as select()) passing this informa-
tion repeatedly. In effect, the kernel maintains an IN-5  Related Work
TERESTED set for each thread, persisting across many As mentioned in Section 4.1, resource containers are
system calls. similar to a number of mechanisms that have been de-

Thedeclare_interest() system call asserts an applica- veloped recently to support fine-grained resource man-
tion’s interest in events on a set of one or more descripagement. We will discuss these mechanisms, and their
tors. Therevoke_interest() system call indicates that it relationship to resource containers, in some detail below.
is no longer interested in events on a set of descriptors. The Scout operating system [31] has explicit support
For example, when a server acccepts a new connectiofior a path abstraction, which allows an application to
from which it will read a request message, it cals- control resource consumption for a given communica-
clare_interest() with the new socket as an input. Simi- tion path at all levels of the system. Paths are similar
larly, when a proxy cache starts an asynchronous I/O orto resource containers; however, resource containers are
a disk file, it callsdeclare_interest() with the disk file  more general as they can encompass several otherwise
descriptor as input. This indicates interest in the disk I/O“unconnectable” paths.
completion event. Moreover, the binding between a resource container

When an event (e.g., a received packet or completednd the kernel resources that can be associated with it
disk read) arrives for a descriptor in the INTERESTED is more dynamic and flexible than the association be-
set of a thread, the kernel adds the descriptor to a SIGtween a path and Scout kernel entities. This is because,
NALLED _EVENTS set it maintains for the thread. Our in Scout, paths are specified at kernel build time. They
second API, thdequeue_next_events() systemcall, al- can be instantiated, extended, optimized and associated
lows the application to obtain this set of descriptors withwith execution entities (threads) at run time during the
pending events. The application may either ask for thepath creation phase. However, the association between a
entire set, or for a limited number of descriptors. This al-path and the system resources associated with it cannot
lows a multiprocessor application to distribute event pro-be arbitrarily changedfter the path creation phase. For
cessing across the CPUs: each thread can ask for just oirestance, we cannot change the binding between a path
descriptor, leaving the rest for other CPUs. Alternatively,and a kernel resource, such as a socket, after the path cre-
a thread can request multiple descriptors, amortizing thation phase. Also, unlike resource containers which can
cost of this system call across several events. encompass arbitrary sets of resources specified at run-

The resource container mechanism allows the applitime, the composition of a path is limited to the router
cation to assign priorities to descriptors. The kernel de-graph specified at kernel build time.
livers descriptors, videqueue_next_events(), in prior- Scout is a special-purpose operating system built from
ity order, allowing the application to entirely postpone scratch to efficiently support network appliances. The
its processing of low-priority events. The kernel could path abstraction is not available in general-purpose oper-
use an efficient data structure, such as a priority queuegting systems, and there has been no attempt to integrate
to represent the SIGNALLEEVENTS set. paths into current operating system interfaces.

There are other viable alternatives to the propated Kaashoek et. al. [23, 24] advocate a customized oper-
gueue_next_events() system call. For example, event ating system tailored specifically for servers. In a server
notifications can be structured as upcalls [12], with theoperating system based on the Exokernel, the application
server process specifying handlers for various types otontrols essentially all of the protocol stack, including
events directly to the operating system kernel. Similarly,the device drivers, through a combination of library code
the kernel could indicate events to the server process bgnd a novel kernel architecture. The Exokernel provides
using apending-events queue in a memory region shared a similar interface to the storage system. This allows the
with the application process. While these approachespplication to directly control the resource consumption
might perform better than one that uses a system call, wéor all associated network communication and file I/O. A



prototype Web server system that the Exokernel projecsions of this support. First, the operating system needs to
has built uses several aggressive optimizations to achievallow the process to manage the kernel’s consumption
an order of magnitude performance improvement over af resources for individual connections. We therefore
server running on a conventional operating system. proposed theesource container, a kernel-supported ab-
The Exokernel approach to operating system developstraction binding together the resources associated with
ment is a radical departure from how current operatinga connection. The process may assign a priority to each
systems are implemented. For this reason, this approaatesource container, allowing the kernel to favor high-
represents a point in the design space of server-orientegriority connections.
operating systems that is unlikely to be of immediate util- We also addressed the lack of efficient support for the
ity. Moreover, implementing the Web server system on atwo common server execution models, thread-based and
Exokernel brings into the domain of the Web server de-event-driven. We proposed a new API for event handling,
veloper several software engineering issues related to th&hich should scale to large numbers of connections per
problem of developing and maintaining a complicated li- process.
brary operating system. We are currently working on a prototype implementa-
The new operating system features that we propose ation of our events APl and resource container abstraction.
low many of the benefits of the Exokernel’s application- We are also continuing to improve our understanding of
controlled resource management to be achieved in théhe limitations of current operating system support for
context of general purpose operating systems. large-scale multi-threaded applications.
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