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Abstract

This paper reports the experimental results on the application of different pattern recognition

algorithms to the evaluation of earthquake risk for real geological structures. The study area

used for the experiments is related to a well-known geological structure representing a

“triangular valley over bedrock”. Performances obtained by two neural networks and two

statistical classifiers are reported and compared. The advantages provided by the use of

methods for combining multiple classifiers are also discussed and the related results reported.

Keywords: Earthquake risk evaluation; Statistical and neural classifiers; Combination of

multiple classifiers.

1. Introduction

The ability to realistically predict “ground shaking” at a given location during an earthquake

is crucial for seismic risk prevention strategies in urban systems, as well as for the safe design

of major structures. However, the largest seismic events of the last decade have demonstrated

that the observed ground shaking can be much more severe than expected and its spatial

distribution poorly related to the "earthquake risk maps" previously prepared by seismologists

or earthquake engineers (Faccioli, 1996). Therefore, a major improvement of the present

ability to compile earthquake risk maps is required to mitigate the impact of earthquakes on

urban areas, to plan land use and to prepare effective emergency plans.
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In the fields of seismology and structural engineering, risk maps are obtained by “combining”

data related to factors that mainly affect earthquake risk. The main “data sources” currently

used are:

• data on regional seismicity, typically based on historical or seismotectonic observations;

• data on the “geological setting” of the study area;

• data on the “vulnerability” of the human and natural environment;

• data on the effects of the so-called “local soil conditions” (e.g., topographic and geological

irregularities of the soil profile) on the spatial variation of ground motion during an

earthquake (Sanchez-Sesma, 1987).

The latter data source allows earthquake engineers to predict risk degrees at locations

characterized by different soil conditions.

In this paper, we focus on the development of pattern recognition techniques for the automatic

evaluation of the effects of local soil conditions. It has been pointed out that such “site

effects” were one of the main causes of concentrated damage during some of the largest

earthquakes of the last decades (e.g., the earthquake that struck Mexico City in September

1985). The classical algorithms for the evaluation of the seismic site effects are briefly

reviewed in Section 2, where the advantages and the potentialities of the use of pattern

recognition techniques are also discussed. The formulation of earthquake risk evaluation as a

pattern recognition problem is described in Section 3. Section 4 gives a brief description of

neural networks and statistical pattern recognition algorithms used in the experiments.

Methods used for “combining” the results provided by these algorithms are also briefly

described. Section 5 describes the “study case” used for experiments. Performances obtained

by different pattern recognition algorithms and by their “combination” are also reported and

compared. Conclusions are drawn in Section 6.

2. Earthquake risk evaluation

First of all, it should be pointed out that the evaluation of site effects is not the only

information commonly used by earthquake engineers to compile risk maps. As pointed out in

the Introduction, local soil conditions strongly affect earthquake risk but additional



Page 3

information should be used to completely evaluate earthquake risk for a study area. However,

in the following, we will refer to site effects evaluation as the “earthquake risk evaluation

problem”.

The problem considered can be defined as follows. Given the local site conditions (e.g.,

topographic profile, geological layering and soil mechanical properties) and given the “input

earthquake” (e.g., a plane wave of given amplitude and shape propagating towards the earth’s

surface), find the ground motion at different locations (“sites”) of the study area.

The approach that has been generally used so far by earthquake engineers to solve the above

problem is mainly based on different techniques for the numerical integration of the elasto-

dynamics equations of motion, with the proper boundary and initial conditions (Aki and

Richards, 1980). These numerical tools for the simulation of seismic wave propagation

provide “solutions” that engineers usually summarize in a few parameters, such as the peak

ground acceleration, the duration of motion, or other measures deemed adequate to represent

the severity of ground shaking at different sites. Subsequently, according to the values of the

above parameters, a risk map is compiled by assigning a certain degree of risk (e.g., low,

medium or high risk) to each site.

There are three main limitations in using classical numerical tools for earthquake risk

evaluation:

• the poor knowledge of the geological setting of the study area that prevents, in many cases,

the creation of an accurate numerical model of the study area;

• the uncertainties in the values of local soil conditions;

• the huge computational burden required by numerical procedures to perform fully three-

dimensional (3D) dynamic wave propagation analyses on realistic geologic configurations.

In terms of pattern recognition, it is worth noting that the above-mentioned numerical tools

follow the classical “model-based” approach to engineering problem solving that demands a

detailed and precise model of the physical phenomenon to be investigated (Haykin, 1996).

The model of the study area allows earthquake engineers to develop a numerical “transfer

function” that uses the seismic wave as input and provides the severities of ground shakings at

the different locations as outputs. (From a pattern recognition point of view, the definition of
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the above transfer function can be regarded as a problem of estimating an “input-output

function”).

On the basis of the above considerations, the pattern recognition approach seems to exhibit

several features that could help to overcome the above limitations of classical numerical tools:

• pattern recognition provides a “non-parametric” approach to the solution of problems that

involve the estimation of input-output functions. Pattern recognition algorithms like the k-

nearest neighbor classifier or the multi-layer perceptron neural network can be used to

estimate an input-output function without needing a model of the physical mechanism

underlying the function;

• pattern recognition provides algorithms that are able to “learn” the desired input-output

function by “examples”;

• pattern recognition algorithms based on neural network models have proved they can

effectively handle uncertainties in input data;

• pattern recognition algorithms exhibit reasonable computational complexities with respect

to those of numerical procedures currently used for wave propagation simulation.

Therefore, the pattern recognition approach could be successfully used to overcome the lack

of “models” for real study areas, to handle uncertainties in local site conditions, and to

provide earthquake engineers with fast computational tools.

3.  Formulation of the earthquake risk evaluation as a pattern recognition problem

As pointed out in the previous Section, the earthquake risk evaluation problem basically

involves the “assignment” of “risk degrees” to different locations of a given study area.

Therefore, it can be naturally formulated as a pattern recognition problem. The formulation

requires the pattern recognition concepts of “patterns”, “features”, and “data classes” to be

expressed in terms of the “elements” and “data” involved in earthquake risk evaluation. To

this regard,  let us use an example of a specific risk evaluation problem. Figure 1 illustrates a

study area characterized by a geological structure representing a “triangular valley over

bedrock”. In the earthquake engineering field, this is an interesting study case, as it constitutes
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a reasonable approximation of many real geological structures, such as sediment-filled

alluvial valleys. The main elements and related data involved in the risk evaluation for a

triangular valley are the following:

• the “shape” of the valley that can be characterized by geometrical features;

• the “sediment basin” (i.e., the soil underlying the valley) and the “bedrock” that can be

characterized by their mechanical properties;

• the seismic wave that can be described by features commonly used for signal

characterization (e.g., peak amplitude and fundamental frequency of the wave);

• the so-called “receivers” that are related to the locations of the study area for which risk

degrees are to be evaluated.

From the above definitions, it is easy to see that “receivers” can be regarded as “patterns” for

any earthquake risk evaluation problem. In order to characterize such patterns, “features”

related to the position of the receivers, the “shape” of the geological structure, the mechanical

properties of the soil underlying the receivers, and measures characterizing the “input”

seismic wave can be used. With regard to the definition of “data classes”, data classes can be

easily associated to the considered risk degrees (e.g., three data classes related to “low”,

“medium” and “high” risk).  If we assume to use “supervised” pattern recognition algorithms,

“training sets” must also be created. Unfortunately, as pointed out in Section 2, poor and

rough data are usually available for real geological structures. Typically, a few

“accelerograph stations” record seismic motions for the locations of a large area and

earthquake engineers are unable to “infer” ground shakings for the remaining locations.

Consequently, the most practical way to build up training sets is to use numerical procedures

for the simulation of wave propagation. For complex geological structures, “approximate”

simulations could be carried out (e.g., “local” 2D simulations could be used for the simulation

of complex 3D structures). Typically, due to the computational load and to the above-

discussed limitations of present numerical codes, small and “noisy” training sets should be

expected.
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4. Pattern recognition algorithms and combination methods

Different neural networks and statistical classification algorithms were applied to the

evaluation of earthquake risk. Among neural network classifiers, the multilayer perceptron

(MLP) and the probabilistic neural network (PNN) were used. (A brief description of such

neural networks is given in Sections 4.1 and 4.2). The well-known k-nearest neighbor (k-NN)

and Gaussian classifiers were adopted to evaluate performances of classical statistical

algorithms. For a description of such statistical classifiers, the reader should refer to Fukunaga

(1990). To utilize the complementary characteristics of the above classification algorithms,

methods for combining the results provided by multiple classifiers were also applied (Section

4.3)

4.1 Multilayer perceptron neural network

Multilayer perceptrons are artificial neural network models whose architecture consists of

multiple layers of neurons with connections only between neurons in neighboring layers. A

numerical value called “weight” is attached to every connection in the network. Information

is processed starting from one side of the network called the “input layer” and moving

through successive “hidden layers” to the “output layer”. As an example, Figure 2a shows the

topology of an MLP neural network with only one hidden layer. Each neuron computes a so-

called “net input” from the outputs of previous neurons and from the weights of the

connections. Typically, such a net input is a weighted sum, and a numerical value, called

“bias”, is added to the net input (Figure 2b). In MLPs, a function called “activation function”,

is applied to the net input. In our experiments, we used a sigmoid function. One of the most

commonly used training schemes for MLPs is the error back-propagation (EBP) learning

algorithm. This is a learning algorithm by “examples” based on a “gradient descent”

technique. Typically, there is an output neuron for each data class and an input pattern is

classified as belonging to a given class if the related output neuron has the highest activation

among all the output neurons. Therefore, for each input pattern, the EBP algorithm adjusts the

values of the network connections in order to maximize the activation value of the neuron
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related to the correct class and to minimize the activation values of all the other output

neurons.

The reader interested in a detailed description of MLPs can refer to Hertz et al. (1991).

4.2 Probabilistic neural network

Probabilistic Neural Networks (PNNs) are a model for supervised classification based on

multivariate probability estimation (Specht, 1990). They are based on an extension of the

Parzen approach to univariate probability estimation (Fukunaga, 1990). Given a set of N

samples    X   i  drawn from a statistical distribution p(   X   ), the Parzen approach provides an

asymptotic, unbiased and consistent estimate ˆ( )p X  of the related probability density function

by using an appropriate “kernel function” k ⋅( ) which is applied to each sample considered,

i.e.:

p̂ X
N

k X X
i

i

N

( ) = −( )
=
∑

1

1

  . (1)

PNNs are based on an extension of such an approach to the multivariate case (Cacoullos,

1966), utilizing the Gaussian kernel function. The typical architecture of a PNN is shown in

Figure 3. The network consists of an input layer, one hidden layer and an output layer. The

hidden layer has as many neurons as the number of training patterns; as a kernel function,

each neuron has a Gaussian type of activation function, and is centered on the feature vector

of the corresponding training pattern. The output layer has as many neurons as the number of

data classes considered; the activation function of each output neuron computes the sum of

the inputs to the neuron. The neurons of the hidden layer propagate their outputs only to the

neuron of the output layer corresponding to the class the training pattern belongs to. Given the

feature vector of an unknown pattern as input to the net, the neurons of the output layer

provide the estimates of the probability that the unknown pattern belongs to each of the data

classes. The classification is carried out by using the “Winner Takes All” decision rule to

identify the most probable class. Training PNNs consists in the optimization of the Gaussian
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kernel by trials with different values of the “smoothing parameter” (Specht, 1990) which

tunes the width of the Gaussian function.

4.3 Methods for combining multiple classifiers

Some methods to combine results provided by multiple classifiers have been proposed in the

literature (Suen, 1992). Let us assume a pattern recognition problem with M "data classes".

Each class represents a set of specific patterns. Each pattern is characterized by a feature

vector    X   . In addition, let us assume that K different classification algorithms are available to

solve the classification problem at hand. Therefore, we can consider “ensembles” formed by

"k" different classifiers (k=1..K). In order to exploit the complementary characteristics of

available classifiers, the combination methods described in the following can be used.

4.3.1 Combination by Voting Principle

Let us assume that each classifier contained in the given ensemble performs a "hard"

classification assigning each input pattern to one of the M data classes. A simple method to

combine results provided by different classifiers is to interpret each classification result as a

"vote" for one of the M data classes. Consequently, the data class that receives a number of

votes higher than a prefixed threshold is taken as the "final" classification. Typically, the

threshold is half the number of the considered classifiers ("majority rule"). More conservative

rules can be adopted (e.g., the "unison" rule).

4.3.2 Combination by Belief Functions

It is well known that some classification algorithms can provide an estimate of the posterior

probability that an input pattern    X     belongs to the data class ωi :

  ̂

( / ), , ,p X X i Mi∈ =ω   1 K (2)

For example, estimates of the post-probabilities are provided by multilayer perceptrons

(Serpico and Roli, 1995). Post-probabilities can be computed in a straightforward manner for

the k-NN classifier. This combination method utilizes the prior knowledge available on each

classifier. In particular, this method utilizes knowledge about the "errors" made by each

classifier on the training set patterns. Such prior knowledge is contained in the so-called
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"confusion matrices". For the zth classifier Cz, it is quite simple to see that the confusion

matrix can provide estimates of the following probabilities:

  ̂

( / ( ) ) , , , , , ,p X C X j i M j M z Ki z∈ = = = =ω              1 1 1K K K (3)

On the basis of the above probabilities, the combination can be carried out by the following

"belief" functions:

  

bel i p X C X j i Mi k k

k

K

( ) ˆ( / ( ) ) , ,= ∈ = =
=

∏η ω     1
1

K (4)

The final classification is taken by assigning the input pattern    X    to the data class for which

bel(i)  is maximum.

5. Experimental results

5.1 The study case

The considered study case was a triangular valley over bedrock (Figure 1). In order to apply

our pattern recognition algorithms, twenty-one “receivers” were used and a numerical

procedure designed for fast analyses of 2D wave propagation within triangular valleys was

applied to “predict” ground shakings for different receiver locations (Paolucci et al., 1992).

For simulation purposes, we assumed an input earthquake wave represented by a “plane

shear” wave propagating towards the earth surface. A Ricker type of time-dependence was

implemented for this wave, since “Ricker waves” are widely used in seismic wave

propagation analyses (Ricker, 1953). From an earthquake engineering viewpoint, the

parameters used to characterize the valley were the following:

• the “length” of the valley (L) and the two dipping angles π/2N1 and π/2N2;

• the mechanical properties of the soil inside the valley (ρv = material density, βv = shear

wave propagation velocity, Qv = quality factor, describing the internal dissipation of the
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material due to its non-elastic behavior) and of the “bedrock”, that is, the rigid basement

underlying the valley (ρr, βr). We assumed that no dissipation occurred inside the bedrock,

and that ρrβr >> ρvβv ;

• the positions of the locations (“receivers”) where ground motion is measured;

• the fundamental frequency (fp) of the input seismic wave.

The main objective of the simulations carried out was to create a “data set” containing

examples of the degrees of ground shaking for receivers (i.e., “patterns”) characterized by

different soil conditions and different “wavelengths” of the input earthquake wave. We

performed many runs of our simulator using different values of the two dipping angles and

different values of the wavelength. The other measures related to the mechanical properties of

the valley and the bedrock were kept constant throughout all simulations. For each run, our

simulator provided the ground motion as output in terms of acceleration time histories for the

twenty-one receivers at the surface of the valley. The whole simulation phase produced a data

set consisting of 6300 patterns. Each pattern was related to a receiver and, in terms of pattern

recognition, it was characterized by the following four features: the receiver position x/L, the

two parameters defining the angles N1 and N2, and the “normalized wavelength” λ/L of the

input wave (where λ = βv/fp  is the fundamental wavelength calculated inside the valley). In

order to apply our supervised pattern recognition algorithms, each pattern was assigned to one

of three “risk classes” (low, medium, and high risk) on the basis of the ground shaking values

predicted by our simulator. In particular, the severity of ground shaking was computed by the

peak acceleration and by the “intensity of motion” (the latter calculated as an integral measure

of ground motion over its whole duration).

The obtained data set was randomly subdivided into a training and a test set of different sizes.

5.2 Results

For each kind of classification algorithm, a long “design phase” involving “trials” with

different classifier architectures and learning parameters was carried out. The main objective
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of these experiments was to assess the best performances provided by “single” classifiers after

long design phases and to compare such performances with the ones obtained by combining

the results provided by multiple classifiers.

In addition, experiments with training sets of different sizes (i.e., 10%, 20%, 30%, 40%, and

50% of the data set) were carried out in order to evaluate the effect of training set size on the

performances of the different classifiers.

For the k-nearest neighbor classifier, we carried out different trials with  twenty-five values of

the "k" parameter ranging from 1 up to 49. For the multilayer perceptron neural network, five

different architectures with one or two hidden layers and various numbers of hidden neurons

(4-4-3, 4-6-3, 4-8-3, 4-6-4-3, 4-8-4-3) were considered. For all architectures, one input neuron

for each feature and one output neuron for each data class was used. We trained the networks

using two different values of the learning rate (i.e., 0.01, and 0.04). For each architecture and

for each value of the learning rate, ten trials with different random initial-weights ("multi-

start" learning strategy) were carried out. Therefore, a set of 100 MLPs was obtained. The

Gaussian classifier and the Probabilistic Neural Networks needed no design phases.

At the end of the above-mentioned long design phase, a set of 127 classifiers was trained and

tested on the selected data set.

The performances obtained by the above classifiers on the test set are summarized in Table 1.

Table 1 refers to classifiers trained by the “10% training set” (i.e., the training set containing

10% of the patterns forming the data set). For the k-NN and the MLP classifiers, the lower,

the mean, and the higher classification accuracies obtained in the aforementioned design

phase are shown. The “design complexity” column gives the number of “trials” carried out for

each classifier (using different architectures and learning parameters). It is worth noticing that

the MLP provided the best classification accuracy and it outperformed the k-NN classifier

(92.95% vs. 85.84%). This result seems to indicate that the k-NN classifier suffered from the

small training set size (10% of the data set). This conclusion is confirmed by results obtained

using larger training sets (Figure 4). For each kind of classifier, Figure 4 shows the trend of

the classification accuracy as a function of the training set size. The difference in accuracy

between the k-NN and the MLP classifiers is reduced as the size is increased.
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In order to prove that the combination of different classifiers generates satisfactory

classification accuracies with "reduced" design phases, we combined the results provided by

different ensembles formed by just three classifiers obtained without any design phase (i.e.,

an a priori fixed “k” value was used for the k-NN and a single random weight trial was

performed for each MLP architecture considered). Table 2 shows the results provided by

three different classifier ensembles. For each ensemble, the classifiers results were combined

by the majority rule and by the belief function method. It is worth noting that the design phase

necessary to produce these classifier ensembles involves the training and the testing of just

three classifiers (i.e., design complexity=3). This fast design phase can be used to obtain

satisfactory performances that are close to the ones provided by the best single classifier

obtained after a design phase involving 127 classifiers (MLP with 92.95% accuracy; see

Table 1).

Other similar experiments, that are not reported for the sake of brevity, confirmed the

conclusion that the combination of different classification algorithms can be used to obtain

satisfactory classification accuracies with reduced design phases.

6. Conclusions

The potentials of the use of pattern recognition techniques to evaluate earthquake risk for real

geological structures have been evaluated in this paper. The reported results point out that

pattern recognition techniques allow earthquake engineers to classify the risk degrees of

different sites with satisfactory accuracy. In particular, they can be used to overcome the

limitations of numerical procedures currently used for risk evaluation. On the other hand,

such procedures can be effectively used for the risk evaluation of small parts of a large study

area in order to create training sets required by supervised algorithms. Finally, from the

pattern recognition viewpoint, the reported results point out that the combination of different

classification algorithms can be used to obtain satisfactory classification accuracies with very

short design phases.
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FIGURE CAPTIONS

Figure 1. A geological structure representing a triangular valley over bedrock is depicted.

Figure 2. An example of MLP neural network topology (a) and neuron computation (b).

Figure 3. Typical architecture of a probabilistic neural network

Figure 4. Trend of the classification accuracy as a function of the training set size for the

considered classification algorithms.

TABLE CAPTIONS

Table 1. Classification accuracies in % obtained by considered classifiers on the test set

Table 2. Classification accuracies in % obtained by three different classifier ensembles
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TABLE I

Classifier
Low
Risk

Medium
Risk

High
Risk

Overall
Accuracy

Design
Complexity

Gaussian

Lower Accuracy

Mean Accuracy

Higher Accuracy

94.45

94.45

94.45

39.85

39.85

39.85

64.21

64.21

64.21

82.76

82.76

82.76

1

k-NN

Lower Accuracy

Mean Accuracy

Higher Accuracy

95.58

98.19

99.75

10.28

25.57

51.65

40.91

55.72

68.85

78.93

82.05

85.84

25

MLP

Lower Accuracy

Mean Accuracy

Higher Accuracy

96.60

98.60

99.61

26.02

53.13

75.13

71.82

88.04

95.43

87.64

90.78

92.95

100

PNN

Lower Accuracy

Mean Accuracy

Higher Accuracy

88.59

88.59

88.59

59.14

59.14

59.14

72.06

72.06

72.06

82.14

82.14

82.14

1

TABLE II

Low
Risk

Medium
Risk

High
Risk

Overall
Accuracy

MLP 4-6-4-3 98.38 63.71 79.48 90.87
PNN 88.59 59.14 72.06 82.14
k-NN (k=25) 98.55 23.22 54.39 81.79

Combination by
Belief Functions

98.75 60.03 79.48 90.62

Combination by
Majority Rule

97.82 47.21 71.69 90.84

MLP 4-8-3 98.94 47.97 86.16 90.04
PNN 88.59 59.14 72.06 82.14
k-NN (k=25) 98.55 23.22 54.39 81.79

Combination by
Belief Functions

98.89 47.34 86.16 89.99

Combination by
Majority Rule

98.21 40.36 75.65 89.98

MLP 4-4-3 98.99 46.70 84.43 89.65
PNN 88.59 59.14 72.06 82.14
k-NN (k=5) 96.32 36.17 66.13 83.66

Combination by
Belief Functions

99.14 47.46 81.58 89.46

Combination by
Majority Rule

96.47 47.84 76.14 88.84


