Nordic Journal of Computing

PRACTICAL IN-PLACE MERGESORT"*

JYRKI KATAJAINEN
Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen Fast, DENMARK
Flectronic mail: jyrkiediku.dk

TOMT PASANENT
Turku Centre for Computer Science,
Lemminkdisenkatu 14A, FIN-20520 Turku, FINLAND

Flectronic mail: Tomi.Pasanen@utu.fi

JUKKA TEUHOLA?
Department of Computer Science, University of Turku
Lemminkdisenkatu 14 A, FIN-20520 Turku, FINLAND

Flectronic mail: Jukka.Teuhola@utu.fi

Abstract. Two in-place variants of the classical mergesort algorithm are analysed
in detail. The first, straightforward variant performs at most Nlog, N + O(N)
comparisons and 3N log, N 4+ O(N) moves to sort. N elements. The second, more
advanced variant requires at most Nlog, N + O(N) comparisons and eN log, N
moves, for any fixed ¢ > 0 and any N > N(g). Tn theory, the second one is
superior to advanced versions of heapsort. In practice, due to the overhead in the
index manipulation, our fastest in-place mergesort hehaves still about 50 per cent
slower than the bottom-up heapsort. However, our implementations are practical
compared to mergesort algorithms based on in-place merging.

Key words: sorting, mergesort, in-place algorithms

CR . Classification: F.2.2

1. Introduction

Assume that we are given an array A of N elements that are to be sorted.
Mergesort is a classical sorting routine that can iteratively be described as
follows. Initially, each element is thought to form a sorted subsequence of
size one. These subsequences are merged pairwise, and in this way we can
(almost) halve the number of sorted subsequences. This process is then
repeated until we have only one sorted sequence left, containing all the
elements.

* Presented at the 7th Finnish Symposium on Computer Science, Liperi, Finland, January
1994.

! Supported by the Academy of Finland under contract No. 1021129.

! Supported by the Academy of Finland under contract No. 1071337.

Received February 1996.



The heart of the construction is the merge routine, which combines two
sorted sequences into one. The drawback of the straight 2-way merge algo-
rithm [9], which repeatedly moves the smaller of the minima of the remaining
subsequences to an output area, is that it requires extra storage space for its
operation. If the sequences to be merged are of size m and n, respectively,
then a trivial implementation of the 2-way merge requires at most m+n — 1
comparisons, m + n element moves, and m + n extra storage locations.

Assuming that we have an extra array B of size N available, the mergesort
algorithm can be technically realized so that the elements of A are merged
back and forth from A to B. With the 2-way merge routine, the number of
comparisons performed will be Nlog, N+ O(N) and the number of element,
moves also Nlog, N + O(N). If K-way merge is applied, the number of
moves can be reduced to (2/[logy, K])Nlog, N + O(N) without affecting
the number of comparisons (cf. Section 3).

In this paper we explore the question as to how the mergesort algorithm
can be turned into an efficient in-place algorithm. More precisely, we assume
that only one extra storage location (in addition to the array A) is available
for storing the data elements and (1) storage locations are available for
storing indices of the input array A. The only operations permitted on
the data elements are comparisons and moves. In the basic algorithm, the
indices are manipulated only by addition and subtraction. (The algorithm
could be implemented, without loss of efficiency, even if addition by one
and subtraction by one were the only arithmetic operations allowed. These
details are, however, left for the interested reader.) In the fine-tuned version,
we also need division (or shift) as in advanced heapsort variations [3].

In the theoretical analysis of the in-place algorithms to be presented, we
calculate the number of element comparisons and element moves (or as-
signments) made in the worst case. The ultimate goal would be a sorting
algorithm that performs Nlog, N + O(N) comparisons and O(N) moves
(cf. Munro and Raman [11]). The performance of our algorithms is well
characterized by these two quantities, since the work required by the index
manipulations is closely related to the number of the above operations. As
to the practical efficiency of various in-place algorithms, the index manipu-
lation is of course of importance (cf. Section 4).

Many algorithms for in-place merging have been proposed, the present
champion being the one by Huang and Langston [7]. Their algorithm merges
two sequences of size m and n in O(m 4 n) time or, more precisely, it
performs at most 1.5(m 4+ n) + O(v/m + nlogy(m + n)) comparisons and
5(m + n) + O(v/m + nlogy(m + n)) moves'. When this merge routine is
used for implementing mergesort, N elements will be sorted in-place with
at most 1.5N log, N 4+ O(N) comparisons and 5N log, N + O(N) moves.

We shall show that mergesort can be implemented in-place more efficiently,

' Actually, in [12] it was shown that the number of moves is bounded by 6(m 4+ n) +
O(v/m + nlog,(m + n)) but by using the “hole” technique, to be described in Section 2,
an implementation requiring at most 5(m+n)+0(y/m + nlog,(m-+n)) moves is obtained.



if we use the standard merge routine as a starting point, instead of the known
in-place merge algorithms. The basic observation (see [10, Lemma 3] or [9,
Exercise 5.2.4-10]) is that the 2-way merge can be easily modified such that
it will merge two sequences of size m and n by using only min(m,n) extra
space. One way to obtain this is as follows. For the sake of simplicity, assume
that the sequences X and Y to be merged are consecutive subsequences of
the same array, as they are in mergesort, and that X is not longer than Y.
Now, move first the elements of X to a work area W, and then merge W
and Y in the usual manner to the area covered by X and Y.

Our mergesort variant is based on the partitioning principle that has
turned out to be useful in many contexts (see, e.g. [4, 10, 13]). First, we sort,
about one half of the elements by using the second half of the input array as
a work area. Second, we sort half of the second half in the same way. Third,
we merge the two sequences of sizes about N/2 and N/4 by using the last
N/4 positions of the input array as a work area. Then we repeatedly sort
half of the remaining elements and merge this block together with the big
sorted block obtained so far. It is not difficult to see that this algorithm runs
in O(Nlog, N) time. A detailed analysis, to be given in Section 2, shows
that the algorithm can be easily implemented such that it will perform at
most Nlog, N + O(N) comparisons and 3N log, N + O(N) moves.

In Section 3 we describe an advanced version of the algorithm and show
that it performs at most N log, N+O(N) comparisons and £ N log, N moves,
for any fixed £ > 0 and any N > N(£). (Observe that £ has to be a fixed con-
stant, since the amount of extra space required by the algorithm is exponen-
tial on 1/e.) These figures should be compared to the corresponding bounds
known, for example, for heapsort. Floyd’s improvement [6] of the standard
heapsort [19] makes 2N log, N + O(N) comparisons and N log, N + O(N)
moves, and the bottom-up heapsort [5, 18] 1.5N log, N +O(N) comparisons
and 1.5Nlogy, N + O(N) moves, in the worst case. More advanced heapsort,
variations exist (see, e.g. [2, 3]), but these assume that the general shift
operation is a constant time operation. (Observe that already bottom-up
heapsort uses the division operation.) If the elements to be sorted are all
distinct, the number of moves performed by the heapsort algorithms is at
least 0.5Nlogy N — O(N) [16]. So both the number of comparisons and
moves made by heapsort are in the worst case larger than those made by
our in-place mergesort.

In practical experiments our fastest in-place mergesort program was about
50 per cent slower than the bottom-up heapsort program. Therefore, the
number of element comparisons and element moves does not tell the whole
truth. However, if the efficiency is compared to earlier in-place mergesort im-
plementations, e.g., that utilizing the in-place merging algorithm of Huang
and Langston [7], our implementation is considerably faster. The experi-
mental results are reported in Section 4.

It should be observed that a mergesort version similar to ours appears
already in the seminal paper by Kronrod [10] (see also [15]). The main
contribution in this paper is the detailed analysis of the algorithm and the



evaluation of its practical efficiency. Observe also that an in-place sorting al-
gorithm performing N log, N 4+O(N) comparisons and e N log, N moves has
been developed independently by Reinhardt [14]. He uses similar techniques
as we do, but his main results concern minimizing the number of compar-
isons, that is, the constant in the linear term. He also applies quicksort-like
partitioning, which in our opinion does not belong to a “pure” mergesort al-
gorithm. Without exaggerating, it can be said that our algorithm is simpler
than that given in [14].

2. Straightforward in-place mergesort

In this section we describe an in-place sorting algorithm that uses merging
as its basic tool. This algorithm is a variant of the second in-place sorting
algorithm proposed by Kronrod [10]. We also analyse the efficiency of the
algorithm. A more fine-tuned version will be given in the next section.

Assume that the elements to be sorted are given in an array A of size N.
We use the notation (i, j) to denote the block A[i..j] of elements. The case
1 > j represents an empty block. By X — Y we mean a block, which is left
over X when the elements of Y are removed from X, and by X +Y a block
which includes all elements of X and Y. Two blocks P and () are said to be
equivalent, denoted P = @, if they contain precisely the same elements of
A, possibly in a different order. The size | P| of a non-empty block P = (i, j)
is 7 — 7+ 1. The size of an empty block is (.

In our sorting algorithm, illustrated in Fig. 1, we maintain an invariant
that array A consists of two consecutive blocks, P and @, where P contains
some elements in no specific order, whereas the elements of Q are in sorted
order. An initial situation is created by choosing P = (1, [N/2]) and sorting
the rest of A to Q by using P as the work area. The size of () is increased
gradually as follows. First, we divide P into two blocks, P; and P, so that
|Py| = |P2| or |Pi| = |Py| — 1. Second, we sort Py by using the standard
mergesort routine. Block Ps is used as a work area. As a result we get two
blocks P| and Pj, where P{ = Py and P) = P,, and the elements of P| are in
sorted order. Third, we merge the blocks P{ and ). The output is produced
“over” Py and (). As a result of this merge we get two consecutive blocks,
Pj and @', where P)/ = Py = P, and Q' = P 4+ @, and the elements of @’
appear in sorted order. Now we assign P + Pj and Q < @Q’, and repeat
the process, until |P| = 1 in which case the single element is moved into its
right place in @), pushing the smaller elements one step left.

For the purpose of the analysis, two parts of the algorithm can be readily
separated: the sort part consists of the calls to the mergesort routine and
the merge part consists of the calls to the merge routine (outside mergesort).
Let S(m) denote the time required by the sort part after P has reached the
size m, and let M (m,n) denote the time required by the merge part after
P has reached the size m and @ the size n. The time requirements of both



A
|
|
|
|
\ sort,
P Q
|
|
|
sort,
P P} Q
merge
P2// Q/

T
|
|
|
|

Fig. 1: lllustration of the steps in the basic algorithm. A horizontal rectangle represents
an unordered block, and a triangle a sorted block.

parts can be expressed recursively with the following recurrence relations:

S(m) = O(mlog,m)+ S([m/2]), for m > 1,
S(1) = 0);

M(m,n) = O(m+n)+ M(|m/2],|m/2]+n), for m > 1,
M(l,n) = O(14+n);

It is easy to see that S(m) = O(mlog, m) and also M([m/2],|m/2]) =
O(mlog, m). Since the total running time of the algorithm is proportional
to S([N/2])+ M([N/2],|N/2]), the algorithm runs in O(Nlogy, N) time.

Next we shall give a detailed description of the subroutines used, in order
to analyse the number of comparisons and moves performed. We start with



the merge routine, which is needed in the sort part. The basic task is to
merge repeatedly two consecutive blocks, X and Y, of about the same size
to another block W in the work area. Each time an element e from X or
Y is moved to W, the element sitting in W should be moved to the place
of e. Usually this is done by one swap, but since a swap requires 3 moves
(assignments), we choose another way of implementing the merges. We take
the first element of W and store it separately. This creates a hole in W.
Then the next element e of X or Y is moved to the hole, and a new hole is
created by moving the element of W beside the previous hole into the place
of e. This is repeated until all the elements of X and Y are moved to W.
Finally, the first stored element of W is moved to the hole in X or Y.

Implemented this way, the merging of two blocks of size m and n requires
m +n — 1 comparisons and only 2(m 4 n) + 1 moves, not 3(m + n) as when
implemented with swaps. To sort n’ elements, n’log, n’+O(n’) comparisons
and 2n’log, n’+0(n’) moves are required. In the sort part, sorting is needed
for blocks of size L%J, Hg] /2|, etc. Tt is not difficult to see that in the sort
part, the number of comparisons is bounded by Nlog, N + O(N) and the
number of moves by 2N log, N + O(N).

Actually, we could divide the work a bit differently, so that the elements in
the block ([N/3]+1, N) are mergesorted first, by using the block (1, [N/3])
as the work area. However, it can be easily verified that this choice has no
effect on the constants of the above formulas. Hence, we stick to the more
uniform approach of dividing blocks always at half.

In the merge part of our algorithm, the two blocks to be merged are not of
the same size. Therefore, it is here better to use the binary merge routine,
instead of the normal (unary 2-way) one. The binary merge algorithm was
described in [8]. The basic idea is as follows. Let X and Y be the blocks
to be merged. Let their sizes be m and n, respectively. For the sake of
simplicity, assume that m < n. Now let ¢+ = |logy(n/m)| and compare
x1, the first element of X, to 1y, the 2/th element of Y. If 2y < yy, the
proper place of z is searched for by applying binary search. Let us assume
that yr_1 < 2y < yr, k < 2'. Now the Y-block {1,k — 1) is moved to the
output area followed by x¢, and the merging process is repeated for X-block
(2,1X|) and Y-block {k,|Y]). If 2y > yor, then Y-block (1,2") is moved to
the output area and the merge process is repeated for X-block (1,|X|) and
Y-block (2! +1,[Y]).

Hwang and Lin [8] proved that the binary merge routine merges two
blocks of size m and n with [log, ("*")]+min{m, n} comparisons, which is
O(mlog,(n/m)). The number of moves will be 2(m+mn)+1, if implemented
as carefully as in the merges of the sort part. Now, in the merge part, the
binary merge routine is called at most log, N + 2 times. First, the sizes

of the merged blocks are L%J and H%}/QJ, second, L%J + H%}/QJ and

LH%]/Q} /2|, etc. The number of comparisons is then of the order

N N N .
()<Zlog22—|—§10g26—|—---—|—§10g2(2’2)+---> .



which is
logo N

ON > /2| =0(N).

The number of moves is bounded above by
2(N/2+ N/4) + (N/2+ N/4+ N/S) +--) + O(N),

which gives 2N log, N 4+ O(N).

In the merge part, most work is done when small blocks are merged with
the big sorted block. We say that a block is #iny if its size is smaller than
V/N, otherwise a block is called huge. Both the number of tiny and huge
blocks is less than or equal to 1510}2@2 N 4 2. To save work in the merge part,
the huge and tiny blocks can be merged separately. That is, when the first
tiny block is encountered, this is no more merged to the merge result of the
huge blocks, but another sorted block of size at most 2v/N is formed by
merging all tiny blocks together. Finally, the two sorted blocks (X and Y)
are merged together by moving the elements of X into their proper places
in the following way. First, find the proper place within Y for the minimum
element of X. Then interchange block X with the front part of Y, and
repeat the procedure for the next smallest element of X and the rest of Y.
(This is analogous to the BLOCK_MERGE_BACKWARDS operation of Trabb
Pardo [17].) Tt is easy to see that this final merge only requires O(N) time,
since each element of X is moved over a subblock of Y at most 2¢/N times,
and each element of Y is touched only once. This trick reduces the number
of moves performed in the merge part of our algorithm to Nlog, N+ O(N).

To sum up, the number of comparisons performed in the whole algorithm is

bounded by N log, N+O(N) and the number of moves by 3N log, N+O(N).

3. Advanced in-place mergesort

In this section we show how the efficiency of our in-place mergesort algorithm
can be improved. Our purpose is first to reduce the number of moves in the
sort part of the algorithm and then those performed in the merge part.

To reduce the number of moves required in the sort part, we use K-
way merge (K being an arbitrary constant) instead of 2-way merge as done
earlier. By doing this, the number of merging levels will come down to
[logpr N1+ O(1). Choosing, e.g., K = 4 will readily reduce the number
of moves by a factor of two. More generally, the number of moves will be
(2/[logy, K])Nlogy N + O(N). However, the number of comparisons can
become larger if the K-way merge is not implemented carefully. Next we
show how the number of comparisons can be kept almost unchanged.

Let the K blocks to be merged be Xy,..., Xx. To decide, which of the
blocks contains the smallest element, K — 1 comparisons are required. This
is done by building a selection tree (cf. [9]) of depth [log, K| above the K
elements. The smallest element is moved to the output area. After this, the



selection tree is updated by inserting in the tree the element following the
smallest one of the same block. To do this, only [log, K'| comparisons are
needed. Note that, to avoid element moves, only pointers to elements are
stored in the tree.

Since, during the algorithm, only O(N/K) K-way merges are performed,
K-merging will cause O(N) extra comparisons. For all elements, except
the smallest, [log, K| comparisons are done per element at every merging
level. But since the number of levels is now [logyx N|+ O(1), the number
of comparisons performed is Nlog, N + O(N) in total.

Let us next consider, how the number of moves can be reduced in the
merge part of the algorithm. Actually, one could say that the merges in
this part are done in the worst possible order. If the smallest block could
be merged with the second smallest, and the result of this with the third
smallest, and so on, the total work required for the merges would be O(N).
However, this cannot be done, because we need a work area for our merges.

As observed already in the previous section, most work in the merge part
is done when small blocks are merged with the union of previous blocks.
Now we will elaborate this idea further on. Let us call a block small, if its
size is less than N/logy, N; otherwise call it big. In the same way as earlier
we sort and merge the big blocks (forming block Y') until the first small
block is encountered. Because the size of the work area (including the first
small block) is now at most 2N/ log, N, we can sort it by the straightforward
in-place mergesort in a linear time giving block X, see Fig. 2(a).

When merging the blocks X and Y we need a work area of size | X|. This
is formed by searching the | X | smallest elements of X and YV giving blocks x
and y (actually we must only ensure that | X — x| < ||+ |y|), see Fig. 2(b).
The final steps of the algorithm are: interchange blocks X — z and x, merge
blocks X — 2 and Y — 9 and sort block x 4+ y by the straightforward in-place
mergesort, see Fig. 2(c,d,e). As we easily see, the final steps of the algorithm
need only a linear time. Alternatively, X and Y could have been merged,
as proposed by Kronrod [10], by using an in-place merging routine, the use
of which we have wanted to avoid.

To summarize, in the merge part of the algorithm we make O(N) com-
parisons and 2N log,log, N + O(N) moves, since the number of merges is
log, logy N4+0O(1). Thus, the computational costs of the algorithm are dom-
inated by those of the sort part, which is shown to require N log, N+ O(N)
comparisons and (2/[log, K'1)Nlog, N+O(N) = 2N log;r N+O(N) moves,
where K > 2 is a constant. In other words, the number of comparisons per-
formed by the algorithm is bounded above by Nlog, N + O(N) and the
number of moves by eNlog, N, for any fixed ¢ > 0, if N > N(e) (e.g.,
choose K = 16'/¢ and let N be big enough).



(e)

Fig. 2: lllustration of the advanced algorithm. A horizontal rectangle represents an
unordered block.

4. Experimental results

To evaluate the practical efficiency of the in-place mergesort algorithm pre-
sented in the previous section, we programmed it with the C language. For
the sake of comparisons, we programmed also the bottom-up heapsort algo-
rithm [18] and the standard mergesort algorithm using linear extra space [9].

Our very first implementation of the in-place mergesort algorithm used a
general k-way merge routine. The program turned out to be unacceptably
slow, so we wrote specialized programs for k& equal to 2,4, and 8. The pro-
gram with k = 4 behaved best in the following experiments. After some pro-
filing, it was observed that the selection tree was a bottleneck in the in-place
4-mergesort program. Therefore we replaced the selection tree by an array
of size 4. The resulting program is denoted in-place 4*-mergesort. Now,
to find the smallest of any four elements, three comparisons are required,



10

while only two are necessary if the selection tree is in use. The increase in
the number of comparisons can be clearly seen in Fig. 3(a). The theoretical
analysis of the 4*-mergesort algorithm is left for the reader. Even if this
implementation is theoretically inferior to the implementation of Section 3,
it was the fastest in-place mergesort algorithm in our experiments.

The experimental results reported in Fig. 3 and Fig. 4 were carried out on
Solbourne S-4000, which has a Sparc processor. The programs were compiled
by the Gnu-C compiler with no optimizations. The input elements were
pseudo-random integers and the amount of elements in different experiments
were 5 000, 10 000, 20 000, 40 000, 60 000, 80 000, and 100 000. The
measured quantities in Fig. 3 and Fig. 4 are the average values for 10 and

#Comparisons
T T T
—-&— In-place 2-mergesort
2,000,000  —o— In-place 4-mergesort
—— In-place 4*-mergesort
—— Mergesort b
- —— Heapsort
1,000,000 -
(a) \
5,000 25,000 50,000 75,000 100,000
#FElements
#Moves
T T T
4,000,000 - _o Tn-place 2-mergesort,
| —— In-place 4-mergesort
—— In-place 4*-mergesort
3,000,000 | —— Mergesort,
—— Heapsort,
2,000,000
1,000,000
(b) = '
5,000 25,000 50,000 75,000 100,000

#FElements

Fig. 3: The number of (a) comparisons and (b) moves performed by various sorting
programs for randomly generated data.



11

50 runs, respectively.

Fig. 3(a) gives the number of comparisons and Fig. 3(b) the number of
moves performed by the various sorting programs. We studied the actual
running times of the programs in two models: MIX model [9] and gsort
model [1]. The MIX model reflects the fact that the elements to be sorted
are integers, which is known beforehand. Therefore, the cost of comparisons,
moves, and index overhead should be about the same. Moves should, how-
ever, be more expensive if we were sorting big records. The gsort model
takes into account, the fact that a general sorting program should be poly-
morphic, as the gsort sorting routine in a C library. Since each comparison
involves a function call, comparisons are more expensive than moves and in-

Running times (seconds) with in-line comparisons

7 T T T
6 | — In-place 2-mergesort 4
—o— In-place 4-mergesort,
5 b —— In-place 4*-mergesort i
—— Mergesort
4 | — Heapsort
3l ]
9L ]
1k ]
(a) 9 ! ! !
5,000 25,000 50,000 75,000 100,000
#FElements
Running times (seconds) for polymorphic algorithms
T T T
7 —— In-place 4*-mergesort
—— Mergesort
6 — Heapsort
5

5,000 25,000 50,000 75,000 100,000
#FElements

Fig. 4: The running times of various sorting programs for randomly generated data under

(a) the MTX model and (b) the gsort model.



12

dex overhead. Fig. 4(a) gives the running times for the programs with in-line
comparisons and Fig. 4(b) for the programs with the gsort interface.

One should observe that the average case for mergesort is only a little bit
better than the worst case while for bottom-up heapsort this is not true; the
experiments reflect this because pseudo-random integers were used as input.
According to our experiments bottom-up heapsort is still the fastest in-place
sorting method guaranteeing the O(N log, N) worst-case performance. In-
place mergesort is 25-50 per cent slower than bottom-up heapsort depending
on the cost model. We compared also our in-place mergesort implementation
to those based on in-place merging, which had been programmed by the
second author as part of his M.Sc. project [12]. These earlier mergesort
programs were however much slower than those reported in the present
work.

5. Conclusions

The performance of the presented in-place algorithms is summarized in Ta-
ble I. The first algorithm is the basic one where no optimization is done. The
second one merges the tiny blocks (smaller than v/N) and the huge blocks
separately. The last one uses K-way merge in sorting as well as merges the
small blocks (smaller than N/log, N) and the big blocks separately.

TABLE I: Summary of the results.

‘ ‘ comparisons ‘ moves ‘
basic sort, Nlog, N + O(N) 2Nlog, N + O(N)
algorithm merge O(N) 2Nlog, N + O(N)
straightforward sort, Nlog, N + O(N) 2Nlog, N + O(N)
algorithm merge O(N) Nlog, N + O(N)
advanced sort, Nlog, N+ O(N) | (2/[log, K])Nlog, N + O(N)
algorithm merge O(N) 2N log, logs N + O(N)

We have shown that it is relatively simple to device an in-place merge-
sort, the performance of which is of the order O(N log, N). With various
elaborations, also the precise complexity can be brought close to the opti-
mum Nlog, N — Nlog, e + 1log, N 4+ O(1), with respect to the number of
comparisons [9]. A natural question is, whether the number of moves can
be reduced from N log, N, while keeping the number of comparisons the
same.

Our starting point was a bit different from the usual approaches: We did
not try to solve the in-place merging problem but went directly to solve
the sorting problem. Since merging is stable by nature, it is fair to ask,



13

whether it would be possible to develop a powerful stable in-place mergesort
algorithm that is more efficient than those based on stable in-place merging.

(1]
2]
[3]
[4]

[5]

[15]
[16]
[17]

[18]

[19]

References

Bentley J.1.. and Mcllroy M. D., Engineering a sort function, Software Practice
and Fzperience 23 (1993) 1249 1265.

Carlsson S., A variant of HEAPSORT with almost optimal number of comparisons,
Inform. Process. Lett. 24 (1987) 247 250.

Carlsson S.; A note on HEAPSORT, Comput. J. 85 (1992) 410 411.

Carlsson S., Katajainen J., and Teuhola J., In-place linear probing sort, Proc. of
the 9th Symposium on Theoretical Aspects of Computer Science, Lecture Notes in
Comput. Sci. 577, Springer-Verlag (1992), pp. 581 587.

Fleischer R., A tight lower bound for the worst case of Bottom-Up Heapsort, Proc.
of the 2nd International Symposium on Algorithms, L.ecture Notes in Comput. Sci.
557, Springer-Verlag (1991), pp. 251 262.

Floyd R.W., Treesort 3 (Algorithm 245), Comm. ACM 7 (1964) 701.

Huang B.-C. and T.angston M. A_| Practical in-place merging, Comm. ACM 31 (1988)
348 352.

Hwang F. K. and Lin S., A simple algorithm for merging two disjoint linearly ordered
sets, STAM J. Comput. 1 (1972) 31 39.

Knuth D.E., The Art of Computer Programming, Vol. 3: Sorting and Searching,
Addison-Wesley, 1973.

Kronrod M. A., Optimal ordering algorithm without operational field, Soviet Math.
Dokl. 10 (1969) 744 T46.

Munro J.I. and Raman V., Sorting with minimum data movement, J. Algorithms 13
(1992) 374-393.

Pasanen T., Lajittelu minimitilassa, M.Sc. Thesis, Dept. of Computer Science, Univ.
of Turku, Turku, Finland, 1993.

Raman V.| Sorting in-place with minimum data movement, Ph.D. Dissertation, Dept.
of Computer Science, Univ. of Waterloo, Waterloo, Canada, 1991.

Reinhardt K., Sorting in-place with a worst case complexity of nlogn—1.3n+0(logn)
comparisons and enlog n+Q(1) transports, Proc. of the 3rd International Symposium
on Algorithms and Computation, L.ecture Notes in Comput. Sci. 650, Springer-Verlag
(1992), pp. 489 498.

Salowe J. and Steiger W., Simplified stable merging tasks, J. Algorithms 8 (1987)
557 571.

Schaffer R. and Sedgewick R., The analysis of Heapsort, J. Algorithms 15 (1993)
76 100.

Trabb Pardo 1.., Stable sorting and merging with optimal space and time bounds,
STAM J. Comput. 6 (1977) 351-372.

Wegener 1., BOTTOM-UP-HEAPSORT, a new variant of HEAPSORT beating, on
an average, QUICKSORT (if n is not very small), Theoret. Comput. Sci. 118 (1993)
81 98.

Williams J. W..J., Heapsort. (Algorithm 232), Comm. ACM 7 (1964) 347 348.



