
Nordic Journal of ComputingPRACTICAL IN-PLACE MERGESORT�JYRKI KATAJAINENDepartment of Computer Science, University of CopenhagenUniversitetsparken 1, DK-2100 Copenhagen East, DENMARKElectronic mail: jyrki@diku.dkTOMI PASANENyTurku Centre for Computer Science,Lemmink�aisenkatu 14A, FIN-20520 Turku, FINLANDElectronic mail: Tomi.Pasanen@utu.fiJUKKA TEUHOLAzDepartment of Computer Science, University of TurkuLemmink�aisenkatu 14 A, FIN-20520 Turku, FINLANDElectronic mail: Jukka.Teuhola@utu.fiAbstract. Two in-place variants of the classical mergesort algorithm are analysedin detail. The �rst, straightforward variant performs at most N log2N + O(N)comparisons and 3N log2N + O(N) moves to sort N elements. The second, moreadvanced variant requires at most N log2N + O(N) comparisons and "N log2Nmoves, for any �xed " > 0 and any N > N ("). In theory, the second one issuperior to advanced versions of heapsort. In practice, due to the overhead in theindex manipulation, our fastest in-place mergesort behaves still about 50 per centslower than the bottom-up heapsort. However, our implementations are practicalcompared to mergesort algorithms based on in-place merging.Key words: sorting, mergesort, in-place algorithmsCR Classi�cation: F.2.2 1. IntroductionAssume that we are given an array A of N elements that are to be sorted.Mergesort is a classical sorting routine that can iteratively be described asfollows. Initially, each element is thought to form a sorted subsequence ofsize one. These subsequences are merged pairwise, and in this way we can(almost) halve the number of sorted subsequences. This process is thenrepeated until we have only one sorted sequence left, containing all theelements.� Presented at the 7th Finnish Symposium on Computer Science, Liperi, Finland, January1994.y Supported by the Academy of Finland under contract No. 1021129.z Supported by the Academy of Finland under contract No. 1071337.Received February 1996.

2 The heart of the construction is the merge routine, which combines twosorted sequences into one. The drawback of the straight 2-way merge algo-rithm [9], which repeatedly moves the smaller of the minima of the remainingsubsequences to an output area, is that it requires extra storage space for itsoperation. If the sequences to be merged are of size m and n, respectively,then a trivial implementation of the 2-way merge requires at mostm+n�1comparisons, m+ n element moves, and m+ n extra storage locations.Assuming that we have an extra array B of size N available, the mergesortalgorithm can be technically realized so that the elements of A are mergedback and forth from A to B. With the 2-way merge routine, the number ofcomparisons performed will be N log2N+O(N) and the number of elementmoves also N log2N + O(N). If K-way merge is applied, the number ofmoves can be reduced to (2=d log2Ke)N log2N + O(N) without a�ectingthe number of comparisons (cf. Section 3).In this paper we explore the question as to how the mergesort algorithmcan be turned into an e�cient in-place algorithm. More precisely, we assumethat only one extra storage location (in addition to the array A) is availablefor storing the data elements and O(1) storage locations are available forstoring indices of the input array A. The only operations permitted onthe data elements are comparisons and moves. In the basic algorithm, theindices are manipulated only by addition and subtraction. (The algorithmcould be implemented, without loss of e�ciency, even if addition by oneand subtraction by one were the only arithmetic operations allowed. Thesedetails are, however, left for the interested reader.) In the �ne-tuned version,we also need division (or shift) as in advanced heapsort variations [3].In the theoretical analysis of the in-place algorithms to be presented, wecalculate the number of element comparisons and element moves (or as-signments) made in the worst case. The ultimate goal would be a sortingalgorithm that performs N log2N + O(N) comparisons and O(N) moves(cf. Munro and Raman [11]). The performance of our algorithms is wellcharacterized by these two quantities, since the work required by the indexmanipulations is closely related to the number of the above operations. Asto the practical e�ciency of various in-place algorithms, the index manipu-lation is of course of importance (cf. Section 4).Many algorithms for in-place merging have been proposed, the presentchampion being the one by Huang and Langston [7]. Their algorithm mergestwo sequences of size m and n in O(m + n) time or, more precisely, itperforms at most 1:5(m + n) + O(pm+ n log2(m + n)) comparisons and5(m + n) + O(pm+ n log2(m + n)) moves1. When this merge routine isused for implementing mergesort, N elements will be sorted in-place withat most 1:5N log2N +O(N) comparisons and 5N log2N + O(N) moves.We shall show that mergesort can be implemented in-place more e�ciently,1 Actually, in [12] it was shown that the number of moves is bounded by 6(m + n) +O(pm+ n log2(m+ n)) but by using the \hole" technique, to be described in Section 2,an implementation requiring at most 5(m+n)+O(pm+ n log2(m+n)) moves is obtained.

3if we use the standard merge routine as a starting point, instead of the knownin-place merge algorithms. The basic observation (see [10, Lemma 3] or [9,Exercise 5.2.4-10]) is that the 2-way merge can be easily modi�ed such thatit will merge two sequences of size m and n by using only min(m;n) extraspace. One way to obtain this is as follows. For the sake of simplicity, assumethat the sequences X and Y to be merged are consecutive subsequences ofthe same array, as they are in mergesort, and that X is not longer than Y .Now, move �rst the elements of X to a work area W , and then merge Wand Y in the usual manner to the area covered by X and Y .Our mergesort variant is based on the partitioning principle that hasturned out to be useful in many contexts (see, e.g. [4, 10, 13]). First, we sortabout one half of the elements by using the second half of the input array asa work area. Second, we sort half of the second half in the same way. Third,we merge the two sequences of sizes about N=2 and N=4 by using the lastN=4 positions of the input array as a work area. Then we repeatedly sorthalf of the remaining elements and merge this block together with the bigsorted block obtained so far. It is not di�cult to see that this algorithm runsin O(N log2N) time. A detailed analysis, to be given in Section 2, showsthat the algorithm can be easily implemented such that it will perform atmost N log2N +O(N) comparisons and 3N log2N + O(N) moves.In Section 3 we describe an advanced version of the algorithm and showthat it performs at mostN log2N+O(N) comparisons and "N log2N moves,for any �xed " > 0 and anyN > N("). (Observe that " has to be a �xed con-stant, since the amount of extra space required by the algorithm is exponen-tial on 1=".) These �gures should be compared to the corresponding boundsknown, for example, for heapsort. Floyd's improvement [6] of the standardheapsort [19] makes 2N log2N + O(N) comparisons and N log2N + O(N)moves, and the bottom-up heapsort [5, 18] 1:5N log2N+O(N) comparisonsand 1:5N log2N +O(N) moves, in the worst case. More advanced heapsortvariations exist (see, e.g. [2, 3]), but these assume that the general shiftoperation is a constant time operation. (Observe that already bottom-upheapsort uses the division operation.) If the elements to be sorted are alldistinct, the number of moves performed by the heapsort algorithms is atleast 0:5N log2N � O(N) [16]. So both the number of comparisons andmoves made by heapsort are in the worst case larger than those made byour in-place mergesort.In practical experiments our fastest in-place mergesort program was about50 per cent slower than the bottom-up heapsort program. Therefore, thenumber of element comparisons and element moves does not tell the wholetruth. However, if the e�ciency is compared to earlier in-place mergesort im-plementations, e.g., that utilizing the in-place merging algorithm of Huangand Langston [7], our implementation is considerably faster. The experi-mental results are reported in Section 4.It should be observed that a mergesort version similar to ours appearsalready in the seminal paper by Kronrod [10] (see also [15]). The maincontribution in this paper is the detailed analysis of the algorithm and the

4evaluation of its practical e�ciency. Observe also that an in-place sorting al-gorithm performing N log2N+O(N) comparisons and "N log2N moves hasbeen developed independently by Reinhardt [14]. He uses similar techniquesas we do, but his main results concern minimizing the number of compar-isons, that is, the constant in the linear term. He also applies quicksort-likepartitioning, which in our opinion does not belong to a \pure" mergesort al-gorithm. Without exaggerating, it can be said that our algorithm is simplerthan that given in [14].2. Straightforward in-place mergesortIn this section we describe an in-place sorting algorithm that uses mergingas its basic tool. This algorithm is a variant of the second in-place sortingalgorithm proposed by Kronrod [10]. We also analyse the e�ciency of thealgorithm. A more �ne-tuned version will be given in the next section.Assume that the elements to be sorted are given in an array A of size N .We use the notation hi; ji to denote the block A[i::j] of elements. The casei > j represents an empty block. By X � Y we mean a block, which is leftover X when the elements of Y are removed from X , and by X + Y a blockwhich includes all elements of X and Y . Two blocks P and Q are said to beequivalent , denoted P � Q, if they contain precisely the same elements ofA, possibly in a di�erent order. The size jP j of a non-empty block P = hi; jiis j � i+ 1. The size of an empty block is 0.In our sorting algorithm, illustrated in Fig. 1, we maintain an invariantthat array A consists of two consecutive blocks, P and Q, where P containssome elements in no speci�c order, whereas the elements of Q are in sortedorder. An initial situation is created by choosing P = h1; dN=2ei and sortingthe rest of A to Q by using P as the work area. The size of Q is increasedgradually as follows. First, we divide P into two blocks, P1 and P2, so thatjP1j = jP2j or jP1j = jP2j � 1. Second, we sort P1 by using the standardmergesort routine. Block P2 is used as a work area. As a result we get twoblocks P 01 and P 02, where P 01 � P1 and P 02 � P2, and the elements of P 01 are insorted order. Third, we merge the blocks P 01 and Q. The output is produced\over" P 02 and Q. As a result of this merge we get two consecutive blocks,P 002 and Q0, where P 002 � P 02 � P2 and Q0 � P 01 + Q, and the elements of Q0appear in sorted order. Now we assign P P 002 and Q Q0, and repeatthe process, until jP j = 1 in which case the single element is moved into itsright place in Q, pushing the smaller elements one step left.For the purpose of the analysis, two parts of the algorithm can be readilyseparated: the sort part consists of the calls to the mergesort routine andthe merge part consists of the calls to the merge routine (outside mergesort).Let S(m) denote the time required by the sort part after P has reached thesize m, and let M(m;n) denote the time required by the merge part afterP has reached the size m and Q the size n. The time requirements of both

5A QP QP 02P 01 Q0P 002
? sort? sort 	mergeqFig. 1: Illustration of the steps in the basic algorithm. A horizontal rectangle representsan unordered block, and a triangle a sorted block.parts can be expressed recursively with the following recurrence relations:S(m) = O(m log2m) + S(dm=2e); for m > 1;S(1) = O(1) ;M(m;n) = O(m+ n) +M(dm=2e; bm=2c+ n); for m > 1;M(1; n) = O(1 + n) ;It is easy to see that S(m) = O(m log2m) and also M(dm=2e; bm=2c) =O(m log2m). Since the total running time of the algorithm is proportionalto S(dN=2e) +M(dN=2e; bN=2c), the algorithm runs in O(N log2N) time.Next we shall give a detailed description of the subroutines used, in orderto analyse the number of comparisons and moves performed. We start with

6the merge routine, which is needed in the sort part. The basic task is tomerge repeatedly two consecutive blocks, X and Y , of about the same sizeto another block W in the work area. Each time an element e from X orY is moved to W , the element sitting in W should be moved to the placeof e. Usually this is done by one swap, but since a swap requires 3 moves(assignments), we choose another way of implementing the merges. We takethe �rst element of W and store it separately. This creates a hole in W .Then the next element e of X or Y is moved to the hole, and a new hole iscreated by moving the element of W beside the previous hole into the placeof e. This is repeated until all the elements of X and Y are moved to W .Finally, the �rst stored element of W is moved to the hole in X or Y .Implemented this way, the merging of two blocks of size m and n requiresm+n� 1 comparisons and only 2(m+ n) + 1 moves, not 3(m+n) as whenimplemented with swaps. To sort n0 elements, n0 log2 n0+O(n0) comparisonsand 2n0 log2 n0+O(n0) moves are required. In the sort part, sorting is neededfor blocks of size bN2 c; bdN2 e=2c, etc. It is not di�cult to see that in the sortpart, the number of comparisons is bounded by N log2N + O(N) and thenumber of moves by 2N log2N +O(N).Actually, we could divide the work a bit di�erently, so that the elements inthe block hdN=3e+1; Ni are mergesorted �rst, by using the block h1; dN=3eias the work area. However, it can be easily veri�ed that this choice has noe�ect on the constants of the above formulas. Hence, we stick to the moreuniform approach of dividing blocks always at half.In the merge part of our algorithm, the two blocks to be merged are not ofthe same size. Therefore, it is here better to use the binary merge routine,instead of the normal (unary 2-way) one. The binary merge algorithm wasdescribed in [8]. The basic idea is as follows. Let X and Y be the blocksto be merged. Let their sizes be m and n, respectively. For the sake ofsimplicity, assume that m � n. Now let t = blog2(n=m)c and comparex1, the �rst element of X , to y2t , the 2tth element of Y . If x1 < y2t , theproper place of x1 is searched for by applying binary search. Let us assumethat yk�1 � x1 < yk, k � 2t. Now the Y -block h1; k � 1i is moved to theoutput area followed by x1, and the merging process is repeated for X-blockh2; jX ji and Y -block hk; jY ji. If x1 � y2t , then Y -block h1; 2ti is moved tothe output area and the merge process is repeated for X-block h1; jX ji andY -block h2t + 1; jY ji.Hwang and Lin [8] proved that the binary merge routine merges twoblocks of size m and n with d log2 �m+nm �e+minfm;ng comparisons, which isO(m log2(n=m)). The number of moves will be 2(m+n)+1, if implementedas carefully as in the merges of the sort part. Now, in the merge part, thebinary merge routine is called at most log2N + 2 times. First, the sizesof the merged blocks are bN2 c and bdN2 e=2c; second, bN2 c + bdN2 e=2c andbddN2 e=2e=2c, etc. The number of comparisons is then of the orderO�N4 log2 2 + N8 log2 6 + � � �+ N2i log2(2i � 2) + � � �� ;

7which is O0@N log2NXi=1 i=2i1A = O(N) :The number of moves is bounded above by2((N=2 +N=4) + (N=2 +N=4 +N=8) + � � �) +O(N) ;which gives 2N log2N +O(N).In the merge part, most work is done when small blocks are merged withthe big sorted block. We say that a block is tiny if its size is smaller thanpN , otherwise a block is called huge. Both the number of tiny and hugeblocks is less than or equal to 12 log2N +2. To save work in the merge part,the huge and tiny blocks can be merged separately. That is, when the �rsttiny block is encountered, this is no more merged to the merge result of thehuge blocks, but another sorted block of size at most 2pN is formed bymerging all tiny blocks together. Finally, the two sorted blocks (X and Y)are merged together by moving the elements of X into their proper placesin the following way. First, �nd the proper place within Y for the minimumelement of X . Then interchange block X with the front part of Y , andrepeat the procedure for the next smallest element of X and the rest of Y .(This is analogous to the block merge backwards operation of TrabbPardo [17].) It is easy to see that this �nal merge only requires O(N) time,since each element of X is moved over a subblock of Y at most 2pN times,and each element of Y is touched only once. This trick reduces the numberof moves performed in the merge part of our algorithm to N log2N +O(N).To sum up, the number of comparisons performed in the whole algorithm isbounded byN log2N+O(N) and the number of moves by 3N log2N+O(N).3. Advanced in-place mergesortIn this section we show how the e�ciency of our in-place mergesort algorithmcan be improved. Our purpose is �rst to reduce the number of moves in thesort part of the algorithm and then those performed in the merge part.To reduce the number of moves required in the sort part, we use K-way merge (K being an arbitrary constant) instead of 2-way merge as doneearlier. By doing this, the number of merging levels will come down tod logK Ne + O(1). Choosing, e.g., K = 4 will readily reduce the numberof moves by a factor of two. More generally, the number of moves will be(2=d log2Ke)N log2N + O(N). However, the number of comparisons canbecome larger if the K-way merge is not implemented carefully. Next weshow how the number of comparisons can be kept almost unchanged.Let the K blocks to be merged be X1; : : : ; XK. To decide, which of theblocks contains the smallest element, K � 1 comparisons are required. Thisis done by building a selection tree (cf. [9]) of depth d log2Ke above the Kelements. The smallest element is moved to the output area. After this, the

8selection tree is updated by inserting in the tree the element following thesmallest one of the same block. To do this, only d log2Ke comparisons areneeded. Note that, to avoid element moves, only pointers to elements arestored in the tree.Since, during the algorithm, only O(N=K) K-way merges are performed,K-merging will cause O(N) extra comparisons. For all elements, exceptthe smallest, d log2Ke comparisons are done per element at every merginglevel. But since the number of levels is now d logK Ne+ O(1), the numberof comparisons performed is N log2N + O(N) in total.Let us next consider, how the number of moves can be reduced in themerge part of the algorithm. Actually, one could say that the merges inthis part are done in the worst possible order. If the smallest block couldbe merged with the second smallest, and the result of this with the thirdsmallest, and so on, the total work required for the merges would be O(N).However, this cannot be done, because we need a work area for our merges.As observed already in the previous section, most work in the merge partis done when small blocks are merged with the union of previous blocks.Now we will elaborate this idea further on. Let us call a block small , if itssize is less than N= log2N ; otherwise call it big . In the same way as earlierwe sort and merge the big blocks (forming block Y) until the �rst smallblock is encountered. Because the size of the work area (including the �rstsmall block) is now at most 2N= log2N , we can sort it by the straightforwardin-place mergesort in a linear time giving block X , see Fig. 2(a).When merging the blocks X and Y we need a work area of size jX j. Thisis formed by searching the jX j smallest elements of X and Y giving blocks xand y (actually we must only ensure that jX � xj � jxj+ jyj), see Fig. 2(b).The �nal steps of the algorithm are: interchange blocks X�x and x, mergeblocks X�x and Y � y and sort block x+ y by the straightforward in-placemergesort, see Fig. 2(c,d,e). As we easily see, the �nal steps of the algorithmneed only a linear time. Alternatively, X and Y could have been merged,as proposed by Kronrod [10], by using an in-place merging routine, the useof which we have wanted to avoid.To summarize, in the merge part of the algorithm we make O(N) com-parisons and 2N log2 log2N + O(N) moves, since the number of merges islog2 log2N+O(1). Thus, the computational costs of the algorithm are dom-inated by those of the sort part, which is shown to require N log2N +O(N)comparisons and (2=d log2Ke)N log2N+O(N) = 2N logK N+O(N) moves,where K � 2 is a constant. In other words, the number of comparisons per-formed by the algorithm is bounded above by N log2N + O(N) and thenumber of moves by "N log2N , for any �xed " > 0, if N > N(") (e.g.,choose K = 161=" and let N be big enough).

9X YX � x Y � yyx
x+ y Y � yyX � x

(e)(d)(c)(b)(a)
j /mergex� j

Fig. 2: Illustration of the advanced algorithm. A horizontal rectangle represents anunordered block. 4. Experimental resultsTo evaluate the practical e�ciency of the in-place mergesort algorithm pre-sented in the previous section, we programmed it with the C language. Forthe sake of comparisons, we programmed also the bottom-up heapsort algo-rithm [18] and the standard mergesort algorithm using linear extra space [9].Our very �rst implementation of the in-place mergesort algorithm used ageneral k-way merge routine. The program turned out to be unacceptablyslow, so we wrote specialized programs for k equal to 2,4, and 8. The pro-gram with k = 4 behaved best in the following experiments. After some pro-�ling, it was observed that the selection tree was a bottleneck in the in-place4-mergesort program. Therefore we replaced the selection tree by an arrayof size 4. The resulting program is denoted in-place 4*-mergesort. Now,to �nd the smallest of any four elements, three comparisons are required,

10while only two are necessary if the selection tree is in use. The increase inthe number of comparisons can be clearly seen in Fig. 3(a). The theoreticalanalysis of the 4*-mergesort algorithm is left for the reader. Even if thisimplementation is theoretically inferior to the implementation of Section 3,it was the fastest in-place mergesort algorithm in our experiments.The experimental results reported in Fig. 3 and Fig. 4 were carried out onSolbourne S-4000, which has a Sparc processor. The programs were compiledby the Gnu-C compiler with no optimizations. The input elements werepseudo-random integers and the amount of elements in di�erent experimentswere 5 000, 10 000, 20 000, 40 000, 60 000, 80 000, and 100 000. Themeasured quantities in Fig. 3 and Fig. 4 are the average values for 10 and
(a) 5,000 25,000 50,000 75,000 100,0001,000,0002,000,000 #Elements

#ComparisonsIn-place 2-mergesortIn-place 4-mergesortIn-place 4*-mergesort? MergesortHeapsort? ? ? ? ? ? ?
(b) In-place 2-mergesortIn-place 4-mergesortIn-place 4*-mergesort? MergesortHeapsort5,0001,000,0002,000,0003,000,0004,000,000 25,000 50,000 75,000 100,000#Elements

#Moves
? ? ? ? ? ? ?Fig. 3: The number of (a) comparisons and (b) moves performed by various sortingprograms for randomly generated data.

1150 runs, respectively.Fig. 3(a) gives the number of comparisons and Fig. 3(b) the number ofmoves performed by the various sorting programs. We studied the actualrunning times of the programs in two models: MIX model [9] and qsortmodel [1]. The MIX model re
ects the fact that the elements to be sortedare integers, which is known beforehand. Therefore, the cost of comparisons,moves, and index overhead should be about the same. Moves should, how-ever, be more expensive if we were sorting big records. The qsort modeltakes into account the fact that a general sorting program should be poly-morphic, as the qsort sorting routine in a C library. Since each comparisoninvolves a function call, comparisons are more expensive than moves and in-
(a) In-place 2-mergesortIn-place 4-mergesortIn-place 4*-mergesort? MergesortHeapsort5,0001234567 25,000 50,000 75,000 100,000#Elements

Running times (seconds) with in-line comparisons
? ? ? ? ? ? ?

(b) In-place 4*-mergesort? MergesortHeapsort5,00012345678 25,000 50,000 75,000 100,000#Elements
Running times (seconds) for polymorphic algorithms

? ? ? ? ? ? ?
Fig. 4: The running times of various sorting programs for randomly generated data under(a) the MIX model and (b) the qsort model.

12dex overhead. Fig. 4(a) gives the running times for the programs with in-linecomparisons and Fig. 4(b) for the programs with the qsort interface.One should observe that the average case for mergesort is only a little bitbetter than the worst case while for bottom-up heapsort this is not true; theexperiments re
ect this because pseudo-random integers were used as input.According to our experiments bottom-up heapsort is still the fastest in-placesorting method guaranteeing the O(N log2N) worst-case performance. In-place mergesort is 25-50 per cent slower than bottom-up heapsort dependingon the cost model. We compared also our in-place mergesort implementationto those based on in-place merging, which had been programmed by thesecond author as part of his M.Sc. project [12]. These earlier mergesortprograms were however much slower than those reported in the presentwork. 5. ConclusionsThe performance of the presented in-place algorithms is summarized in Ta-ble I. The �rst algorithm is the basic one where no optimization is done. Thesecond one merges the tiny blocks (smaller than pN) and the huge blocksseparately. The last one uses K-way merge in sorting as well as merges thesmall blocks (smaller than N= log2N) and the big blocks separately.Table I: Summary of the results.comparisons movesbasic sort N log2N +O(N) 2N log2N +O(N)algorithm merge O(N) 2N log2N +O(N)straightforward sort N log2N +O(N) 2N log2N +O(N)algorithm merge O(N) N log2N +O(N)advanced sort N log2N +O(N) (2=d log2Ke)N log2N +O(N)algorithm merge O(N) 2N log2 log2N + O(N)We have shown that it is relatively simple to device an in-place merge-sort, the performance of which is of the order O(N log2N). With variouselaborations, also the precise complexity can be brought close to the opti-mum N log2N �N log2 e + 12 log2N + O(1), with respect to the number ofcomparisons [9]. A natural question is, whether the number of moves canbe reduced from "N log2N , while keeping the number of comparisons thesame.Our starting point was a bit di�erent from the usual approaches: We didnot try to solve the in-place merging problem but went directly to solvethe sorting problem. Since merging is stable by nature, it is fair to ask,

13whether it would be possible to develop a powerful stable in-place mergesortalgorithm that is more e�cient than those based on stable in-place merging.References[1] Bentley J. L. and McIlroy M.D., Engineering a sort function, Software | Practiceand Experience 23 (1993) 1249{1265.[2] Carlsson S., A variant of HEAPSORT with almost optimal number of comparisons,Inform. Process. Lett. 24 (1987) 247{250.[3] Carlsson S., A note on HEAPSORT, Comput. J. 35 (1992) 410{411.[4] Carlsson S., Katajainen J., and Teuhola J., In-place linear probing sort, Proc. ofthe 9th Symposium on Theoretical Aspects of Computer Science, Lecture Notes inComput. Sci. 577, Springer-Verlag (1992), pp. 581{587.[5] Fleischer R., A tight lower bound for the worst case of Bottom-Up Heapsort, Proc.of the 2nd International Symposium on Algorithms, Lecture Notes in Comput. Sci.557, Springer-Verlag (1991), pp. 251{262.[6] Floyd R.W., Treesort 3 (Algorithm 245), Comm. ACM 7 (1964) 701.[7] Huang B.-C. and Langston M.A., Practical in-place merging, Comm. ACM 31 (1988)348{352.[8] Hwang F.K. and Lin S., A simple algorithm for merging two disjoint linearly orderedsets, SIAM J. Comput. 1 (1972) 31{39.[9] Knuth D. E., The Art of Computer Programming, Vol. 3: Sorting and Searching,Addison-Wesley, 1973.[10] Kronrod M.A., Optimal ordering algorithm without operational �eld, Soviet Math.Dokl. 10 (1969) 744{746.[11] Munro J. I. and Raman V., Sorting with minimum data movement, J. Algorithms 13(1992) 374-393.[12] Pasanen T., Lajittelu minimitilassa, M.Sc. Thesis, Dept. of Computer Science, Univ.of Turku, Turku, Finland, 1993.[13] Raman V., Sorting in-place with minimum data movement , Ph.D. Dissertation, Dept.of Computer Science, Univ. of Waterloo, Waterloo, Canada, 1991.[14] Reinhardt K., Sorting in-place with a worst case complexity of n log n�1:3n+O(log n)comparisons and "n log n+O(1) transports, Proc. of the 3rd International Symposiumon Algorithms and Computation, Lecture Notes in Comput. Sci. 650, Springer-Verlag(1992), pp. 489{498.[15] Salowe J. and Steiger W., Simpli�ed stable merging tasks, J. Algorithms 8 (1987)557{571.[16] Scha�er R. and Sedgewick R., The analysis of Heapsort, J. Algorithms 15 (1993)76{100.[17] Trabb Pardo L., Stable sorting and merging with optimal space and time bounds,SIAM J. Comput. 6 (1977) 351-372.[18] Wegener I., BOTTOM-UP-HEAPSORT, a new variant of HEAPSORT beating, onan average, QUICKSORT (if n is not very small), Theoret. Comput. Sci. 118 (1993)81{98.[19] Williams J.W. J., Heapsort (Algorithm 232), Comm. ACM 7 (1964) 347{348.

