Neural Computation, 11(8):1995-2016, 1999.

How to Design a Connectionist Holistic Parser?

Ho K. S. Edward

Department of Systems Engineering and Engineering Management,
The Chinese University of Hong Kong,

Shatin, New Territories, Hong Kong

Chan L. W.

Department of Computer Science and Engineering

The Chinese University of Hong Kong,
Shatin, New Territories, Hong Kong

Connectionist holistic parsing offers a viable and attractive alterna-
tive to traditional algorithmic parsers. With exposure to a limited
subset of grammatical sentences and their corresponding parse trees
only, a holistic parser is capable of learning inductively the gram-
matical regularity underlying the training examples which effects the
parsing process. In the past, various connectionist parsers had been
proposed. Each approach has its own unique characteristics and yet
some techniques are shared in common. In this paper, various di-
mensions underlying the design of a holistic parser will be explored,
including the methods to encode the sentences and the parse trees,
whether the sentences and the parse trees share the same representa-
tions, the use of confluent inference and the inclusion of phrases in the
training set. Different combinations of these design factors will give
rise to different holistic parsers. In succeeding discussions, we scruti-

nize these design techniques and compare the performances of a few

parsers on language parsing, including the confluent preorder parser
(CPP), the backpropagation parsing network, the XERIC parser of
Berg, the connectionist modular parser of Sharkey & Sharkey, Reilly’s
model and their derivatives. Experiments are performed to evaluate
their generalization capability and robustness. The results unveil a
number of issues which are essential for building an effective holistic

parser.

1 Language Parsing

In language processing, parsing addresses the problem of finding the hierarchical
relationship between the terminals or words in a sequential sentence. Tradition-
ally, this relationship is manifested in the form of a tree: the parse tree. For
example, by classifying the words in the sentence “the boy takes the apple on
the table” | we form a sequence (DNVDNP DN), where the terminal D stands
for determiner, N for noun, V for verb and P for preposition. Upon success-
ful parsing, the parse tree in Figure 1 is produced, where the non-terminal np
stands for noun phrase, vp for verb phrase, pp for prepositional phrase and s
for sentence. Alternatively, it can also be represented by the Lisp-like structure

(DN) (V((DN) (P (DN)))))-

2 Algorithmic Parsing
2.1 Symbolic Algorithmic Parsers. For a very long time, the computational

linguistics approaches have dominated the study of language parsing. Numerous

np vp

/N 7N

D N V np
RN
np pp

Figure 1: The parse tree of the sentence (DNVDNPDN).

models have been proposed, such as the chart parser, the shift-reduce parser
and the augmented transition network (Aho et al. 1986; Allen 1995; Gazdar
& Mellish 1989; Krulee 1991). Generally speaking, these models share several
common characteristics. First, they are algorithmic and rule-based. A well-
defined parsing algorithm is implemented which governs the parsing process.
During parsing, the input sentence will be analyzed step-by-step, with the target
parse tree being built up incrementally at the same time. Second, symbolic
representations, such as character strings or pointer structures, will be adopted
for the sentences and the parse trees. Third, the construction of the parser
usually requires a detailed knowledge of the underlying grammar.

Despite their popularity, the computational linguistics approaches have been
criticized of their inadequacy in handling natural languages. In particular, their
rule-based nature fails to exhibit the kind of robustness as found in actual

language usages. Poor error recovery capability is thus resulted. Second, sym-

bolic representations are simply too crisp to reflect the richness and fuzziness as
manifested by natural language structures and meanings. Third, the extreme
flexibility of natural language grammars has effectively prohibited the complete
enumeration of the grammar rules. Even worse, some of the grammar rules may
have to be modified in order to “adapt” to the parser (e.g. in a top-down parser,
all left-recursions in the grammar rules have to be removed first).

2.2 Connectionist Algorithmic Parsers. In view of the drawbacks of the
traditional approaches, researchers have begun to switch their focus to more
data-oriented paradigms. For example, in the statistical or corpus-based ap-
proaches (Charniak 1993), statistics or co-occurrence information (such as n-
gram) is calculated from a large amount of sample text which can then be
used for the parsing task. For example, Franz (1996) has made used of corpus
statistics to resolve pp-attachment ambiguities.

Recently, as motivated by the study of cognitive science, connectionist tech-
niques are applied in natural language processing also. Compared with other
approaches, neural network parsers have the appeals that they are inherently
robust. They are capable of learning inductively and incrementally from exam-
ples, and they can generalize naturally to unseen sentence structures.

To exploit these advantages, effort has been paid to integrate the connectionist
techniques into the symbolic processing framework, giving rise to various “hy-
brid” parsers. For example, in the massively parallel parsing system (Pollack &

Waltz 1985), a chart parser is used to generate all possible parses of an input

sentence, which are then translated into a connectionist network. Alternative
syntactic classes and senses of the words as well as the pragmatic constraints
are represented by nodes which are connected via excitatory or inhibitory links.
The overall interpretation of the sentence is obtained via parallel constraint
satisfaction.

The connectionist deterministic parser (CDP) (Kwasny & Faisal 1992) con-
sists of a symbolic component which is a deterministic parser (Marcus 1980),
and a subsymbolic component which is a feedforward network. During parsing,
based on the contents of the parser’s symbolic data structures (which include
a stack and a lookahead buffer), the feedforward network outputs the action to
perform and the parser manipulates its data structures accordingly. Effectively,
the rigid rules are replaced by the feedforward network which has a more flexible
decision boundary, thus achieving robustness.

Other examples include the PARSEC model (Jain 1991), the subsymbolic
parser for embedded clauses (SPEC) (Miikkulainen 1996), and the neural net-
work pushdown automaton (NNPDA) (Sun et al. 1993).

However, these early attempts still require the detailed specification of the
parsing algorithm and the grammar. In some sense, they are partial or complete
neural network re-implementation of some symbolic algorithm only. In other
words, they are still algorithmic and rule-based in nature, although the rules may
now have more flexible decision boundaries (if they are implemented using neural

networks). In many cases, symbolic representations are even retained. The

inductive learning power of neural networks simply has not been fully utilized,

and error recovery performance is not satisfactory.

3 Holistic Parsing

Connectionist representation of a symbolic data structure provides the benefit
that it allows the manipulation of the vector representation as a whole. Effec-
tively, the structure encoded is operated as a whole also, without first breaking it
down into its constituent components. This type of operation, so called holistic
transformation (Blank et al. 1992), is generally not supported by common sym-
bolic encoding schemes. But it is useful for implementing structure-sensitive op-

erations such as unification (Stolcke & Wu 1992) and transformation (Chalmers

1992).
Connectionist Connectionist
representation of representation of
the input sentence the target parse tree

Symbolic Recursive Holistic Recursive Symbolic
repr esentation of - ==l Encoding I Transformation - Decoding ==P> representation of
the input sentence thetarget parsetree
Figure 2: Holistic parsing.

Holistic transformation is equally applicable in language parsing. By devel-
oping connectionist representations for the sentence and the parse tree, parsing
can be achieved by mapping holistically the sentence representation to the corre-

sponding parse tree representation. We call this holistic parsing (see Figure 2).

4 Design Issues of Holistic Parsers

Based on the holistic parsing paradigm as shown in Figure 2, different design

dimensions can be explored :

1. Encoding the sentences. First, different encoding mechanisms can be
adopted for developing the sentence representations. Two common choices
are the simple recurrent network (SRN) (Elman 1990) and the sequential
recursive auto-associative memory (SRAAM) (Pollack 1990). And when
an SRN is used, the sentence representation can be developed in two ways.
On the one hand, the SRN can be trained to produce at its output layer
the representation of the target parse tree (as obtained by certain con-
nectionist encoding mechanism), upon reading each terminal in the input
sentence sequence. Effectively, this implies that the sentence and the parse

tree share the same representation.

Alternatively, sentence coding can also be developed by training the
SRN on a sequence prediction task: given the 1st to the (i—1)th terminals
of the sentence, the SRN predicts what the ith terminal 1s. Upon successful
training, the hidden layer activation of the SRN after reading the whole

sentence will be used as its coding.

2. Encoding the parse trees. In much the same way, different encoding
schemes can be implemented for the parse trees also. Traditionally, the

parse tree is represented as a hierarchical data structure and the recursive

auto-associative memory (RAAM) (Pollack 1990) is commonly applied for

this task.

Previously, Kwasny & Kalman (1995) have proposed to linearize the
parse tree by preorder traversal. For example, the parse tree in Figure 1
corresponds to the sequence { s np D % « N % % vp V % x np np D *
N+ pp P # xnp D % % N % x). Note that null pointers are explicitly
added to the leaves of the tree, as represented by the special symbol *.
The preorder traversal sequence, instead of the hierarchical parse tree, is

then encoded by training an SRAAM.

. Implementing the Holistic transformation. The holistic transformation

can be realized in three different ways :

(a) First, one may choose to develop different representations for the
sentence and the parse tree. Then, a feedforward network is trained
to effect an explicit transformation from the sentence representation

to the parse tree representation.

(b) Alternatively, the sentence or the parse tree may be encoded first.
The representation thus obtained will then be used as the training
target for the other encoding process. In this way, both the sentence
and the parse tree will share the same representation, although their

respective encoding mechanisms are carried out separately in fact.

(c) Third, the representation of the sentence and that of the parse tree

may “co-evolve” at the same time, instead of being developed sepa-
rately and independently, and an identical representation will be de-
veloped for the sentence and its parse tree. This technique is known

as confluent inference (Chrisman 1991).

Note that for (b) and (c), the holistic transformation is effectively im-
plemented as an identity mapping. In other words, the representation
obtained via encoding the input sentence can be decoded directly to give

the symbolic form of the target parse tree.

. Learning to parse phrases. Originally, a holistic parser only learns to parse
a complete sentence to give the total parse tree. But a complete sentence
such as (DNVDNPDN) in fact consists of a number of phrases: the
noun phrase {DN), the prepositional phrase (P DN), the noun phrase
(DNPDN) and the verb phrase (VDN PDN). They are parsed to give
the subtrees (DN), (P (DN)), (DN) (P (DN))) and (V ((DN) (P (DN))))
respectively. So in addition to complete sentences, a holistic parser can be
taught to map the connectionist representation of a phrase to the corre-
sponding subtree representation. A parser being trained this way will have
a better knowledge of the internal structures of the sentences and their
parse trees. Better generalization performance in parsing can therefore be

expected.

5 Previous Holistic Parsers

Different combinations of the above-mentioned techniques will give rise to dif-
ferent holistic parsers. Some of these combinations have in fact been previously
studied.

5.1 Reilly’s parser. In Reilly’s parser (Reilly 1990), the parse trees as
hierarchical data structures are first encoded using RAAM. An SRN is then
trained to develop at its output layer the RAAM representation of the target
parse tree upon reading the last terminal of a complete sentence.

5.2 XERIC parser. Similar to Reilly’s model, in the XERIC parser (Berg
1992), parse trees are encoded as hierarchical data structures using RAAM and
an SRN is trained to output the RAAM representation of the target parse tree.
Unlike the previous approach, the RAAM network and the SRN are now trained
together coherently. In other words, confluent inference has been applied. More-
over, the parser learns to parse phrases in addition to complete sentences.

5.3 Connectionist modular parser. In the connectionist modular parser
proposed by Sharkey & Sharkey (1992), parse trees are first encoded as hier-
archical data structures using RAAM. An SRN is then trained on a sequence
prediction task using the sentences. Upon successful training, the hidden layer
activation after reading the whole sentence will be used as its coding. A 3-
layered feedforward network then maps explicitly the sentence representation
produced by the SRN to the parse tree representation developed by the RAAM

to effect parsing. As in Reilly’s parser, only complete sentences are considered.

10

5.4 Backpropagation parsing network (BPN). In the BPN (Ho & Chan
1994), the sentences and their respective parse trees are first encoded by training
an SRAAM and an RAAM respectively and independently. Then, a 3-layered
feedforward network is trained to map the SRAAM coding representing a sen-
tence to the RAAM coding representing its corresponding parse tree. So both
linearization and confluent inference are missing and the parser learns to parse
complete sentences only.

5.5 Confluent preorder parser (CPP). The architecture of the confluent
preorder parser (CPP) (Ho & Chan 1997) is shown in Figure 3. In the CPP, two
techniques have been integrated. First, the hierarchical parse tree is linearized
by preorder traversal into a sequence, as proposed by Kwasny & Kalman (1995).
But unlike their approach, null pointers are not added explicitly to the leaves
of the tree. Thus the parse tree in Figure 1 gives rise to the sequence (s np
DNvpVonapnp DN pp Pnp DN). Tt is this preorder traversal sequence
of the parse tree which is encoded, instead of the parse tree itself. Parsing
is thus achieved via a sequence-to-sequence transformation: from the sentence
sequence to the preorder traversal sequence, and both types of sequences are
encoded using SRAAM.

To further promote the generalization performance, confluent inference (Chris-
man 1991) is applied. The SRAAM for sentence encoding and the SRAAM for
preorder traversal encoding are trained together in a coherent manner, such that

identical representation is developed for the sentence and the preorder traversal

11

1 2 n 1 2 n m A
w9 > 209 00
pref i-1> ~ith terminal prefix <1..i-1> |th termmal '
Hidden layer to
Output layer
1 2 n i = Decoder sub-net
Backpropagation - - . Backpropagation
of error to effect OOO of error to effect
conﬂuentinferenceh " prefix <1.i> j confluent inference
NEERE n) iR
Input
>~ 399 399 39 DD .
prefix <1..i-1> ith terminal prefix <1..i-1> ith terminal
- >
SRAAM Sentence Encoder SRAAM Preorder Traversa Enooder

Figure 3: Confluent preorder parser (CPP).

of its corresponding parse tree. In this way, the sentence representation obtained
by the sentence encoder can be decoded directly by the preorder traversal en-
coder to give the target preorder traversal sequence, thus saving an explicit
transformation between the two types of representations.

Two versions of the CPP have been implemented. In CPPI, the parser is
trained using complete sentences only, whereas in CPP2, in addition to com-
plete sentences, the parser learns to parse phrases to produce the corresponding
subtrees. Simulation results show that they have excellent generalization per-
formances. Besides, they are capable of recovering erroneous sentences and
resolving lexical category ambiguities (Ho & Chan 1997).

In succeeding discussions, these parsers will be abbreviated as Reilly, Berg,
Sharkey and BPN respectively. Summarized in Table 1 are the specific design

decisions that have been adopted by each parser.

12

Table 1: The design configurations of different holistic parsers (SRN* denotes
that the SRN network for sentence encoding is being trained on a sequence
prediction task. The suffixes “1” and “2” to the names of the parsers indicate
modification of the original design to including or not including the learning of

phrases in addition to complete sentences)

Same coding

FEncode sentences by Linearize for sentence Confluent Parse

SRN* SRN SRAAM parse trees & parse tree inference phrases
Berg 7 7 v 7
Reilly v v
Sharkey v
BPN v
CPP1 v 7 7 7
CPP2 Y, Y, Y Y Y
Bergl 7 v v
Reilly2 v v v
Sharkey?2 v v
BPN2 v v

6 Comparing the Performances of Different Holistic Parsers
In succeeding discussions, an experimental comparison will be carried out to
evaluate the different holistic parsers. Both their generalization performances
and error recovery capabilities are concerned.

6.1 The Grammar Used. We use the context-free grammar as shown in
Table 2 which is adopted from Pollack (1990).

A total of 112 sentences and their corresponding parse trees are generated.
The length of the longest sentence is 17, while the highest parse tree consists

of 5 levels. Among them, 80 sentences are randomly selected for training while

13

Table 2: The context-free grammar used for evaluation (Pollack, 1990)

sentence noun phrase wverb phrase prepositional phrase adjectival phrase
s — np vp np:BaNp vp — V np op ap — A ap
s—=>np V np vp = V pp bp np ap =+ AN

np — np pp

the remaining 32 sentences are reserved for the testing phrase.

6.2 Results.

Generalization. Each parser is first trained using the same set of training
sentences (totally, there are 80 training sentences) and generalization capability
is then measured by evaluating its performance on parsing the same set of 32
testing sentences. For each parser, a total of 4 runs have been performed, and
in each run, random values are assumed for the weights initially. The results
have been summarized in Figure 4.

A point to note is that in some of these approaches, including CPP2 and
Berg, the parsers have been taught to parse phrases in addition to complete
sentences. As we have claimed in Section 4, a parser being trained in this way
would have a better knowledge of the internal structures of the sentences and
their parse trees. Better generalization performance in parsing can thus be ex-
pected. As a result, in order to have a “fair” comparison, apart from those
previously proposed parsers, four other models have been implemented also,
namely, Reilly2, Bergl, Sharkey2 and BPNZ2. They are derivatives of Reilly,

Berg, Sharkey and BPN respectively. But unlike their corresponding original

14

100
90 <

80 &

70 ?

Generalization Performance (%)
D
o
—0—
0
Fo—

50
40
30
. _]
10 { {
0

tﬁ G:t%

Figure 4: Generalization performances of different holistic parsers.

design, Reilly2, Sharkey2 and BPNZ2 have been trained to parse both complete
sentences and phrases,while for Bergl, the parser learns to parse complete sen-
tences only. The design decisions adopted by these parsers are shown in Table 1
also.

Error Recovery. In addition to generalization performances, we compare
the robustness of the holistic parsers by evaluating their capabilities in parsing
erroneous sentences.

Four types of errors are considered, namely, erroneous sentences with one ter-

15

minal substituted by a wrong terminal (SUB), with an extra terminal inserted
(INS), with one terminal omitted (OMI), and with two neighboring terminals
exchanged (EX). All erroneous sentences are obtained by modifying the 80 train-
ing sentences. Multiple erroneous sentences are generated by “injecting” error
into every possible position of each training sentence. Totally, there are 853
SUB sentences, 853 OMI sentences. 933 INS sentences and 773 EX sentences.
These erroneous sentences are then parsed by each of the trained parser. A
recovery is said to be successful if (a) the length of the sentence corresponding
to the parse tree generated and that of the erroneous sentence differ by no more
than 1, and (b) the number of mismatched (or different) terminals between these

two sentences i1s at most 2. All the results are summarized in Table 3.

Table 3: Robustness of different holistic parsers (percentage of erroneous sen-

tences that can be successfully recovered)

SUB OMI INS EX
CPP1 91.21% 69.64% 46.62% 63.65%
Bergl 62.02% 54.16% 41.26% 45.28%
Reilly 65.42% 59.79% 41.91% 46.05%
Sharkey 19.81% 31.42% 17.36% 20.96%
BPN 86.87% 63.19% 51.86% 67.14%
CPP2 94.72% 70.93% 50.80% 66.88%
Berg 69.17% 64.83% 50.80% 53.30%

Reilly?2 55.92% 45.37% 31.73% 35.45%
Sharkey2 16.41% 29.78% 15.01% 16.82%
BPN2 84.17% 63.66% 46.30% 62.14%

16

7 Analysis and Evaluation

7.1 The Design Decisions of the CPP and their Justifications. Recall
that in terms of the different design dimensions identified in Section 4, the design

of the CPP can be described as follows (see also Table 1) :

1. Linearization is adopted

[\]

. Equal representation for the sentence and the parse tree

3. Confluent inference is applied

4. Learning to parse phrases (for CPP2)

5. Sentences are encoded using SRAAM instead of SRN

Each of these design decisions can be justified by examining the experimental

results as summarized in Figure 4 and Table 3 :

1. Learning to parse phrases in addition to complete sentences im-

proves generalization performance.

As revealed by Figure 4, in all cases, teaching a parser to parse phrases
in addition to complete sentences can improve its generalization perfor-
mance (e.g. compare CPPI with CPP2, Reilly with Reilly2, Bergl with
Berg, Sharkey with Sharkey2, and BPN with BPN2). As we have claimed
earlier, by teaching the parser to parse phrases also, it can have a better
knowledge of the internal syntax of the sentence as well as the parse tree.

Improvement in performance can therefore be expected.

17

2. Sentence representation and parse tree representation should

preferably be the same.

It can be observed that the generalization performances of Sharkey and
BPN are significantly worse than the generalization performances of the

other models.

Recall that in both of these parsers, confluent inference is not applied.
Moreover, the sentence representation (in Sharkey, it is obtained by train-
ing an SRN while in BPN, an SRAAM is used to encode the sentence) is
different from the corresponding parse tree representation. Consequently,
an explicit transformation has to be adopted which maps the sentence rep-
resentation to the parse tree representation. In both Sharkey and BPN,

this transformation is implemented by a feedforward network.

Two disadvantages are evident for this approach. First, since two dif-
ferent representations will be developed independently for the sentences
and the parse trees, it 1s reasonable to expect that the representation for
a sentence and that of the parse tree will not be correlated in a regular
manner that reflects the structural characteristics of the sentence and the
parse tree as well as their relationships as defined by the underlying gram-
mar rules. Consequently, the mapping as implemented by the feedforward
network will tend to be arbitrary. Even worse, error will unavoidably
be incurred in this explicit transformation. As a result, generalization

performance is sacrificed.

18

3. Applying confluent inference can improve generalization.

The generalization performance of Bergl is better than the generaliza-
tion performance of Reilly (note that they both learn to parse complete
sentences only). And when both models are trained using phrases in ad-
dition to complete sentences, the generalization performance of Berg is

again better than that of Reilly2.

By comparing their design configurations, the only difference between
Bergl and Reilly is that confluent inference is adopted by the former,
but not by the latter. In all other respects, they are the same. In much
the same way, confluent inference is only adopted in Berg, but not in
Reilly2. This suggests that the use of confluent inference can improve the

generalization performance of a holistic parser.

4. Encoding sentences using SRAAM can improve robustness.

Recall that in both Sharkey and Sharkey2, sentences are encoded by train-
ing an SRN on a sequence prediction task (as denoted by SRN*in Table 1).
In other words, the hidden layer activation of the SRN after reading the

last terminal of the sentence will be used as its coding.

This encoding method has the drawback that the sentence represen-
tation produced will depend very much on the last terminal(s) of the
sentence. As a result, two sentences which end with the same termi-

nal(s) may give rise to very similar representations, even if they are quite

19

different in the other parts and should be parsed to give different parse
trees. In Sharkey, these two pieces of similar representations will have to
be mapped (via a feedforward network) to two quite different parse tree

representations. Training thus becomes difficult to converge.

More importantly, both generalization performance and robustness are
sacrificed. In our comparative study, the design configurations of Sharkey
and BPN are the same, except that sentences are encoded using SRAAM
in BPN. As shown in Figure 4 and Table 3, BPN outperforms Sharkey
in both generalization and robustness. Consistently, when both parsers
are trained using phrases also, BPN2 is again superior than Sharkey?2.

Therefore, we prefer SRAAM to SRN* for encoding sentence sequences.

On the other hand, sentence representations are produced differently in
Berg and Reilly. An SRN is trained to produce the RAAM representation
of the target parse tree, upon reading the last terminal of the sentence
(as denoted by SRN in Table 1). With reference to Figure 4, the gener-
alization performances of Bergl and Reilly are better than that of BPN.
Similarly, when phrases in addition to complete sentences are used to train

the parsers, Berg and Reilly2 again outperform BPN2 in generalization.

We believe that the discrepancy is mainly due to the fact that in BPN,
the sentence and its parse tree have different representations. But despite
the fact that its generalization performance may be unsatisfactory, BPN

is significantly more robust than Bergl and Reilly, as unveiled by Table 3

20

(similarly, BPN2 is more robust than Berg and Reilly2). An explanation
can be given. In both Berg and Reilly, the parse tree coding as developed
by the SRN will depend very much on the last few terminals of the sentence
(much like the case of SRN*), since the training target (i.e. the RAAM
representation of the parse tree desired) will only be applied at the end
of the sentence sequence. The “contribution” from other terminals is less.
As a result, the parser will become sensitive to errors occurring in the

trailing part of the sentence.

When an error does occur which involves some of these last terminals, a
totally wrong parse tree coding will be produced (i.e. the coding will de-
viate significantly from the correct parse tree representation). The parser

will thus fail to recover the error.

On the other hand, an SRAAM is basically the same as an SRN, except
that auto-association is incorporated. This forces the SRAAM network
to reproduce in each step (at its output layer) the current terminal of
the sentence which is appearing in the input layer. As a result, the coding
produced will not be biased for certain terminal(s) of the sentence and each
terminal has a “substantial” influence on the final coding. So when certain
part of the sentence is corrupted, there is still a good chance that the
correct coding and parse tree can be produced, provided that the majority

of the sentence remains “intact”. Better robustness is thus resulted?.

IThe advantage of incorporating auto-association in an SRN has also been studied by

21

As mentioned at the beginning of this paper, error recovery capability
is a primary concern in natural language parsing since ungrammatical
or erroneous sentences occur very frequently in actual language usages.
In fact, robustness is a major advantage of connectionist parsers over the
traditional approaches. As a result, we prefer SRAAM to SRN for sentence

encoding.

5. Linearization can improve generalization performance and ro-

bustness.

Among the different holistic parsers studied, CPP1 and CPP2 are the
only ones in which the parse trees are linearized by preorder traversal.
As revealed by Figure 4 and Table 3, they have the best generalization

performance and robustness when compared to the other models.

As a final remark, an interesting observation is worth of further considera-
tion. Although the use of phrases in training can improve the generalization
performance of each of the parsers studied, the robustness does not always ben-
efit from that. As revealed by Table 3, only in CPP and Berg will the error
recovery capability be actually improved by learning to parse both phrases and
complete sentences. By examining the configurations of the parsers, the only
models which exhibit improvement in robustness when taught to parse phrases

also are those in which confluent inference has been adopted. In each of the

Maskara & Noetzel (1993) previously.

22

other cases, robustness drops slightly in fact.

A probable explanation can be given. As we have claimed earlier, with con-
fluent inference, the sentence coding and the parse tree (or preorder traversal)
coding will be evolving at the same time, thus affecting one another as a result.
A regular correlation can therefore be established between them.

On the other hand, by using phrases in addition to complete sentences in
training, an extra correlation is established between the representation of a
phrase (e.g. {DN)) and that of the respective subtree (correspondingly (DN)).
As there exists a part-whole relationship between a complete sentence (e.g.
(DNV)) and its constituent phrases (correspondingly {DN)), as well as be-
tween a total parse tree (such as ((DN)V)) and its subtrees (correspondingly
(DN)), it is hoped that this correlation between the representations of the phrase
and the subtree can bring closer together the representation of the complete sen-
tence and that of the total parse tree. In this way, if only minor error occurs
in the input sentence, there is still a good chance that it can be encoded and
then mapped to the representation of the correct parse tree. Robustness can
therefore be promoted.

However, this advantage can only be exploited if confluent inference is ap-
plied in training also. With confluent inference, the two types of mappings: the
extra correspondence between the representations of a phrase and its respective
subtree, as well as the mapping between the representations of the complete

sentence and the total parse tree, will be trained together at the same time.

23

In this way, each of them can influence the development of the other. Intu-
itively, the correspondence between phrases and subtrees will act as an extra
“constraint” on the evolution of the representations of the complete sentence
and the total parse tree (and vice versa). The final coding obtained will thus
have taken into account the mapping between its constituent phrases and their
respective subtrees also. But if confluent inference is not applied (or even that
the sentence representation is different from the parse tree representation), the
correspondence between the representation of the phrase and that of the subtree
will simply exist as an extra arbitrary mapping only. In the worst case, it may
become an interference to the encoding process and deteriorating robustness as
a result.

7.2 The Overall Performance of the CPP. To summarize, the CPP
with its specific combination of design decisions has achieved very good perfor-
mance in parsing. With reference to Figure 4, when generalization is concerned,
both CPP1 and CPP2 outperform all other implementations of holistic parsers.
More importantly, given different initial conditions of training, a more stable
performance level is achieved by the CPP (again, both CPPI and CPP2). The
generalization performance in the best case and that in the worst case differ
by 3% only. In addition, as revealed by Table 3, the CPP is also significantly
more robust than other holistic parsers, especially when SUB and OMI errors

are concerned.

24

8 Conclusions

Compared to algorithmic parsers, connectionist holistic parsers have the appeals
that they are capable of learning inductively from examples. Little knowledge of
the detailed parsing mechanism and the target grammar will thus be assumed.
This knowledge is often unknown or debatable when natural language is con-
cerned. Besides, connectionist holistic parsers are inherently robust. Having
learned to parse grammatical sentences only, the parser automatically acquires
the ability to recover erroneous sentences.

In this paper, we have presented a general framework for holistic parser design.
Several design dimensions have been identified and discussed. We find that
their exact combination will have a significant impact on both the generalization
performance and the robustness of the resulting parser model. The experimental
results have justified on an empirical basis that the CPP is superior than other

holistic parsers previously proposed.

Acknowledgements

The authors gratefully acknowledge support from the Research Grants Council

(RGC) of Hong Kong (Earmarked Research Grant CUHK 4133/97E).

References

Aho, AV, Sethi, R., & Ullman, J.D. (1986). Compilers: Principles, Techniques,

and Tools. Reading, MA: Addison-Wesley.

25

Allen, J. (1995). Natural Language Understanding. Redwood City, CA: Ben-
jamin/Cummings.

Berg, G. (1992). A connectionist parser with recursive sentence structure and
lexical disambiguation. Proc. of the Tenth National Conference on Artificial
Intelligence (AAAI-92), San Jose (pp. 32-37).

Blank, D.S., Meeden, L.A., & Marshall, J.B. (1992). Exploring the sym-
bolic/subsymbolic continuum: A case study of RAAM. In J. Dinsmore (Ed.),
The Symbolic and Connectionist Paradigms: Closing the Gap (pp. 113-148).
Hillsdate, NJ: Lawrence Erlbaum Associates.

Chalmers, D.J. (1992). Syntactic transformation of distributed representations.
In N. Sharkey (Ed.), Connectionist Natural Language Processing (pp. 46-55).
Boston: Kluwer Academic Publishers.

Charniak, E. (1993). Statistical Language Learning. Cambridge: MIT Press.

Chrisman, L. (1991). Learning recursive distributed representations for holistic
computation. Connection Science, 3, 345—-366.

Elman, J.L. (1990). Finding structure in time. Cognitive Science, 14, 179-211.

Franz, A. (1996). Learning PP attachment from corpus statistics. In S. Wermter,
E. Riloff, & G. Scheler (Eds.), Connectionist, Statistical, and Symbolic Ap-
proaches to Learning for Natural Language Processing (pp. 188-202). Berlin:
Springer-Verlag.

Gazdar, G., & Mellish, C. (1989). Natural Language Processing in Prolog: An

Introduction to Computational Linguistics. Reading, MA: Addison-Wesley.

26

Ho, K.S.E.; & Chan, L.W. (1994). Representing sentence structures in neural
networks. Proc. of the International Conference in Neural Information Pro-
cessing Systems 3, Seoul (pp. 1462-1467).

Ho, K.S.E., & Chan, L.W. (1997). Confluent preorder parsing of deterministic
grammars. To appear in Connection Science, 9, 269-293.

Jain, A.N. (1991). Parsing complex sentences with structured connectionist net-
works. Neural Computation, 3, 110-120.

Krulee, GK. (1991). Computer Processing of Natural Language. Englewood
Cliffs, NJ: Prentice-Hall.

Kwasny, S.C., & Faisal, K.A. (1992). Symbolic parsing via subsymbolic rules. In
J. Dinsmore (Ed.), The Symbolic and Connectionist Paradigm: Closing the
Gap (pp. 209-236). Hillsdale, NJ: Lawrence Erlbaum Associates.

Kwasny, S.C., & Kalman, B.L. (1995). Tail-recursive distributed representations
and simple recurrent networks. Connection Science, 7, 61-80.

Marcus, M.P. (1980). A Theory of Syntactic Recognition for Natural Language.
Cambridge: MIT Press.

Maskara, A., & Noetzel, A. (1993). Forced simple recurrent neural network
and grammatical inference. Proc. of the Fifteenth Annual Conference of the
Cognitive Science Society, (pp. 420-425).

Miikkulainen, R. (1996). Subsymbolic case-role analysis of sentences with em-
bedded clauses. Cognitive Science, 20, 47-73.

Pollack, J.B. (1990). Recursive distributed representations. Artificial Intelli-

27

gence, 46, 77-105.

Pollack, J.B., & Waltz, D. (1985). Massively parallel parsing: A strongly inter-
ative model of natural language interpretation. Cognitive Science, 9, 51-T74.
Reilly, R. (1990). Connectionist techniques for on-line parsing. Network, 3, 37—

45.

Sharkey, N.E., & Sharkey, A.J.C. (1992). A modular design for connectionist
parsing. Proc. of the Twente Workshop on Language Technology 3: Connec-
tionism and Natural Language Processing, (pp. 87-96).

Stolcke, A., & Wu, D. (1992). Tree Matching with Recursive Distributed Rep-
resentations. Technical Report TR-92-025, International Computer Science
Institute, Berkeley.

Sun, G.Z., Giles, C.L., Chen, H.H., & Lee, Y.C. (1993). The Neural Network
Pushdown Automata: Model, Stack and Learning Simulations. Technical Re-

port UMIACS-TR-93-77 & CS-TR-3118, University of Maryland.

28

