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Abstract

Widely-used operating systems provide inadequate
support for large-scale Internet server applications. Their
algorithms and interfaces fail to efficiently support either
event-driven or multi-threaded servers. They provide
poor control over the scheduling and management of ma-
chine resources, making it difficult to provide robust and
controlled service. We propose new UNIX interfaces to
improve scalability, and to provide fine-grained schedul-
ing and resource management.

1 Introduction
The performance of Internet server applications on a

general purpose operating system is often dismayingly
lower than what one would expect from the underlying
hardware. Internet servers also suffer from other unde-
sirable properties such as poor scalability, priority inver-
sion, unfair resource allocation, susceptibility to livelock
under excess load, instability under denial of service at-
tacks, and inability to prioritize handling of requests.

The cause of these problems is a fundamental mis-
match between the original design assumptions of exist-
ing operating system interfaces and algorithms and the
requirements of modern server applications. Most cur-
rent operating systems (except for single-user desktop
systems) were designed either for efficient timesharing,
or for database or file service. In such applications, pro-
cesses spend most of their time in user mode, infrequently
invoking the kernel to access slow I/O devices.

In contrast, an Internet server application often man-
ages huge numbers of simultaneous network I/O streams,
with unpredictable event arrivals. The application makes
frequent system calls, spending significant time execut-
ing in the kernel.

Many features of modern operating systems were de-
signed without consideration of scaling to large sets ofyDepartment of Computer Science, Rice University, Houston,TX,
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resources;O(N ) behavior that was acceptable withN =20 is problematic whenN = 10000. This is especially
true for system calls used for event management, such as
select() in UNIX.

In most operating systems, scheduling and resource
management does not extend to the execution of signifi-
cant parts of kernel code. The application has no control
over the consumption of many system resources, such as
kernel memory, that the kernel manages on behalf of the
application. This makes it difficult or impossible to pre-
vent low-priority clients from hogging resources.

Researchers have been aware of these problems for
several years [26, 29], and together with system vendors
have devoted much effort to improving Internet server
performance. Some of this has been as simple as tuning
kernel parameters; in other cases it has been necessary
to improve the implementation of some kernel features,
such as the protocol control block (PCB) lookup algo-
rithm in BSD-based systems [27, 38], and theselect()
system call [6].

Application writers have also worked to make more
efficient use of existing operating system services. While
early servers used a process-per-connection approach, re-
cent servers [11, 39, 42, 44] use a single-process event-
driven architecture, to reduce context-switching overhead.
Even these servers have some scalability problems [6, 18,
25].

The work cited above has generally assumed the use
of the existing system-call interface, which limits the de-
gree to which performance problems can be addressed.
For instance, the scalability of UNIX-based event-driven
servers is limited by the inherently linear-timeselect()
system call [6].

We propose extending the UNIX system call interface
to provide more efficient support for Internet server ap-
plications. We discuss two control models for servers
(event-driven and multi-threaded), and examine what they
require from the operating system. We look at how such
applications need to control scheduling and kernel re-
source consumption. We then describe new application



programming interfaces (APIs) to support these require-
ments. This paper does not address issues related to effi-
cient operating system support for data movement. Other
research has addressed those issues [2, 32, 36, 40].

2 Evolution of Internet server execution
models

We begin by describing the evolution of Internet server
execution models. To be concrete, we focus on Web
servers. However, most of the issues we discuss apply
to other Internet servers such as proxy, mail, file, and di-
rectory servers.

The earliest Web servers forked a new process to
handle each HTTP connection, following the classical
UNIX model. The forking overhead quickly became
a problem, and subsequent servers (such as the NCSA
httpd [33]) used a set of pre-forked processes. In this
model, a master server process accepts new connections
and passes them to the pre-forked servers, using UNIX
domain sockets.

The next innovation eliminates the master process. In-
stead, each pre-forked server callsaccept() directly to
accept new connection requests. The Apache server [4]
has this architecture.

Multi-process servers can suffer from large context-
switching overhead, so many recent servers use a single-
process event-driven architecture. (Event-driven servers
designed for multiprocessors use one thread or process
per processor.) An event-driven server uses theselect()
system call to simultaneously wait for events on all con-
nections being handled by the server. Whenselect()
delivers one or more events, the server’s main loop in-
vokes handlers for each ready connection. Squid [11,
39], Zeus [44], thttpd [42] and several research servers [5,
24, 36] all use an event-driven architecture.

Another alternative is the single-process multi-
threaded architecture. In a simple multi-threaded server,
each connection is assigned to a dedicated thread. The
thread scheduler is responsible for time-sharing the CPU
between the various server threads. Since there is
only one server process, context-switching overhead is
much lower than in a process-per-connection architec-
ture. However, efficient support for huge pools of threads
is not always available, and so some servers use a hy-
brid approach, in which a moderate-size pool of threads
is multiplexed among many connections, using events to
control the assignment of connections to threads.

The discussion above assumes requests for static doc-
uments. HTTP also supports requests for dynamic doc-
uments, whose contents depend on the particular param-
eters and arrival time of the request. Dynamic docu-
ments are typically created by auxiliary third-party pro-
grams, which run as separate processes. These pages
are subsequently transferred to the client through the

Web server. To make the construction of such auxiliary
programs easier, several standard interfaces that govern
the communication between Web servers and such pro-
grams have been defined. Examples include CGI [9]
and FastCGI [16]. The earlier interface, CGI, creates a
new process to handle each dynamic document request.
The newer FastCGI allows persistent dynamic document
server processes. Microsoft and Netscape have also de-
fined new library interfaces [21, 34] to allow the con-
struction of third-party components that can reside in the
main server process, when fault isolation is not an issue.

Internet servers are moving towards an architecture
where a small set of processes implement the functional-
ity of the server. There is one main server process, which
implements the functionality to serve all static documents.
Dynamic documents are created by either library code
within the main server process, or by auxiliary processes
whose code needs to be kept apart from the other com-
ponents of the server for reasons of fault isolation. In
a sense, this is ideal because the overhead of switching
context between protection domains is incurred only if
absolutely necessary. However, structuring a server as
a small set of processes leads to certain important prob-
lems. This is the subject of the next section.

3 Missing operating system support
As we noted in Section 2, current operating systems

lack efficient and scalable support for either event-driven
or multi-threaded servers. In this section, we describe
these inadequacies in detail, and their implications for
server performance.

3.1 Event-driven servers
The performance of event-driven servers depends crit-

ically on three things. First, the event delivery and han-
dling mechanisms must be efficient and scalable. Sec-
ondly, the single thread of control must never block while
handling an event. If an event-handler were to block,
this would delay the delivery and handling of subsequent
events. Finally, any changes in a server’s environment
should be reported to the server asynchronously; a server
should never have to resort to a status poll on the re-
sources it manages for correct operation.

A UNIX program can use either signals or these-
lect() (or poll()) system call to wait for events without
blocking. The signal mechanism (for example, using
SIGIO to indicate an I/O completion) is usually a poor
choice, because the signal is delivered without any indi-
cation of which descriptor is now ready. Signals there-
fore do not scale to support multiple connections.

Although select() scales much better than signals,
both the interface and traditional implementation ofse-
lect() scale poorly with large numbers of descriptors.
The implementation can be improved [6], but the inter-



face inherently imposes costs linear in the number of
descriptors (and makes optimizing the implementation
difficult). The interface scales poorly because it passes
information aboutall established connections from user-
space to the kernel at each wait-for-next-event request. A
similar amount of information is passed from the kernel
back to user-space at each event notification. Moreover,
the application must then scan a bitmap, whose size is
proportional to the number of established connections,
to discover which descriptors are ready.

The lack of non-blocking I/O support in current oper-
ating systems also limits the performance of event-driven
servers. In UNIX, a single page-fault or disk read can
cause the server process to be suspended for tens to hun-
dreds of milliseconds. This prevents any progress, even
on unrelated connections that could be handled with-
out additional I/O. Although event-driven servers on fast
SMP hardware today can otherwise handle at least 7214
requests/second [41] (i.e. a request every 139�s), even
moderate amounts of disk I/O can degrade performance
to disk speed, i.e. 60-120 requests/sec.

Some system vendors have implemented the POSIX
aio interface for non-blocking disk I/O. This allows a
server to avoid blocking on explicit disk reads and writes,
but it does not avoid other synchronous disk operations
(directory lookups, thestat() system call, etc.). Theaio
interface is not used by most libraries, making it diffi-
cult to compose programs from independently-developed
components.

Perhaps most problematic, though, is thatselect() can-
not be used to detectaio completion events, and theaio
interface does not work with sockets. This forces an ap-
plication to use cumbersome methods to wait simultane-
ously for network and disk events.

3.2 Multi-threaded servers
Previous research has exposed the limitations of

thread support in current operating systems [3]. Pure ker-
nel threads impose the overhead of a kernel call for each
synchronization and context-switch operation. User-
level threads have efficient context-switching and syn-
chronization, but if any one user-level thread blocks on
an I/O event, all of the threads in the process stall. This
is analogous to the blocking I/O problem in event-driven
servers.

To rectify these problems, Anderson et. al. [3] pro-
posed “scheduler activations.” Scheduler activations are
kernel thread-like schedulable entities which provide ex-
ecution contexts to user level threads. Context-switching
is usually handled at user-level without changing the un-
derlying scheduler activation. When a user-level thread
blocks in the kernel, the kernel provides another sched-
uler activation so that other unblocked user-level threads
can continue to run. Thus context-switching is fast, and a

blocked user-level thread does not cause all other threads
of the process to stall.

Operating system thread support has other limitations
peculiar to Internet servers. A multi-threaded Internet
server may have hundreds or thousands of open con-
nections, so the kernel must efficiently support such
“massively-threaded” processes. Current thread imple-
mentations, whether based on scheduler activations or
otherwise, do not scale to such huge numbers of threads.
The main technical challenge is to minimize the context-
switching overhead and the TLB miss rates that result
from maintaining a large number of thread stacks. Ex-
cessive synchronization overhead can also be a prob-
lem. It is because of these overheads that some servers,
such as the Inktomi traffic server, use a hybrid control
model [43]. Such servers use a moderate number of
threads, each of which is an event-driven state machine.
This gets around some problems of pure event-driven
servers, such as blocking disk I/O system calls, while
still keeping thread management overhead low.

Unfortunately, very little has been published about the
use and performance of purely multi-threaded servers,
even though several important high-performance servers,
such as the AltaVista front-end [8], have successfully
adopted this approach. There has been a lot of research
in the runtime systems community on improving the per-
formance of massively threaded applications [10, 15, 19]
by reducing the storage management overhead. How-
ever, these approaches have not yet been applied to gen-
eral purpose operating systems. In this paper, we will
concentrate on providing operating system support for
an event-based control model.

3.3 Scheduling and resource management
Most operating systems treat a process, or a thread

within a process, as the schedulable entity. The process
is also the “chargeable” entity for the allocation of re-
sources, such as CPU time and memory. The system’s
scheduling and memory allocation policies attempt to
provide fairness among these entities, and graceful be-
havior of the system under various load conditions.

However, in most operating systems, the kernel gen-
erally does not control or properly account for resources
consumed during the processing of network traffic. Most
systems do protocol processing in the context of soft-
ware interrupts, whose execution is either charged to the
unlucky process running at the time of the interrupt, or
to no process at all. Moreover, software interrupts have
strictly higher priority than the execution of any user-
level code. This can lead to scheduling anomalies, de-
creased throughput, and starvation or livelock [14, 30].
This is particularly important for servers because they
are, by their nature, particularly network intensive.

The LRP network subsystem architecture [14] was de-



signed to address these problems by more closely follow-
ing the process-centric model. In this architecture, net-
work processing is correctly integrated into the system’s
global resource management. Resources spent in pro-
cessing network traffic are associated with and charged to
the application process that caused the traffic. Incoming
network traffic is scheduled at the priority of the process
that received the traffic, and excess traffic is discarded
early. LRP systems exhibit better fairness between ap-
plications, and provide stable overload behavior.

However, even such a “faithful” implementation of
the process-centric resource model fails to support single-
process Internet servers. This is because, in a process-
centric model, the kernel does not generally distinguish
between independent sub-activities within a process. For
example, a process cannot specify the relative priorities
of its various network connections, and the priority of es-
tablishing new connections relative to servicing the ex-
isting connections. Thus, even though an application
can prioritize the handling of connections in user-level
code, this does not go very far in controlling the relative
progress rates of connections. This is because most of the
work performed in processing network packets is done in
the kernel, and cannot be controlled by the application.

For an event-driven server, this implies that the server
process cannot control the system resources consumed
by the various open connections. These resources in-
clude CPU time, network buffers, etc. Nor can the server
application control the order in which the kernel deliv-
ers network events. Thus the server cannot control the
progress rates of its connections.

A multi-threaded server can exert some control over
the user-level CPU resources consumed by a particular
connection, by adjusting the relative priority of the con-
nection’s thread. However, as in the event-driven case,
the kernel-mode CPU consumption of a particular con-
nection is uncontrolled. Again, this is because the kernel
does not distinguish between the protocol processing ac-
tivity that it performs on behalf of different threads of a
process. Protocol processing for all threads is performed
in either the context of a software interrupt (as in vanilla
UNIX), a generic kernel thread (as in, for example, Digi-
tal UNIX), or by a per-process thread (as in LRP). More-
over, the consumption of other resources, such as buffer
space, is also uncontrolled.

This lack of control over kernel resources makes it
difficult to build a Web server to provide differentiated
quality of service (QoS) to its clients [1]. For exam-
ple, consider a Web server which would like to provide
clients with differentiated service depending on a variety
of factors, such as the difference in access fees paid by
corporate and home-user clients, or the difference in fees
paid by the owners of various content provided by the
server. Unfortunately, although such situations already

abound on the Web, and will become more widespread,
servers running on traditional operating systems cannot
provide the needed QoS support.

Under overload conditions, this lack of effective re-
source management limits a server’s ability to service ex-
isting connections instead of accepting new ones. This
leads to poor server throughput and instability under
heavy load. This instability makes servers susceptible
to denial-of-service attacks. For instance, a high rate of
connection establishment requests sent to a server can
potentially bring it to its knees [7].

4 Operating system support for server
applications

In this section, we propose new operating system fea-
tures to support server applications. We first describe
a fine-grained resource management system for servers;
this is the key to enabling robust and controlled ser-
vice, independent of the execution model (thread-based
or event-driven).

We then propose improved support for event-driven
servers. While the choice between execution models re-
mains complex, in the limit a good event-driven imple-
mentation might perform better than a good thread-based
implementation. We base this expectation on reasons
given by Ousterhout [35], including the necessity for
locking and context-switching in a thread-based system.
Also, an event-based program can use a single execu-
tion stack; a thread-based program uses multiple stacks,
putting more pressure on the data caches and TLB.

However, even Ousterhout admits that threads are a
more powerful abstraction, and argues against them pri-
marily because of programming complexity. We also
believe that the performance distinction between thread-
based and event-driven servers is probably secondary to
many other design and implementation decisions, such as
the order in which events are handled. Because existing
operating systems do not optimally support large-scale
servers using either threads or events, we cannot yet use
experiments to decide which model inherently provides
better performance.

Certainly threads are necessary to exploit the full
power of a multiprocessor. A hybrid model, using a mod-
erate number of threads and an event-based notification
mechanism, may be best for Internet servers.

As mentioned in Section 3.2, the issues involved in
efficiently supporting threads are relatively well under-
stood [3, 10, 19]. Thus, we concentrate here on efficient
support for event-driven servers.

4.1 Resource containers
We propose a new model for fine-grained resource

management and scheduling. This model is based on a
new operating system abstraction called aresource con-
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Figure 2: A network intensive application in
a LRP system.

tainer, which encompasses all system resources that the
server uses to service a particular client connection. All
kernel processing for a particular connection is charged
to the appropriate resource container, and scheduled at
the priority of the container.

Each resource container has an associated priority
value, used to control the scheduling of any threads that
are associated with the container. A container’s prior-
ity also controls the allocation of other resources, such
as kernel memory. The kernel carefully accounts for the
CPU and memory resources it uses for a resource con-
tainer. The application process can access this resource
usage information, and use it to adjust the priority of the
container.

The notion of a resource container is a generalization
of the process model in current operating systems, where
the process itself is the resource container. (This is only
approximately true in vanilla UNIX, where kernel re-
source utilization is often charged to the wrong process,
or none at all; it is more nearly true using a mechanism
such as LRP [14].) In current systems, a process has a
dual function: it serves as a protection domain, and as
a resource container. The protection domain aspect of a
process provides a mechanism for isolation between ap-
plications. The resource container aspect of a process, on
the other hand, provides the resource management sub-
system of the operating system with resource principals
between which the system resources are to be shared.
Unfortunately, this equivalence between protection do-
mains and resource containers is not always appropriate,
as discussed below.

Usually an application consists of a single process,
and performs a single task. For such applications, the de-
sired unit of isolation and resource consumption is iden-

tical, and the current process abstraction suffices.
Figures 1 and 2 depict this situation. Figure 1 shows a

classical application, which uses a single process to per-
form a single network-intensive coherent task. As de-
scribed in Section 3.3, the kernel resource consumption
of such applications in classical systems is largely un-
controlled. LRP extends a process’s resource-container
into the kernel leading to the situation shown in Figure 2.
Note that even in LRP, the resource container abstraction
is still firmly linked with the process abstraction.

Sometimes a single application, performing a single
coherent task, is split up into multiple protection do-
mains. Reasons for this include, for example, the provi-
sion of fault isolation between the different components
of an application, or the use of components supplied by
several vendors. For these applications, the desired unit
of protection (the process) is different from the desired
unit of resource management (all the processes of the ap-
plication). A mostly user-mode multi-process applica-
tion trying to perform a single coherent task is shown in
Figure 3.

In yet another scenario, an application consists of a
single process, and yet tries to accomplish multiple in-
dependent coherent tasks. Such applications use a sin-
gle protection domain in order to have lower context-
switching overhead. For these applications, the correct
unit of resource management is smaller than a process:
it is the set of all resources being used by the applica-
tion to accomplish a single task. Single-process Internet
servers are of this type. Figure 4 shows a single-process
multi-threaded Internet server.

In realistic single-process Internet server systems, the
situation is really a combination of the last two scenarios.
Usually, a single server process manages a large num-
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ber of connections. Sometimes, however, the situation
resembles a multi-process scenario. This happens, for
example, when the main server process forks off a CGI
script to handle a dynamic document request, or when
it retrieves a dynamic document from a persistent CGI
server [36]. In both cases, the desired unit of resource
management differs from a process. This breakdown of
equivalence between a protection domain and a resource
container in server systems provides the motivation to
develop an explicit resource container abstraction.

In summary, the equivalence between “process” and
“resource container” is appropriate for classical programs,
because they seldom need to control the rate of progress
of distinct activities within themselves. Even when this
is important, it can be adequately accomplished using
user-level mechanisms, because kernel resource utiliza-
tion forms an insignificant part of the total resource us-
age of the process. As noted in Section 3.3, this is not
true for a kernel-intensive server that needs to ensure the
controlled, potentially prioritized progress of its various
independent connections.

The implementation of resource containers in UNIX
involves several changes to the process and thread mech-
anisms, and to the kernel execution model. Specifically,
new system calls are needed to allow an application to
create a new resource container, and to create various
types of association between threads and resource con-
tainers.

Resource containers are named within a process by
file descriptors. While we could instead have defined
a new namespace for resource containers, the use of of
file descriptors allows the use of several existing system
calls to manipulate resource containers. For example,
the sendmsg() system call can be used to transfer file

descriptors, and hence resource containers, between pro-
tection domains.

The kernel execution model in the new system is a
generalization of the LRP approach [14]. Like in LRP,
a variety of methods can be used to execute kernel code.
For instance, a dedicated per-process kernel thread can
be used to perform all kernel processing for each process.
We are currently in the process of building and refining
these mechanisms and interfaces.

Once the kernel explicitly supports resource contain-
ers, server applications can use them to implement re-
source management and provide robust and controlled
behavior. Consider first a single-process multi-threaded
Web server that uses a dedicated thread to handle each
HTTP connection. Assume for now that kernel threads
are being used. In the new model, this kind of server
will create a new resource container for each new con-
nection. It will then pick a thread from its pool of free
threads to service this container. This situation is shown
in Figure 5.

Subsequently, any processing for this connection will
consume system resources from the resource context of
this container. If a particular connection (for example, a
long file transfer to a well-connected client) is consum-
ing a lot of system resources, this would be reflected in
high resource consumption values for this connection’s
resource container. The scheduling priority of the associ-
ated thread will decay and the system will preferentially
schedule threads handling other connections.

Consider next an event-driven server running on a
uniprocessor. In the new resource management model,
such a server will create a resource container for each
new connection. The kernel will compute the scheduling
priority of the single thread of this server based on the
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resource consumption of all the containers in the server
process. When the server does processing for some con-
nection, it will dynamically charge the resources being
consumed to the container corresponding to this connec-
tion. Figure 6 depicts this situation.

If any connection consumes a lot of resources, this
manifests itself as higher resource usage counter values
for the corresponding container. We provide an appli-
cation programming interface (API) to allow a process
to obtain resource usage for a container. The server can
then use this information to adjust the internal priority
value for this container and control the resources that are
subsequently expended for this container. A server based
on multiple user-level threads may employ resource con-
tainers in a similar manner.

In both kind of servers, when a request for a CGI doc-
ument comes along, the connection’s container is passed
to the process which creates the dynamic document. If
traditional CGI is being used, in which a new process
is forked for each CGI request, this container is simply
inherited by the child process. If persistent CGI is be-
ing used, the connection’s container is passed to the CGI
server process along with the CGI request.

Resource containers also enable the assignment of
different priorities to incoming requests for connections
from different sources. To support this, we define a new
sockaddr namespace that includes not only the local
port number and Internet address, but also a filter spec-
ifying a set of foreign addresses. The filter is specified
as a tuple consisting of a template address and a CIDR
network mask [37]. The server application may then use
the bind() system call to bind multiple server sockets,
each with the same<local-address, local-port> tuple

but with a different<template-address, CIDR-mask>
filter. Each filter then assigns all requests from a partic-
ular client, or set of clients, to just one of these sockets.
By associating a different resource container with each
such socket, the server application can assign different
priorities to different sets of clients, prior to listeningfor
and accepting new connections on these sockets.

This ability to differentiate between incoming requests
from different sources greatly increases the ability of a
server to provide prioritized handling of clients. For ex-
ample, a proxy server at an Internet service provider (ISP)
can use this to control the priorities at which different
classes of clients are handled.

Placing the listen sockets into resource containers also
allows a server to control the priority of accepting new
connections relative to servicing the existing ones. In
particular, by creating a listen socket with a priority of
zero, whose socket filter is bound to a particular client,
a server can protect itself from being overloaded by a
denial-of-service attack from a malicious client.

Resource containers have some properties that makes
them similar to a number of resource management mech-
anisms that have been developed in the context of some
recent experimental operating systems [23, 31]. The key
factors that distinguish the resource container abstraction
from these mechanisms are its generality and direct ap-
plicability to current, general purpose operating systems.
A comparison of resource containers and other mecha-
nisms is deferred until Section 5.

4.2 Efficient event support
To improve the efficiency of event-based servers, we

propose two new APIs. One tells the kernel the file



and socket descriptors on which an application is wait-
ing for events. The other provides event notifications to
the application, preserving the application’s priority as-
signments. Theselect() system call merges both func-
tions; splitting them into separate calls increases flexibil-
ity while avoiding the inherent unscalability ofselect().

Once an application becomes interested in events on
a descriptor, it may remain interested in this descriptor
for a lengthy period. Our first API allows the applica-
tion to inform the kernel when this period begins and
ends, rather than (as inselect()) passing this informa-
tion repeatedly. In effect, the kernel maintains an IN-
TERESTED set for each thread, persisting across many
system calls.

Thedeclare interest() system call asserts an applica-
tion’s interest in events on a set of one or more descrip-
tors. Therevoke interest() system call indicates that it
is no longer interested in events on a set of descriptors.
For example, when a server acccepts a new connection,
from which it will read a request message, it callsde-
clare interest() with the new socket as an input. Simi-
larly, when a proxy cache starts an asynchronous I/O on
a disk file, it callsdeclare interest() with the disk file
descriptor as input. This indicates interest in the disk I/O
completion event.

When an event (e.g., a received packet or completed
disk read) arrives for a descriptor in the INTERESTED
set of a thread, the kernel adds the descriptor to a SIG-
NALLED EVENTS set it maintains for the thread. Our
second API, thedequeue next events() system call, al-
lows the application to obtain this set of descriptors with
pending events. The application may either ask for the
entire set, or for a limited number of descriptors. This al-
lows a multiprocessor application to distribute event pro-
cessing across the CPUs: each thread can ask for just one
descriptor, leaving the rest for other CPUs. Alternatively,
a thread can request multiple descriptors, amortizing the
cost of this system call across several events.

The resource container mechanism allows the appli-
cation to assign priorities to descriptors. The kernel de-
livers descriptors, viadequeue next events(), in prior-
ity order, allowing the application to entirely postpone
its processing of low-priority events. The kernel could
use an efficient data structure, such as a priority queue,
to represent the SIGNALLEDEVENTS set.

There are other viable alternatives to the proposedde-
queue next events() system call. For example, event
notifications can be structured as upcalls [12], with the
server process specifying handlers for various types of
events directly to the operating system kernel. Similarly,
the kernel could indicate events to the server process by
using apending-events queue in a memory region shared
with the application process. While these approaches
might perform better than one that uses a system call, we

feel that the system call approach is closer to the APIs
provided by current operating systems. For this reason,
this approach might be easier to use, and reason about,
than one based on upcalls or shared memory. Moreover,
unlike the other two approaches it avoids the need for
explicit synchronization on the programmer’s part. This
is important, since one of the primary advantage of an
event-driven approach vis-a-vis a multi-threaded one is
that the former does not require the complexity of ex-
plicit synchronization.

5 Related Work
As mentioned in Section 4.1, resource containers are

similar to a number of mechanisms that have been de-
veloped recently to support fine-grained resource man-
agement. We will discuss these mechanisms, and their
relationship to resource containers, in some detail below.

The Scout operating system [31] has explicit support
for a path abstraction, which allows an application to
control resource consumption for a given communica-
tion path at all levels of the system. Paths are similar
to resource containers; however, resource containers are
more general as they can encompass several otherwise
“unconnectable” paths.

Moreover, the binding between a resource container
and the kernel resources that can be associated with it
is more dynamic and flexible than the association be-
tween a path and Scout kernel entities. This is because,
in Scout, paths are specified at kernel build time. They
can be instantiated, extended, optimized and associated
with execution entities (threads) at run time during the
path creation phase. However, the association between a
path and the system resources associated with it cannot
be arbitrarily changedafter the path creation phase. For
instance, we cannot change the binding between a path
and a kernel resource, such as a socket, after the path cre-
ation phase. Also, unlike resource containers which can
encompass arbitrary sets of resources specified at run-
time, the composition of a path is limited to the router
graph specified at kernel build time.

Scout is a special-purpose operating system built from
scratch to efficiently support network appliances. The
path abstraction is not available in general-purpose oper-
ating systems, and there has been no attempt to integrate
paths into current operating system interfaces.

Kaashoek et. al. [23, 24] advocate a customized oper-
ating system tailored specifically for servers. In a server
operating system based on the Exokernel, the application
controls essentially all of the protocol stack, including
the device drivers, through a combination of library code
and a novel kernel architecture. The Exokernel provides
a similar interface to the storage system. This allows the
application to directly control the resource consumption
for all associated network communication and file I/O. A



prototype Web server system that the Exokernel project
has built uses several aggressive optimizations to achieve
an order of magnitude performance improvement over a
server running on a conventional operating system.

The Exokernel approach to operating system develop-
ment is a radical departure from how current operating
systems are implemented. For this reason, this approach
represents a point in the design space of server-oriented
operating systems that is unlikely to be of immediate util-
ity. Moreover, implementing the Web server system on a
Exokernel brings into the domain of the Web server de-
veloper several software engineering issues related to the
problem of developing and maintaining a complicated li-
brary operating system.

The new operating system features that we propose al-
low many of the benefits of the Exokernel’s application-
controlled resource management to be achieved in the
context of general purpose operating systems.

At a superficial level, the functionality provided by
resource containers is similar to that provided by a num-
ber of operating system abstractions developed in the
context of multimedia and real-time operating systems.
These include the processor capacity reserves of Mercer
et. al. [28], theactivities [22] of Rialto, themigrating
threads of Mach [17] and AlphaOS [13], and theshuttles
of Spring [20]. The chief differences are related to the
more general nature of resource containers. Processor
capacity reserves and activities are real-time abstractions
and are thus more complex to implement than resource
containers. Also, migrating threads, processor capacity
reserves and shuttles are micro-kernel specific solutions
which do not address the problem of controlling the re-
source consumption of kernel I/O processing.

Almeida et al. attacked the problem of providing QoS
support in a Web server running on a widely available
general-purpose operating system [1]. They mapped QoS
requirements onto scheduling priorities, experimenting
both with a user-level implementation, and with a slightly
modified Linux kernel scheduler. They used the Apache
server [4], and so followed the process-per-connection
model, although their approach could probably be ex-
tended to a thread-based server. They found that this ap-
proach allowed them to provide differentiated service to
HTTP requests in different QoS classes, albeit with some
limitations on effectiveness. However, they did not eval-
uate how accurately their system allocated kernel-mode
time, and their implementations did not even attempt to
set priorities for processing of received packets, or to dif-
ferentiate between existing connections and new connec-
tion requests.

6 Summary
We discussed the need for efficient operating system

support for Internet servers, and identified two dimen-

sions of this support. First, the operating system needs to
allow the process to manage the kernel’s consumption
of resources for individual connections. We therefore
proposed theresource container, a kernel-supported ab-
straction binding together the resources associated with
a connection. The process may assign a priority to each
resource container, allowing the kernel to favor high-
priority connections.

We also addressed the lack of efficient support for the
two common server execution models, thread-based and
event-driven. We proposed a new API for event handling,
which should scale to large numbers of connections per
process.

We are currently working on a prototype implementa-
tion of our events API and resource container abstraction.
We are also continuing to improve our understanding of
the limitations of current operating system support for
large-scale multi-threaded applications.
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