
Neural Computation, 11(8):1995-2016, 1999.How to Design a Connectionist Holistic Parser?Ho K. S. EdwardDepartment of Systems Engineering and Engineering Management,The Chinese University of Hong Kong,Shatin, New Territories, Hong KongChan L. W.Department of Computer Science and EngineeringThe Chinese University of Hong Kong,Shatin, New Territories, Hong KongConnectionist holistic parsing o�ers a viable and attractive alterna-tive to traditional algorithmic parsers. With exposure to a limitedsubset of grammatical sentences and their corresponding parse treesonly, a holistic parser is capable of learning inductively the gram-matical regularity underlying the training examples which e�ects theparsing process. In the past, various connectionist parsers had beenproposed. Each approach has its own unique characteristics and yetsome techniques are shared in common. In this paper, various di-mensions underlying the design of a holistic parser will be explored,including the methods to encode the sentences and the parse trees,whether the sentences and the parse trees share the same representa-tions, the use of con
uent inference and the inclusion of phrases in thetraining set. Di�erent combinations of these design factors will giverise to di�erent holistic parsers. In succeeding discussions, we scruti-nize these design techniques and compare the performances of a few1



parsers on language parsing, including the con
uent preorder parser(CPP), the backpropagation parsing network, the XERIC parser ofBerg, the connectionistmodular parser of Sharkey & Sharkey, Reilly'smodel and their derivatives. Experiments are performed to evaluatetheir generalization capability and robustness. The results unveil anumber of issues which are essential for building an e�ective holisticparser.1 Language ParsingIn language processing, parsing addresses the problem of �nding the hierarchicalrelationship between the terminals or words in a sequential sentence. Tradition-ally, this relationship is manifested in the form of a tree: the parse tree. Forexample, by classifying the words in the sentence \the boy takes the apple onthe table", we form a sequence hDNVDNPDN i, where the terminal D standsfor determiner, N for noun, V for verb and P for preposition. Upon success-ful parsing, the parse tree in Figure 1 is produced, where the non-terminal npstands for noun phrase, vp for verb phrase, pp for prepositional phrase and sfor sentence. Alternatively, it can also be represented by the Lisp-like structure((DN) (V ((DN) (P (DN))))).2 Algorithmic Parsing2.1 Symbolic Algorithmic Parsers. For a very long time, the computationallinguistics approaches have dominated the study of language parsing. Numerous2



np

D N

PD N

ppnp

npV

s

D N

vpnp

Figure 1: The parse tree of the sentence hDNVDNPDN i.models have been proposed, such as the chart parser, the shift-reduce parserand the augmented transition network (Aho et al. 1986; Allen 1995; Gazdar& Mellish 1989; Krulee 1991). Generally speaking, these models share severalcommon characteristics. First, they are algorithmic and rule-based. A well-de�ned parsing algorithm is implemented which governs the parsing process.During parsing, the input sentence will be analyzed step-by-step, with the targetparse tree being built up incrementally at the same time. Second, symbolicrepresentations, such as character strings or pointer structures, will be adoptedfor the sentences and the parse trees. Third, the construction of the parserusually requires a detailed knowledge of the underlying grammar.Despite their popularity, the computational linguistics approaches have beencriticized of their inadequacy in handling natural languages. In particular, theirrule-based nature fails to exhibit the kind of robustness as found in actuallanguage usages. Poor error recovery capability is thus resulted. Second, sym-3



bolic representations are simply too crisp to re
ect the richness and fuzziness asmanifested by natural language structures and meanings. Third, the extreme
exibility of natural language grammars has e�ectively prohibited the completeenumeration of the grammar rules. Even worse, some of the grammar rules mayhave to be modi�ed in order to \adapt" to the parser (e.g. in a top-down parser,all left-recursions in the grammar rules have to be removed �rst).2.2 Connectionist Algorithmic Parsers. In view of the drawbacks of thetraditional approaches, researchers have begun to switch their focus to moredata-oriented paradigms. For example, in the statistical or corpus-based ap-proaches (Charniak 1993), statistics or co-occurrence information (such as n-gram) is calculated from a large amount of sample text which can then beused for the parsing task. For example, Franz (1996) has made used of corpusstatistics to resolve pp-attachment ambiguities.Recently, as motivated by the study of cognitive science, connectionist tech-niques are applied in natural language processing also. Compared with otherapproaches, neural network parsers have the appeals that they are inherentlyrobust. They are capable of learning inductively and incrementally from exam-ples, and they can generalize naturally to unseen sentence structures.To exploit these advantages, e�ort has been paid to integrate the connectionisttechniques into the symbolic processing framework, giving rise to various \hy-brid" parsers. For example, in the massively parallel parsing system (Pollack &Waltz 1985), a chart parser is used to generate all possible parses of an input4



sentence, which are then translated into a connectionist network. Alternativesyntactic classes and senses of the words as well as the pragmatic constraintsare represented by nodes which are connected via excitatory or inhibitory links.The overall interpretation of the sentence is obtained via parallel constraintsatisfaction.The connectionist deterministic parser (CDP) (Kwasny & Faisal 1992) con-sists of a symbolic component which is a deterministic parser (Marcus 1980),and a subsymbolic component which is a feedforward network. During parsing,based on the contents of the parser's symbolic data structures (which includea stack and a lookahead bu�er), the feedforward network outputs the action toperform and the parser manipulates its data structures accordingly. E�ectively,the rigid rules are replaced by the feedforward network which has a more 
exibledecision boundary, thus achieving robustness.Other examples include the PARSEC model (Jain 1991), the subsymbolicparser for embedded clauses (SPEC) (Miikkulainen 1996), and the neural net-work pushdown automaton (NNPDA) (Sun et al. 1993).However, these early attempts still require the detailed speci�cation of theparsing algorithm and the grammar. In some sense, they are partial or completeneural network re-implementation of some symbolic algorithm only. In otherwords, they are still algorithmic and rule-based in nature, although the rules maynow have more 
exible decision boundaries (if they are implemented using neuralnetworks). In many cases, symbolic representations are even retained. The5



inductive learning power of neural networks simply has not been fully utilized,and error recovery performance is not satisfactory.3 Holistic ParsingConnectionist representation of a symbolic data structure provides the bene�tthat it allows the manipulation of the vector representation as a whole. E�ec-tively, the structure encoded is operated as a whole also, without �rst breaking itdown into its constituent components. This type of operation, so called holistictransformation (Blank et al. 1992), is generally not supported by common sym-bolic encoding schemes. But it is useful for implementing structure-sensitive op-erations such as uni�cation (Stolcke & Wu 1992) and transformation (Chalmers1992).
Holistic

Transformation
Recursive
Decoding

Recursive
Encoding

Connectionist
representation of
the input sentence

Connectionist
representation of

the target parse tree

Symbolic
representation of

the target parse tree

Symbolic
representation of
the input sentence Figure 2: Holistic parsing.Holistic transformation is equally applicable in language parsing. By devel-oping connectionist representations for the sentence and the parse tree, parsingcan be achieved by mapping holistically the sentence representation to the corre-sponding parse tree representation. We call this holistic parsing (see Figure 2).6



4 Design Issues of Holistic ParsersBased on the holistic parsing paradigm as shown in Figure 2, di�erent designdimensions can be explored :1. Encoding the sentences. First, di�erent encoding mechanisms can beadopted for developing the sentence representations. Two common choicesare the simple recurrent network (SRN) (Elman 1990) and the sequentialrecursive auto-associative memory (SRAAM) (Pollack 1990). And whenan SRN is used, the sentence representation can be developed in two ways.On the one hand, the SRN can be trained to produce at its output layerthe representation of the target parse tree (as obtained by certain con-nectionist encoding mechanism), upon reading each terminal in the inputsentence sequence. E�ectively, this implies that the sentence and the parsetree share the same representation.Alternatively, sentence coding can also be developed by training theSRN on a sequence prediction task: given the 1st to the (i�1)th terminalsof the sentence, the SRN predicts what the ith terminal is. Upon successfultraining, the hidden layer activation of the SRN after reading the wholesentence will be used as its coding.2. Encoding the parse trees. In much the same way, di�erent encodingschemes can be implemented for the parse trees also. Traditionally, theparse tree is represented as a hierarchical data structure and the recursive7



auto-associative memory (RAAM) (Pollack 1990) is commonly applied forthis task.Previously, Kwasny & Kalman (1995) have proposed to linearize theparse tree by preorder traversal. For example, the parse tree in Figure 1corresponds to the sequence h s np D � � N � � vp V � � np np D � �N � � pp P � � np D � � N � � i. Note that null pointers are explicitlyadded to the leaves of the tree, as represented by the special symbol �.The preorder traversal sequence, instead of the hierarchical parse tree, isthen encoded by training an SRAAM.3. Implementing the Holistic transformation. The holistic transformationcan be realized in three di�erent ways :(a) First, one may choose to develop di�erent representations for thesentence and the parse tree. Then, a feedforward network is trainedto e�ect an explicit transformation from the sentence representationto the parse tree representation.(b) Alternatively, the sentence or the parse tree may be encoded �rst.The representation thus obtained will then be used as the trainingtarget for the other encoding process. In this way, both the sentenceand the parse tree will share the same representation, although theirrespective encoding mechanisms are carried out separately in fact.(c) Third, the representation of the sentence and that of the parse tree8



may \co-evolve" at the same time, instead of being developed sepa-rately and independently, and an identical representation will be de-veloped for the sentence and its parse tree. This technique is knownas con
uent inference (Chrisman 1991).Note that for (b) and (c), the holistic transformation is e�ectively im-plemented as an identity mapping. In other words, the representationobtained via encoding the input sentence can be decoded directly to givethe symbolic form of the target parse tree.4. Learning to parse phrases. Originally, a holistic parser only learns to parsea complete sentence to give the total parse tree. But a complete sentencesuch as hDNVDNPDN i in fact consists of a number of phrases: thenoun phrase hDN i, the prepositional phrase hPDN i, the noun phrasehDNPDN i and the verb phrase hVDNPDN i. They are parsed to givethe subtrees (DN), (P (DN)), ((DN) (P (DN))) and (V ((DN) (P (DN))))respectively. So in addition to complete sentences, a holistic parser can betaught to map the connectionist representation of a phrase to the corre-sponding subtree representation. A parser being trained this way will havea better knowledge of the internal structures of the sentences and theirparse trees. Better generalization performance in parsing can therefore beexpected. 9



5 Previous Holistic ParsersDi�erent combinations of the above-mentioned techniques will give rise to dif-ferent holistic parsers. Some of these combinations have in fact been previouslystudied.5.1 Reilly's parser. In Reilly's parser (Reilly 1990), the parse trees ashierarchical data structures are �rst encoded using RAAM. An SRN is thentrained to develop at its output layer the RAAM representation of the targetparse tree upon reading the last terminal of a complete sentence.5.2 XERIC parser. Similar to Reilly's model, in the XERIC parser (Berg1992), parse trees are encoded as hierarchical data structures using RAAM andan SRN is trained to output the RAAM representation of the target parse tree.Unlike the previous approach, the RAAM network and the SRN are now trainedtogether coherently. In other words, con
uent inference has been applied. More-over, the parser learns to parse phrases in addition to complete sentences.5.3 Connectionist modular parser. In the connectionist modular parserproposed by Sharkey & Sharkey (1992), parse trees are �rst encoded as hier-archical data structures using RAAM. An SRN is then trained on a sequenceprediction task using the sentences. Upon successful training, the hidden layeractivation after reading the whole sentence will be used as its coding. A 3-layered feedforward network then maps explicitly the sentence representationproduced by the SRN to the parse tree representation developed by the RAAMto e�ect parsing. As in Reilly's parser, only complete sentences are considered.10



5.4 Backpropagation parsing network (BPN). In the BPN (Ho & Chan1994), the sentences and their respective parse trees are �rst encoded by trainingan SRAAM and an RAAM respectively and independently. Then, a 3-layeredfeedforward network is trained to map the SRAAM coding representing a sen-tence to the RAAM coding representing its corresponding parse tree. So bothlinearization and con
uent inference are missing and the parser learns to parsecomplete sentences only.5.5 Con
uent preorder parser (CPP). The architecture of the con
uentpreorder parser (CPP) (Ho & Chan 1997) is shown in Figure 3. In the CPP, twotechniques have been integrated. First, the hierarchical parse tree is linearizedby preorder traversal into a sequence, as proposed by Kwasny & Kalman (1995).But unlike their approach, null pointers are not added explicitly to the leavesof the tree. Thus the parse tree in Figure 1 gives rise to the sequence h s npD N vp V np np D N pp P np D N i. It is this preorder traversal sequenceof the parse tree which is encoded, instead of the parse tree itself. Parsingis thus achieved via a sequence-to-sequence transformation: from the sentencesequence to the preorder traversal sequence, and both types of sequences areencoded using SRAAM.To further promote the generalization performance, con
uent inference (Chris-man 1991) is applied. The SRAAM for sentence encoding and the SRAAM forpreorder traversal encoding are trained together in a coherent manner, such thatidentical representation is developed for the sentence and the preorder traversal11



. . .
1 2 n

prefix <1..i-1>

. . .
1 2 m

ith terminal

. . .
1 2 n

prefix <1..i-1>

. . .
1 2 m

ith terminal

. . .
1 2 n

prefix <1..i>

. . .
1 2 n

prefix <1..i-1>

. . .
1 2 m

ith terminal

. . .
1 2 n

prefix <1..i-1>

. . .
1 2 m

ith terminal

Input
layer

Output
layer

Hidden layer to
Output layer
= Decoder sub-net

Input layer to
Hidden layer
= Encoder sub-net

SRAAM Sentence Encoder SRAAM Preorder Traversal Encoder

Backpropagation
of error to effect

confluent inference

Backpropagation
of error to effect

confluent inferenceFigure 3: Con
uent preorder parser (CPP).of its corresponding parse tree. In this way, the sentence representation obtainedby the sentence encoder can be decoded directly by the preorder traversal en-coder to give the target preorder traversal sequence, thus saving an explicittransformation between the two types of representations.Two versions of the CPP have been implemented. In CPP1, the parser istrained using complete sentences only, whereas in CPP2, in addition to com-plete sentences, the parser learns to parse phrases to produce the correspondingsubtrees. Simulation results show that they have excellent generalization per-formances. Besides, they are capable of recovering erroneous sentences andresolving lexical category ambiguities (Ho & Chan 1997).In succeeding discussions, these parsers will be abbreviated as Reilly, Berg,Sharkey and BPN respectively. Summarized in Table 1 are the speci�c designdecisions that have been adopted by each parser.12



Table 1: The design con�gurations of di�erent holistic parsers (SRN* denotesthat the SRN network for sentence encoding is being trained on a sequenceprediction task. The su�xes \1" and \2" to the names of the parsers indicatemodi�cation of the original design to including or not including the learning ofphrases in addition to complete sentences) Same codingEncode sentences by Linearize for sentence Con
uent ParseSRN* SRN SRAAM parse trees & parse tree inference phrasesBerg p p p pReilly p pSharkey pBPN pCPP1 p p p pCPP2 p p p p pBerg1 p p pReilly2 p p pSharkey2 p pBPN2 p p6 Comparing the Performances of Di�erent Holistic ParsersIn succeeding discussions, an experimental comparison will be carried out toevaluate the di�erent holistic parsers. Both their generalization performancesand error recovery capabilities are concerned.6.1 The Grammar Used. We use the context-free grammar as shown inTable 2 which is adopted from Pollack (1990).A total of 112 sentences and their corresponding parse trees are generated.The length of the longest sentence is 17, while the highest parse tree consistsof 5 levels. Among them, 80 sentences are randomly selected for training while13



Table 2: The context-free grammar used for evaluation (Pollack, 1990)sentence noun phrase verb phrase prepositional phrase adjectival phrasenp ! D aps ! np vp np ! D N vp ! V np pp ! P np ap ! A aps ! np V np ! np pp vp ! V pp ap ! A Nthe remaining 32 sentences are reserved for the testing phrase.6.2 Results.Generalization. Each parser is �rst trained using the same set of trainingsentences (totally, there are 80 training sentences) and generalization capabilityis then measured by evaluating its performance on parsing the same set of 32testing sentences. For each parser, a total of 4 runs have been performed, andin each run, random values are assumed for the weights initially. The resultshave been summarized in Figure 4.A point to note is that in some of these approaches, including CPP2 andBerg, the parsers have been taught to parse phrases in addition to completesentences. As we have claimed in Section 4, a parser being trained in this waywould have a better knowledge of the internal structures of the sentences andtheir parse trees. Better generalization performance in parsing can thus be ex-pected. As a result, in order to have a \fair" comparison, apart from thosepreviously proposed parsers, four other models have been implemented also,namely, Reilly2, Berg1, Sharkey2 and BPN2. They are derivatives of Reilly,Berg, Sharkey and BPN respectively. But unlike their corresponding original14



0

10

20

30

40

50

60

70

80

90

100

C
P

P
1

B
er

g1

R
ei

lly

Sh
ar

ke
y

B
P

N

C
P

P
2

B
er

g

R
ei

lly
2

Sh
ar

ke
y2

B
P

N
2

G
en

er
al

iz
at

io
n 

P
er

fo
rm

an
ce

 (
%

)

Figure 4: Generalization performances of di�erent holistic parsers.design, Reilly2, Sharkey2 and BPN2 have been trained to parse both completesentences and phrases,while for Berg1, the parser learns to parse complete sen-tences only. The design decisions adopted by these parsers are shown in Table 1also.Error Recovery. In addition to generalization performances, we comparethe robustness of the holistic parsers by evaluating their capabilities in parsingerroneous sentences.Four types of errors are considered, namely, erroneous sentences with one ter-15



minal substituted by a wrong terminal (SUB), with an extra terminal inserted(INS), with one terminal omitted (OMI), and with two neighboring terminalsexchanged (EX). All erroneous sentences are obtained by modifying the 80 train-ing sentences. Multiple erroneous sentences are generated by \injecting" errorinto every possible position of each training sentence. Totally, there are 853SUB sentences, 853 OMI sentences. 933 INS sentences and 773 EX sentences.These erroneous sentences are then parsed by each of the trained parser. Arecovery is said to be successful if (a) the length of the sentence correspondingto the parse tree generated and that of the erroneous sentence di�er by no morethan 1, and (b) the number of mismatched (or di�erent) terminals between thesetwo sentences is at most 2. All the results are summarized in Table 3.Table 3: Robustness of di�erent holistic parsers (percentage of erroneous sen-tences that can be successfully recovered)SUB OMI INS EXCPP1 91.21% 69.64% 46.62% 63.65%Berg1 62.02% 54.16% 41.26% 45.28%Reilly 65.42% 59.79% 41.91% 46.05%Sharkey 19.81% 31.42% 17.36% 20.96%BPN 86.87% 63.19% 51.86% 67.14%CPP2 94.72% 70.93% 50.80% 66.88%Berg 69.17% 64.83% 50.80% 53.30%Reilly2 55.92% 45.37% 31.73% 35.45%Sharkey2 16.41% 29.78% 15.01% 16.82%BPN2 84.17% 63.66% 46.30% 62.14%16



7 Analysis and Evaluation7.1 The Design Decisions of the CPP and their Justi�cations. Recallthat in terms of the di�erent design dimensions identi�ed in Section 4, the designof the CPP can be described as follows (see also Table 1) :1. Linearization is adopted2. Equal representation for the sentence and the parse tree3. Con
uent inference is applied4. Learning to parse phrases (for CPP2)5. Sentences are encoded using SRAAM instead of SRNEach of these design decisions can be justi�ed by examining the experimentalresults as summarized in Figure 4 and Table 3 :1. Learning to parse phrases in addition to complete sentences im-proves generalization performance.As revealed by Figure 4, in all cases, teaching a parser to parse phrasesin addition to complete sentences can improve its generalization perfor-mance (e.g. compare CPP1 with CPP2, Reilly with Reilly2, Berg1 withBerg, Sharkey with Sharkey2, and BPN with BPN2). As we have claimedearlier, by teaching the parser to parse phrases also, it can have a betterknowledge of the internal syntax of the sentence as well as the parse tree.Improvement in performance can therefore be expected.17



2. Sentence representation and parse tree representation shouldpreferably be the same.It can be observed that the generalization performances of Sharkey andBPN are signi�cantly worse than the generalization performances of theother models.Recall that in both of these parsers, con
uent inference is not applied.Moreover, the sentence representation (in Sharkey, it is obtained by train-ing an SRN while in BPN, an SRAAM is used to encode the sentence) isdi�erent from the corresponding parse tree representation. Consequently,an explicit transformation has to be adopted which maps the sentence rep-resentation to the parse tree representation. In both Sharkey and BPN,this transformation is implemented by a feedforward network.Two disadvantages are evident for this approach. First, since two dif-ferent representations will be developed independently for the sentencesand the parse trees, it is reasonable to expect that the representation fora sentence and that of the parse tree will not be correlated in a regularmanner that re
ects the structural characteristics of the sentence and theparse tree as well as their relationships as de�ned by the underlying gram-mar rules. Consequently, the mapping as implemented by the feedforwardnetwork will tend to be arbitrary. Even worse, error will unavoidablybe incurred in this explicit transformation. As a result, generalizationperformance is sacri�ced. 18



3. Applying con
uent inference can improve generalization.The generalization performance of Berg1 is better than the generaliza-tion performance of Reilly (note that they both learn to parse completesentences only). And when both models are trained using phrases in ad-dition to complete sentences, the generalization performance of Berg isagain better than that of Reilly2.By comparing their design con�gurations, the only di�erence betweenBerg1 and Reilly is that con
uent inference is adopted by the former,but not by the latter. In all other respects, they are the same. In muchthe same way, con
uent inference is only adopted in Berg, but not inReilly2. This suggests that the use of con
uent inference can improve thegeneralization performance of a holistic parser.4. Encoding sentences using SRAAM can improve robustness.Recall that in both Sharkey and Sharkey2, sentences are encoded by train-ing an SRN on a sequence prediction task (as denoted by SRN* in Table 1).In other words, the hidden layer activation of the SRN after reading thelast terminal of the sentence will be used as its coding.This encoding method has the drawback that the sentence represen-tation produced will depend very much on the last terminal(s) of thesentence. As a result, two sentences which end with the same termi-nal(s) may give rise to very similar representations, even if they are quite19



di�erent in the other parts and should be parsed to give di�erent parsetrees. In Sharkey, these two pieces of similar representations will have tobe mapped (via a feedforward network) to two quite di�erent parse treerepresentations. Training thus becomes di�cult to converge.More importantly, both generalization performance and robustness aresacri�ced. In our comparative study, the design con�gurations of Sharkeyand BPN are the same, except that sentences are encoded using SRAAMin BPN. As shown in Figure 4 and Table 3, BPN outperforms Sharkeyin both generalization and robustness. Consistently, when both parsersare trained using phrases also, BPN2 is again superior than Sharkey2.Therefore, we prefer SRAAM to SRN* for encoding sentence sequences.On the other hand, sentence representations are produced di�erently inBerg and Reilly. An SRN is trained to produce the RAAM representationof the target parse tree, upon reading the last terminal of the sentence(as denoted by SRN in Table 1). With reference to Figure 4, the gener-alization performances of Berg1 and Reilly are better than that of BPN.Similarly, when phrases in addition to complete sentences are used to trainthe parsers, Berg and Reilly2 again outperform BPN2 in generalization.We believe that the discrepancy is mainly due to the fact that in BPN,the sentence and its parse tree have di�erent representations. But despitethe fact that its generalization performance may be unsatisfactory, BPNis signi�cantly more robust than Berg1 and Reilly, as unveiled by Table 320



(similarly, BPN2 is more robust than Berg and Reilly2). An explanationcan be given. In both Berg and Reilly, the parse tree coding as developedby the SRN will depend very much on the last few terminals of the sentence(much like the case of SRN*), since the training target (i.e. the RAAMrepresentation of the parse tree desired) will only be applied at the endof the sentence sequence. The \contribution" from other terminals is less.As a result, the parser will become sensitive to errors occurring in thetrailing part of the sentence.When an error does occur which involves some of these last terminals, atotally wrong parse tree coding will be produced (i.e. the coding will de-viate signi�cantly from the correct parse tree representation). The parserwill thus fail to recover the error.On the other hand, an SRAAM is basically the same as an SRN, exceptthat auto-association is incorporated. This forces the SRAAM networkto reproduce in each step (at its output layer) the current terminal ofthe sentence which is appearing in the input layer. As a result, the codingproduced will not be biased for certain terminal(s) of the sentence and eachterminal has a \substantial" in
uence on the �nal coding. So when certainpart of the sentence is corrupted, there is still a good chance that thecorrect coding and parse tree can be produced, provided that the majorityof the sentence remains \intact". Better robustness is thus resulted1.1The advantage of incorporating auto-association in an SRN has also been studied by21



As mentioned at the beginning of this paper, error recovery capabilityis a primary concern in natural language parsing since ungrammaticalor erroneous sentences occur very frequently in actual language usages.In fact, robustness is a major advantage of connectionist parsers over thetraditional approaches. As a result, we prefer SRAAM to SRN for sentenceencoding.5. Linearization can improve generalization performance and ro-bustness.Among the di�erent holistic parsers studied, CPP1 and CPP2 are theonly ones in which the parse trees are linearized by preorder traversal.As revealed by Figure 4 and Table 3, they have the best generalizationperformance and robustness when compared to the other models.As a �nal remark, an interesting observation is worth of further considera-tion. Although the use of phrases in training can improve the generalizationperformance of each of the parsers studied, the robustness does not always ben-e�t from that. As revealed by Table 3, only in CPP and Berg will the errorrecovery capability be actually improved by learning to parse both phrases andcomplete sentences. By examining the con�gurations of the parsers, the onlymodels which exhibit improvement in robustness when taught to parse phrasesalso are those in which con
uent inference has been adopted. In each of theMaskara & Noetzel (1993) previously. 22



other cases, robustness drops slightly in fact.A probable explanation can be given. As we have claimed earlier, with con-
uent inference, the sentence coding and the parse tree (or preorder traversal)coding will be evolving at the same time, thus a�ecting one another as a result.A regular correlation can therefore be established between them.On the other hand, by using phrases in addition to complete sentences intraining, an extra correlation is established between the representation of aphrase (e.g. hDN i) and that of the respective subtree (correspondingly (DN)).As there exists a part-whole relationship between a complete sentence (e.g.hDNV i) and its constituent phrases (correspondingly hDN i), as well as be-tween a total parse tree (such as ((DN)V)) and its subtrees (correspondingly(DN)), it is hoped that this correlation between the representations of the phraseand the subtree can bring closer together the representation of the complete sen-tence and that of the total parse tree. In this way, if only minor error occursin the input sentence, there is still a good chance that it can be encoded andthen mapped to the representation of the correct parse tree. Robustness cantherefore be promoted.However, this advantage can only be exploited if con
uent inference is ap-plied in training also. With con
uent inference, the two types of mappings: theextra correspondence between the representations of a phrase and its respectivesubtree, as well as the mapping between the representations of the completesentence and the total parse tree, will be trained together at the same time.23



In this way, each of them can in
uence the development of the other. Intu-itively, the correspondence between phrases and subtrees will act as an extra\constraint" on the evolution of the representations of the complete sentenceand the total parse tree (and vice versa). The �nal coding obtained will thushave taken into account the mapping between its constituent phrases and theirrespective subtrees also. But if con
uent inference is not applied (or even thatthe sentence representation is di�erent from the parse tree representation), thecorrespondence between the representation of the phrase and that of the subtreewill simply exist as an extra arbitrary mapping only. In the worst case, it maybecome an interference to the encoding process and deteriorating robustness asa result.7.2 The Overall Performance of the CPP. To summarize, the CPPwith its speci�c combination of design decisions has achieved very good perfor-mance in parsing. With reference to Figure 4, when generalization is concerned,both CPP1 and CPP2 outperform all other implementations of holistic parsers.More importantly, given di�erent initial conditions of training, a more stableperformance level is achieved by the CPP (again, both CPP1 and CPP2). Thegeneralization performance in the best case and that in the worst case di�erby 3% only. In addition, as revealed by Table 3, the CPP is also signi�cantlymore robust than other holistic parsers, especially when SUB and OMI errorsare concerned. 24



8 ConclusionsCompared to algorithmic parsers, connectionist holistic parsers have the appealsthat they are capable of learning inductively from examples. Little knowledge ofthe detailed parsing mechanism and the target grammar will thus be assumed.This knowledge is often unknown or debatable when natural language is con-cerned. Besides, connectionist holistic parsers are inherently robust. Havinglearned to parse grammatical sentences only, the parser automatically acquiresthe ability to recover erroneous sentences.In this paper, we have presented a general framework for holistic parser design.Several design dimensions have been identi�ed and discussed. We �nd thattheir exact combination will have a signi�cant impact on both the generalizationperformance and the robustness of the resulting parser model. The experimentalresults have justi�ed on an empirical basis that the CPP is superior than otherholistic parsers previously proposed.AcknowledgementsThe authors gratefully acknowledge support from the Research Grants Council(RGC) of Hong Kong (Earmarked Research Grant CUHK 4133/97E).ReferencesAho, A.V., Sethi, R., & Ullman, J.D. (1986).Compilers: Principles, Techniques,and Tools. Reading, MA: Addison-Wesley.25



Allen, J. (1995). Natural Language Understanding. Redwood City, CA: Ben-jamin/Cummings.Berg, G. (1992). A connectionist parser with recursive sentence structure andlexical disambiguation. Proc. of the Tenth National Conference on Arti�cialIntelligence (AAAI-92), San Jose (pp. 32{37).Blank, D.S., Meeden, L.A., & Marshall, J.B. (1992). Exploring the sym-bolic/subsymbolic continuum: A case study of RAAM. In J. Dinsmore (Ed.),The Symbolic and Connectionist Paradigms: Closing the Gap (pp. 113{148).Hillsdate, NJ: Lawrence Erlbaum Associates.Chalmers, D.J. (1992). Syntactic transformation of distributed representations.In N. Sharkey (Ed.), Connectionist Natural Language Processing (pp. 46{55).Boston: Kluwer Academic Publishers.Charniak, E. (1993). Statistical Language Learning. Cambridge: MIT Press.Chrisman, L. (1991). Learning recursive distributed representations for holisticcomputation. Connection Science, 3, 345{366.Elman, J.L. (1990). Finding structure in time. Cognitive Science, 14, 179{211.Franz, A. (1996). Learning PP attachment from corpus statistics. In S. Wermter,E. Rilo�, & G. Scheler (Eds.), Connectionist, Statistical, and Symbolic Ap-proaches to Learning for Natural Language Processing (pp. 188{202). Berlin:Springer-Verlag.Gazdar, G., & Mellish, C. (1989). Natural Language Processing in Prolog: AnIntroduction to Computational Linguistics. Reading, MA: Addison-Wesley.26



Ho, K.S.E., & Chan, L.W. (1994). Representing sentence structures in neuralnetworks. Proc. of the International Conference in Neural Information Pro-cessing Systems 3, Seoul (pp. 1462{1467).Ho, K.S.E., & Chan, L.W. (1997). Con
uent preorder parsing of deterministicgrammars. To appear in Connection Science, 9, 269{293.Jain, A.N. (1991). Parsing complex sentences with structured connectionist net-works. Neural Computation, 3, 110{120.Krulee, G.K. (1991). Computer Processing of Natural Language. EnglewoodCli�s, NJ: Prentice-Hall.Kwasny, S.C., & Faisal, K.A. (1992). Symbolic parsing via subsymbolic rules. InJ. Dinsmore (Ed.), The Symbolic and Connectionist Paradigm: Closing theGap (pp. 209{236). Hillsdale, NJ: Lawrence Erlbaum Associates.Kwasny, S.C., & Kalman, B.L. (1995). Tail-recursive distributed representationsand simple recurrent networks. Connection Science, 7, 61{80.Marcus, M.P. (1980). A Theory of Syntactic Recognition for Natural Language.Cambridge: MIT Press.Maskara, A., & Noetzel, A. (1993). Forced simple recurrent neural networkand grammatical inference. Proc. of the Fifteenth Annual Conference of theCognitive Science Society, (pp. 420{425).Miikkulainen, R. (1996). Subsymbolic case-role analysis of sentences with em-bedded clauses. Cognitive Science, 20, 47{73.Pollack, J.B. (1990). Recursive distributed representations. Arti�cial Intelli-27



gence, 46, 77{105.Pollack, J.B., & Waltz, D. (1985). Massively parallel parsing: A strongly inter-ative model of natural language interpretation. Cognitive Science, 9, 51{74.Reilly, R. (1990). Connectionist techniques for on-line parsing. Network, 3, 37{45.Sharkey, N.E., & Sharkey, A.J.C. (1992). A modular design for connectionistparsing. Proc. of the Twente Workshop on Language Technology 3: Connec-tionism and Natural Language Processing, (pp. 87{96).Stolcke, A., & Wu, D. (1992). Tree Matching with Recursive Distributed Rep-resentations. Technical Report TR-92-025, International Computer ScienceInstitute, Berkeley.Sun, G.Z., Giles, C.L., Chen, H.H., & Lee, Y.C. (1993). The Neural NetworkPushdown Automata: Model, Stack and Learning Simulations. Technical Re-port UMIACS-TR-93-77 & CS-TR-3118, University of Maryland.
28


