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Abstract

Linear Temporal Logic (LTL) is widely used for defining
conditions on the execution paths of dynamic systems. In
the case of dynamic systems that allow for nondeterminis-
tic evolutions, one has to specify, along with an LTL for-
mula', which are the paths that are required to satisfy the
formula. Two extreme cases are theuniversalinterpreta-
tionA:', which requires to satisfy the formula for all the
possible execution paths, and theexistentialinterpretationE :', which requires to satisfy the formula for some execu-
tion paths. When LTL is applied to the definition of goals in
planning problems on nondeterministic domains, these two
extreme cases are too restrictive. It is often impossible to
develop plans that achieve the goal in all the nondetermin-
istic evolutions of a system, and it is too weak to require that
the goal is satisfied by some executions. In this paper we
explore alternative interpretations of an LTL formula that
are between these extreme cases. We define a new language
that permits an arbitrary combination of theA andE quan-
tifiers, thus allowing, for instance, to require that each finite
execution can be extended to an execution satisfying an LTL
formula (AE :'), or that there is some finite execution whose
extensions all satisfy an LTL formula (EA:'). We show that
only eight of these combinations of path quantifiers are rel-
evant, corresponding to an alternation of the quantifiers of
length one (A and E), two (AE and EA), three (AEA andEAE), and infinity ((AE)! and(EA)!). We also presents a
planning algorithm for the new language, that is based on
an automata-theoretic approach, and studies its complexity.

1. Introduction

In automated task planning [16, 21], given a description
of a dynamic domain and of the basic actions that can be�Supported in part by ASI project DOVES.ySupported in part by NSF grants CCR-9988322, CCR-0124077, IIS-
9908435, IIS-9978135, and EIA-0086264, by BSF grant 9800096, and by
a grant from the Intel Corporation.

performed on it, and given a goal that defines a success con-
dition to be achieved, one has to find a suitable plan, that is,
a description of the actions to be executed on the domain in
order to achieve the goal. “Classical” planning concentrates
on the so called “reachability” goals, that is, on goals that
define a set of final desired states to be reached. Quite often,
practical applications require plans that deal with goals that
are more general than sets of final states. Several planning
approaches have been recently proposed, wheretemporal
logic formulas are used as goal languages, thus allowing
for goals that define conditions on the whole plan execution
paths, i.e., on the sequences of states resulting from the ex-
ecution of plans (see, e.g., [2, 3, 6, 7, 10, 12, 19, 24]). Most
of these approaches useLinear Temporal Logic(LTL) [15]
as the goal language. LTL allows one to express reachabil-
ity goals (e.g., Fq — reachq), maintainability goals (e.g.,
Gq — maintainq), as well as goals that combine reachabil-
ity and maintainability requirements (e.g., F Gq — reach a
set of states whereq can be maintained), and Boolean com-
binations of these goals.

In planning in nondeterministic domains[9, 22, 27],
actions are allowed to have different outcomes, and it is
not possible to know at planning time which of the dif-
ferent possible outcomes will actually take place. Non-
determinism in action outcome is necessary for modeling
in a realistic way several practical domains (e.g., robotics,
autonomous controllers, etc.). For instance, in a realistic
robotic application one has to take into account that actions
like “pick up object” might result in a failure (e.g., if the
object slips out of the robot’s hand). A consequence of
nondeterminism is that the execution of a plan may lead
to more than one possible execution paths. Therefore, one
has to distinguish whether a given goal has to be satisfied
by all the possible execution paths (in this case we speak of
“strong” planning), or only by some of the possible execu-
tion paths (“weak” planning). In the case of an LTL goal',
strong planning corresponds to interpret the formula in an
universal way, asA:', while weak planning corresponds to
interpret it in an existential way, asE :'.

Weak and strong plans are two very extreme ways of sat-
isfiability of an LTL formula. In practical applications, it



might be impossible to achieve goals in a strong way: for
instance, in the robotic application it might be impossibleto
fulfill a given task if objects keep slipping from the robot’s
hand. On the other hand, weak plans are too unreliable,
since they achieve the goal only under overly optimistic as-
sumptions on the outcomes of action executions.

In the case of reachability goals,strong cyclic planning
[8, 11] has been shown to provide a viable compromise be-
tween weak and strong planning. Formally, a plan is strong
cyclic if each possible partial execution of the plan can al-
ways be extended to an execution that reaches some goal
state. Strong cyclic planning allows for plans that encode
iterative trial-and-error strategies, like “pick up an object
until succeed”. The execution of such strategies may loop
forever only in the case the action “pick up object” con-
tinuously fails, and a failure in achieving the goal for such
an unfair execution is usually acceptable. Branching-time
logics like CTL and CTL* allow for expressing goals that
take into account nondeterminism. Indeed, [11] shows how
to encode strong cyclic reachability goals as CTL formu-
las. However, in CTL and CTL* path quantifiers are in-
terleaved with temporal operators, making it difficult to ex-
tend to generic temporal goals the encoding of strong cyclic
planning proposed in [11].

In this paper we define a new logic that allows for ex-
ploring the different degrees in which an LTL formula'
can be satisfied that exist between the strong goalA:' and
the weak goalE :'. We consider logic formulas of the form�:', where' is an LTL formula and� is a path quantifier
that generalizes theA andE quantifiers used for strong and
weak planning. A path quantifier is a (finite or infinite) word
on alphabetfA; Eg. The path quantifier can be seen as the
definition of a two-players game for the selection of the out-
come of action execution. Player A (corresponding to sym-
bolA) chooses the action outcomes in order to make goal' fail, while player E (corresponding to symbolE) chooses
the action outcomes in order to satisfy the goal'. During its
turns, each player controls the outcome of action execution
for a finite number of actions, and then passes the control to
the other player.1 We say that a plan satisfies the goal�:'
if the player E has a winning strategy, namely if, for all the
possible moves of player A, player E is always able to build
an execution path that satisfies the LTL formula'.

Different path quantifiers define different alternations in
the turns of players A and E. For instance, with goalA:' we
require that the formula' is satisfied independently of how
the “hostile” player A chooses the outcomes of actions, that
is, we ask for a strong plan. With goalE :' we require that
the formula' is satisfied for some action outcomes chosen
by the “friendly” player E, that is, we ask for a weak plan.
With goalAE :' we require that every plan execution led by

1If the path quantifier is a finite word, the player that has the last turn
chooses the action outcome for the rest of the infinite execution.

player A can be extended by player E to a successful execu-
tion that satisfies the formula'; in the case of a reachability
goal, this corresponds to asking for a strong cyclic solution.
With goal EA:' we require that, after an initial set of ac-
tions controlled by player E, we have the guarantee that for-
mula' will be satisfied independently of how player A will
choose the outcome of the following actions. As a final ex-
ample, with goal(AE)! :' =AEAEA � � � :' we require that
formula' is satisfied in all those executions where player
E has the possibility of controlling the action outcome an
infinite number of times.

Path quantifiers can define arbitrary combinations of the
turns of players A and E, and hence different degrees in
satisfying an LTL goal. We show, however, that, rather sur-
prisingly, only a finite number of alternatives exist between
strong to weak planning: only eight “canonical” path quan-
tifiers give rise to plans of different strength, and every other
path quantifier is equivalent to a canonical one. The canon-
ical path quantifiers correspond to the games of length one
(A andE), two (AE andEA), and three (AEA andEAE),
and to the games defining an infinite alternation between
players A and E ((AE)! and(EA)!). We also show that, in
the case of reachability goals' = Fq, the canonical path
quantifiers further collapse. Only three different degreesof
solution are possible, corresponding to weak (E :Fq), strong
(A:Fq), and strong cyclic (AE :Fq) planning.

Finally, we present a planning algorithm for the new goal
language and we study its complexity. The algorithm is
based on an automata-theoretic approach [13, 18]: planning
domains and goals are represented as suitable automata, and
planning is reduced to the problem of checking whether a
given automaton is nonempty. The proposed algorithm has
a time complexity that is doubly exponential in the size of
the goal formula. It is known that the planning problem is
2EXPTIME-complete for goals of the formA:', and hence
the complexity of our algorithm is optimal.

The structure of the paper is as follows. In Section 2
we present some preliminaries on automata theory, on plan-
ning, and on temporal logics. In Section 3 we defineAE-
LTL, the new logic of path quantifier, and study its basic
properties. In Section 4 we present a planning algorithm forAE-LTL, while in Section 5 we apply the new logic to the
particular cases of reachability and maintainability goals.
In Section 6 we make comparisons with related works and
present some concluding remarks.

2. Preliminaries

2.1. Automata theory

Given a nonempty alphabet�, an infinite word on� is
an infinite sequence�0; �1; �2; : : : of symbols from�. Fi-
nite state automata have been proposed as finite structures



that accept sets of infinite words. In this paper, we are inter-
ested intreeautomata, namely in finite state automata that
recognize trees on alphabet�, rather than words.

Definition 1 (tree) A (leafless) tree� is a subset ofN� such
that:� � 2 � is the root of the tree;� if x 2 � then there is somei 2 N such thatx � i 2 � ;� if x � i 2 � , with x 2 N� andi 2 N, then alsox 2 � ;� if x � (i+1) 2 � , with x 2 N� and i 2 N, then alsox � i 2 � .

The arity of x 2 � is the number of its children, namely
arity(x) = jfi : x � i 2 �gj. Let D � N. Tree � is aD-tree if arity(x) 2 D for eachx 2 � . A �-labelled tree
is a pair (�;� ), where� is a tree and� : � ! �. In the
following, we will denote�-labelled tree(�;� ) as� , and
let � = dom(� ).
Let� be a�-labelled tree. Apathp of � is a (possibly infi-
nite) sequencex0; x1; : : : of nodesxi 2 dom(� ) such thatxk+1 = xk � ik+1. In the following, we denote withP �(� )
the set of finite paths and withP!(� ) the set of infinite
paths of� . Given a (finite or infinite) pathp, we denote
with � (p) the string� (x0) �� (x1) � � � , wherex0; x1; : : : is
the sequence of nodes of pathp. We say that a finite (resp.
infinite) pathp0 is a finite (resp. infinite)extensionof the fi-
nite pathp if the sequence of nodes ofp is a prefix of the
sequence of nodes ofp0. A finite pathp0 is astrict extension
of the finite pathp if it is an extension andp0 6= p.

A tree automaton is an automaton that accepts sets of
trees. In this paper, we consider a particular family of tree
automata, namelyparity tree automata[14].

Definition 2 (parity tree automata) A parity tree automa-
ton with parity indexk is a tupleA = h�;D; Q; q0; Æ; �i,
where:� � is the finite, nonempty alphabet;� D � N is a finite set of arities;� Q is the finite set of states;� q0 2 Q is the initial state;� Æ : Q���D ! 2Q�

is the transition function, whereÆ(q; �; d) 2 2Qd ;� � : Q! f0; : : : ; kg is the parity mapping.

A tree automaton accepts a tree if there is an accepting run
of the automaton on the tree. Intuitively, when a parity tree
automaton is in stateq and it is reading ad-ary node of the
tree that is labeled by�, it nondeterministically chooses ad-tuplehq1; : : : ; qdi in Æ(q; �; d) and then makesd copies of
itself, one for each child node of the tree, with the state of
thei-th copy updated toqi. A run of the parity tree automa-
ton is accepting, if along every infinite path, the minimal
priority that is visited infinitely often is an even number.

Definition 3 (tree acceptance)The parity tree automatonA = h�;D; Q; q0; Æ; �i acceptsthe�-labelledD-tree� if
there exists anaccepting runr for � , namely there exists a
mappingr : � ! Q such that:� r(�) = q0;� for each x 2 � with arity(x) = d we havehr(x � 0); : : : r(x � (d�1))i 2 Æ(r(x);� (x); d);� along every infinite pathx0; x1; : : : in � , the minimal

integerh such�(r(xi)) = h for infinitely manyi is
even.

The tree automatonA is nonemptyif there exists some tree� that is accepted byA.

In [14] it is shown that the emptiness of a parity tree au-
tomaton can be decided in a time that is exponential in the
parity index and polynomial in the number of states.

Theorem 1 The emptiness of a parity tree automaton withn states and indexk can be determined in timenO(k).
2.2. Planning domains and plans

A (nondeterministic) planning domain[9] can be ex-
pressed in terms of a set ofstates, one of which is desig-
nated as theinitial state, of a set ofactions, and of atran-
sition functiondescribing how (the execution of) an action
leads from one state to possibly many different states.

Definition 4 (planning domain) A planning domainis a
tupleD = h�; �0; A;Ri where:� � is the finite set of states;� �0 2 � is the initial state;� A is the finite set of actions;� R : ��A! 2� is the transition relation.

We require that the transition relation is total, namely, for
each� 2 � there are somea 2 A and some�0 2 � such
that�0 2 R(�; a). We assume that states� are ordered, and
we writeR(�; a) = h�1; �2; : : : ; �ni wheneverR(�; a) =f�1; �1; : : : ; �ng and�1 < �2 < � � � < �n.

A plan guides the evolution of a planning domain
by issuing actions to be executed. In the case of non-
deterministic domains,conditional plans[9, 24] are re-
quired, that is, the next action issued by the plan may de-
pend on the outcome of the previous actions. Here we con-
sider a very general definition of plans: a plan is a mapping
from a sequence of states, representing the past history of
the domain evolution, to an action to be executed.

Definition 5 (plan) A plan is a partial map� : �+ * A
such that:



� if �(w � �) = a, then�0 2 R(�; a) for some�0;� if �(w � �) = a, then�0 2 R(�; a) iff w � � � �0 2dom(�);� if w � � 2 dom(�) withw 6= �, thenw 2 dom(�);� �(�) is defined iff� = �0 is the initial state of the
domain.

The conditions in the previous definition ensure that a plan
defines an action to be executed for all and only the finite
pathsw 2 �+ that can be reached executing the plan from
the initial state of the domain.

Since we consider nondeterministic planning domains,
the execution of an action may lead to different outcomes.
Therefore, the execution of a plan on a planning domain
can be described as a(��A)-labelled tree. Component�
of the label of the tree corresponds to a state in the plan-
ning domain, while componentA describes the action to be
executed in that state.

Definition 6 (execution tree) The execution treefor do-
mainD and plan� is the(��A)-labelled tree� defined
as follows:� � (�) = (�0; a0) where�0 is the initial state of the

domain anda0 = �(�0);� if p = x0; : : : ; xn 2 P �(� ) with � (p) =(�0; a0) � (�1; a1) � � � (�n; an), and if R(�n; an) =h�00; : : : ; �0d�1i, thenxn � i 2 dom(� ) and� (xn � i) =(�0i; a0i) with a0i = �(�0 � �1 � � ��n � �0i), for every0 � i < d.

A planning problemconsists of a planning domain and
of a goalg that defines the set of desired behaviors. In the
following, we assume that goalg defines a set of execution
trees, namely the execution trees that exhibit the behaviors
described by the goal (we say that these execution trees sat-
isfy the goal).

Definition 7 (planning problem) A planning problemis a
pair (D; g), whereD is a planning domain andg is a goal.
A solutionto planning problem(D; g) is a plan� such that
the execution tree for� satisfies goalg.

2.3. Temporal logics

Formulas ofLinear Temporal Logic(LTL) [15] are built
on top of a setProp of atomic propositions using the
standard Boolean operators, the unary temporal operator X
(next), and the binary temporal operator U (until). In the
following we assume to have a fixed set of atomic proposi-
tionsProp, and we define� = 2Prop as the set of subsets
of Prop.

Definition 8 (LTL) LTL formulas' on Prop are defined
by the following grammar, whereq 2 Prop:' ::= q j :' j ' ^ ' j X' j 'U'
We define the following auxiliary operators: F' = >U'
(eventually in the future') and G' = :F:' (always in
the future'). LTL formulas are interpreted over infinite
words on�. In the following, we writew j=LTL 'whenever
the infinite wordw satisfies the LTL formula'. A formal
definition of the semantics of LTL can be found in [15].

CTL* [15] is an example of “branching-time” logic. Path
quantifiersA (“for all paths”) andE (“for some path”) can
prefix arbitrary combinations of linear time operators.

Definition 9 (CTL*) CTL* formulas on Prop are de-
fined by the following grammar, whereq 2 Prop: ::= q j : j  ^  j A' j E'' ::=  j :' j ' ^ ' j X' j 'U'
CTL* formulas are interpreted over�-labelled trees. The
definition of the semantics of CTL* can be found in [15].

The following theorem states that it is possible to build a
tree automaton that accepts all the trees satisfying a CTL*
formula. The tree automaton has a number of states that is
doubly exponential and a parity index that is exponential in
the length of the formula. A proof of this theorem can be
found in [13].

Theorem 2 Let be a CTL* formula, and letD � N� be
a finite set of arities. One can build a parity tree automatonAD that accepts all and only the�-labelledD-trees that

satisfy . The automatonAD has22O(j j)
states and parity

index2O(j j), wherej j is the length of formula .

3. A logic of path quantifiers

In this section we define a new logic that is based on LTL
and that extends it with the possibility of defining conditions
of the sets of paths that satisfy the LTL property. More pre-
cisely, we consider logic formulas of the form�:', where' is an LTL formula and� is a path quantifier and defines
a set of infinite paths on which the formula' should be
checked. Two extreme cases are the path quantifierA, that
is used to denote that' must hold onall the paths, and the
path quantifierE , that is used to denote that' must hold on
somepaths. In general, a path quantifier is a (finite or infi-
nite) word on alphabetfA; Eg and defines an alternation in
the selection of the two modalities corresponding toE andA. For instance, by writingAE :' we require that all finite
paths have some infinite extension that satisfies', while by
writing EA:' we require that all the extensions of some fi-
nite path satisfy'.



The path quantifier can be seen as the definition of a two-
players game for the selection of the paths that should sat-
isfy the LTL formula. Player A (corresponding toA) tries
to build a path that does not satisfy the LTL formula, while
player E (corresponding toE) tries to build the path so that
the LTL formula holds. Different path quantifiers define
different alternations in the turns of players A and E. The
game starts from the path consisting only of the initial state,
and, during their turns, players A and E extend the path by
a finite number of nodes. In the case the path quantifier is a
finite word, the player that moves last in the game extends
the finite path built so far to an infinite path. The formula is
satisfied by the tree if the player E has a winning strategy,
namely if, for all the possible moves of the player A, it is
always able to build a path that satisfies the LTL formula.

In the rest of the section we give a formal definition and
study the basic properties of this logic of path quantifiers.

3.1. Finite games

We start considering only games with a finite number of
moves, that is path quantifiers corresponding to finite words
onfA; Eg.

Definition 10 (AE-LTL) AAE-LTL formula is a pairg =�:', where' is a LTL formula and� 2 fA; Eg+ is a path
quantifier.

The following definition describes the games corre-
sponding to the finite path quantifiers.

Definition 11 (semantics ofAE-LTL) Let p be a finite
path of a�-labelled tree� . Then:� p j= A�:' if for all finite extensionsp0 of p it holds

thatp0 j= �:'.� p j= E�:' if for some finite extensionp0 of p it holds
thatp0 j= �:'.� p j= A:' if for all infinite extensionsp0 of p it holds
that� (p0) j=LTL '.� p j= E :' if for some infinite extensionp0 of p it holds
that� (p0) j=LTL '.

We say that the�-labelled tree� satisfies theAE-LTL for-
mulag, and we write� j= g, if and only ifp0 j= g, wherep0 = (�) is the root of� .

We now investigate when two path quantifiers are equiv-
alent, i.e., they select the same sets of paths.

Definition 12 (equivalent path quantifiers) Let � and�0
be two path quantifiers. We say that� implies�0, written� �0, if for all the�-labelled trees� and for all the LTL
formulas', � j= �:' implies� j= �0:'. We say that� is
equivalentto�0, written� � �0, if � �0 and�0  �.

The following lemma describes the basic properties of
path quantifiers.

Lemma 3 Let� and�0 be two finite path quantifiers.

1. �AA�0 � �A�0 and�EE�0 � �E�0.
2. �A�0  ��0 and��0  �E�0.
3. �A�0  �AEA�0 and�EAE�0  �E�0.
4. �AEAE�0 � �AE�0 and�EAEA�0 � �EA�0.
We can now prove the first main result of the paper: each

finite path quantifier is equivalent to acanonical path quan-
tifier of length at most three.

Theorem 4 For each path quantifier� there is a canonical
path quantifier�0 2 fA; E ;AE ; EA;AEA; EAEg such that� � �0. Moreover, the following implications hold between
the canonical path quantifiers:A ///o/o/o AEA ///o/o/o

��
�O
�O
�O

AE
��
�O
�O
�OEA ///o/o/o EAE ///o/o/o E

We remark that Lemma 3 and Theorem 4 do not depend
on the usage of LTL for formula'. They depend on the
general observation that�  �0 whenever player E can
select for game�0 a set of paths which is a subset of those
selected for game�. This consideration also applies to the
case of infinite path quantifiers.

3.2. Infinite games

We now consider infinite games, namely path quantifiers
consisting of infinite words on alphabetfA; Eg. We will
see that infinite games can express all the finite path quan-
tifiers that we have studied in the previous subsection, but
that there are some infinite games, corresponding to an in-
finite alternation of the two players A and E, which cannot
be expressed with finite path quantifiers.

In the case of infinite games, we assume that player E
moves according to a strategy� that suggests how to extend
each finite path. We say that� j= �:', where� is an infi-
nite game, if there is some strategy� for player E such that
if p is an infinite paths of� obtained according to�, by al-
lowing player A to extend the path in an arbitrary way and
by requiring that player E follows strategy�, thenp satisfies
the LTL formula'.

Definition 13 (strategy) A strategy for�-labelled tree� is
a mapping� : P �(� )! P �(� ) that maps every finite pathp to one of its finite, strict extensions�(p).
We require that path�(p) is a strict extension ofp in or-
der to guarantee that, if player E takes control on the game,
situations are avoided where the path is never extended.



Definition 14 (semantics ofAE-LTL) Let� = �0�1 � � �
with �i 2 fA; Eg be an infinite path quantifier. An infinite
pathp is a possible outcomeof game� with strategy� if
there is an infinite sequencep0; p1; : : : of finite paths such
that:� pi are finite prefixes ofp;� p0 = � is the root of tree� ;� if �i = E thenpi+1 = �(pi);� if �i =A thenpi+1 is an arbitrary strict extension ofpi.
The tree� satisfies theAE-LTL formulag = �:', written� j= g, if there is some strategy� such that� (p) j=LTL '
for all pathsp of � that are possible outcomes of game�
with strategy�.

In the next lemmas we extend to the case of infinite
games the analysis of equivalence among path quantifiers.2

The first lemma shows that finite path quantifiers are just
particular cases of infinite path quantifiers, namely, they
correspond to those infinite path quantifiers that end with
an infinite sequence ofA or of E .

Lemma 5 Let� be a finite path quantifier. Then�(A)! ��A and�(E)! � �E .

In the next lemma we show that all the games where
players A and E alternate infinitely often are equivalent to
one of the two games(AE)! and(EA)!. That is, we can
assume that each player extends the path only once before
the turn passes to the other player.

Lemma 6 Let� be an infinite path quantifier that contains
an infinite number ofA and an infinite number ofE . Then� � (AE)! or � � (EA)! .

The next lemma contains other auxiliary results on path
quantifiers.

Lemma 7 Let � be a finite path quantifier and�0 be an
infinite path quantifier.

1. �A�0  ��0 and��0  �E�0.
2. �(A)!  �A�0 and�E�0  �(E)! .

We can now complete the picture of Theorem 4: each
finite or infinite path quantifier is equivalent to acanonical
path quantifierthat defines a game consisting of alternated
moves of players A and E of length one, two, three, or in-
finity.

2The definitions of the implication and equivalence relations (Defini-
tion 12) also apply to the case of infinite path quantifiers.

Theorem 8 For each finite or infinite path quanti-
fier � there is a canonical path quantifier�0 2fA; E ;AE ; EA;AEA; EAE ; (AE)!; (EA)!g such that� ��0. Moreover, the following implications hold between the
canonical path quantifiers:A ///o/o/o AEA ///o/o/o

��
�O
�O
�O

(AE)! ///o/o/o

��
�O
�O
�O

AE
��
�O
�O
�OEA ///o/o/o (EA)! ///o/o/o EAE ///o/o/o E

We conclude this section by showing that all the arrows
in the diagram of Theorem 8 describe strict implications,
namely, the eight canonical path quantifiers are all differ-
ent. Let us consider the followingfi; p; qg-labelled binary
tree, where the root is labelled byi and each node has two
children labelled withp andq:
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Let us consider the following LTL formulas:� Fp: player E can satisfy this formula if he moves at

least once, by visiting ap-labelled node.� G Fp: player E can satisfy this formula if he can visit
an infinite number ofp-labelled nodes, that is, if he has
the final move in a finite game, or if he moves infinitely
often in an infinite game.� F Gp: player E can satisfy this formula only if he takes
control of the game from a certain point on, that is,
only if he has the final move in a finite game.� G:q: player E can satisfy this formula only if player
A never plays, since player A can immediately visit aq-labelled node.� i U p: player E can satisfy this formula by playing the
first turn and moving to the left child of the root node.

The following graph shows which formulas hold for which
path quantifiers:

Fp G Fp F Gp G:qA ///o/o AEA ///o

��
�O
�O
�O

(AE)! ///o/o

��
�O
�O
�O

AE
��
�O
�O
�OiU p EA ///o/o (EA)! ///o/o EAE ///o/o/o E



4. A planning algorithm for AE-LTL

In this section we present a planning algorithm forAE-
LTL goals. We start by showing how to build a parity tree
automaton that accepts all the trees that satisfy a givenAE-
LTL formula. Then we show how this tree automaton can
be adapted, so that it accepts only trees that correspond to
valid plans for a given planning domain. In this way, the
problem of checking whether there exists some plan for a
given domain and for anAE-LTL goal is reduced to the
emptiness problem on tree automata. Finally, we study the
complexity of planning forAE-LTL goals and we prove that
this problem is 2EXPTIME-complete.

4.1. Tree automata andAE-LTL formulas

In [5] it is shown thatAE-LTL formulas can be ex-
pressed directly as CTL* formulas. The reduction exploits
the equivalence of expressive power of CTL* and monadic
path logic [20]. A tree can be obtained for anAE-LTL for-
mula using this reduction and Theorem 2. In this paper we
describe a simpler reduction that is better suited for our al-
gorithmic purposes.

A �-labelled tree� satisfies a formula�:' if a there is
a suitable subset of paths of the tree that satisfy'. The
subset of paths should be chosen according to�. In order
to characterize the subsets of paths that are suitable for�,
we assume to have aw-marking3 of the tree� , and we use
the labelsw to define the selected paths. More precisely,
we associate to eachAE-LTL formula�:' a CTL* formula[[�:'℄℄ such that the tree� satisfies the formula�:' if, and
only if, there is aw-marking of� that satisfies[[�:'℄℄.
Definition 15 (AE-LTL and CTL*) Let �:' be anAE-
LTL formula. The CTL* formula[[�:'℄℄ is defined as fol-
lows: [[A:'℄℄ = A'[[E :'℄℄ = E'[[EA:'℄℄ = EFw ^ A(Fw ! ')[[AEA:'℄℄ = AG EFw ^ A(Fw ! ')[[AE :'℄℄ = AG EXGw ^ A(F Gw ! ')[[EAE :'℄℄ = EF AG EXGw ^ A(F Gw ! ')[[(AE)!:'℄℄ = AG EFw ^ A(G Fw ! ')[[(EA)!:'℄℄ = EF AG EFw ^ A(G Fw ! ')
In the case of path quantifiersA and E , there is a direct
translation into CTL* that does not exploit thew-marking.

3A w-marking of the�-labelled tree� is a(��fw;wg)-labelled tree�w such thatdom(� ) = dom(�w) and, whenever� (x) = �, then�w(x) = (�;w) or�w(x) = (�;w).

In the other cases, the CTL* formula[[�:'℄℄ is the conjunc-
tion of two sub-formulas. The first one characterizes the
good markings according to the path quantifier�, while the
second one guarantees that the paths selected according to
the marking satisfy the LTL formula'. In the case of path
quantifiersEA andAEA, we mark withw the nodes that,
once reached, guarantee that the formula' is satisfied. The
selected paths are hence those that contain a node labelled
by w (formula Fw). In the case of path quantifiersAE andEAE , we mark withw all the descendants of a node that de-
fine an infinite path that satisfies'. The selected paths are
hence those that, from a certain node on, are continuously
labelled byw (formula F Gw), that is, from a certain node
on we follow the path marked withw. In the case of path
quantifiers(AE)! and(EA)! , finally, we mark withw all
the nodes that player E wants to reach according to its strat-
egy before passing the turn to player A. The selected paths
are hence those that contain an infinite number of nodes la-
belled byw (formula G Fw), that is, the paths along which
player E moves infinitely often.

Theorem 9 A �-labelled tree� satisfies theAE-LTL for-
mula�:' if, and only if, there is somew-marking of� that
satisfies formula[[�:'℄℄.

In [17] an extension of CTL* with existential quantifica-
tion over atomic propositions (EGCTL*) is defined and the
complexity of model checking and satisfiability for the new
logic is examined. We remark thatAE-LTL can be seen as
a subset of EGCTL�. Indeed, according to Theorem 9, a�-
labelled tree satisfies anAE-LTL formula�:' if and only if
it satisfies the EGCTL� formula9w:[[�:'℄℄.

In the following definition we show how to transform a
parity tree automaton for the CTL* formula[[�:'℄℄ into a
parity tree automaton for theAE-LTL formula �:'. This
transformation is performed by abstracting away the infor-
mation on thew-marking from the input alphabet and from
the transition relation of the tree automaton.

Definition 16 Let A = h��fw;wg;D; Q; q0; Æ; �i be a
parity tree automaton. The parity tree automatonA9w =h�;D; Q; q0; Æ9w; �i, obtained fromA abstracting away
the w-marking, is defined as follows:Æ9w(q; �; d) =Æ(q; (�;w); d) [ Æ(q; (�;w); d).
Lemma 10 LetA andA9w be two parity tree automata as
in Definition 16.A9w accepts all and only the�-labelled
trees that have somew-marking which is accepted byA.

Now we have all the ingredients for defining the tree au-
tomaton that accepts all the trees that satisfy a givenAE-
LTL formula.

Definition 17 (tree automaton forAE-LTL) LetD � N�
be a finite set of arities, and let�:' be anAE-LTL formula.



The parity tree automatonAD�:' is obtained by applying the
transformation described in Definition 16 to the parity au-
tomatonAD[[�:'℄℄ built according to Theorem 2.

Theorem 11 The parity tree automatonAD�:' accepts all
and only the�-labelledD-trees that satisfy formula�:'.

The parity tree automatonAD�:' has a parity index that is
exponential and a number of states that is doubly exponen-
tial in the length of formula'.

Proposition 12 The parity tree automatonAD�:' has22O(j'j)
states and parity index2O(j'j).

4.2. The planning algorithm

We now describe how the automatonAD�:' can be ex-
ploited in order to build a plan for goal�:' on a given do-
main.

We start by defining a tree automaton that accepts all the
trees that define the valid plans of a planning domainD.
In the following we assume thatD is a finite set of arities
that is compatible with domainD, namely, ifR(�; a) =h�1; : : : ; �di for some� 2 � anda 2 A, thend 2 D.

Definition 18 (tree automaton for a planning domain)
Let D = h�; �0; A;Ri be a planning domain and letD be a set of arities that is compatible with domainD. The tree automatonADD corresponding to the plan-
ning domain isADD = h��A;D;�; �0; ÆD; �0i, whereh�1; : : : ; �di 2 ÆD(�; (�; a); d) if h�1; : : : ; �di = R(�; a)
with d > 0, and�0(�) = 0 for all � 2 �.

According to Definition 6, a(��A)-labelled tree can be
obtained from each plan� for domainD. Now we show
that also the converse is true, namely, each(��A)-labelled
tree accepted by the tree automatonADD induces a plan.

Definition 19 (plan induced by a tree) Let � be a(��A)-labelled tree that is accepted by automatonADD .
The plan � induced by� on domainD is defined as
follows: �(�0; �1; : : : ; �n) = a if there is some finite pathp in � with � (p) = (�0; a0) � (�1; a1) � � � (�n; an) anda = an.

The following lemma shows that Definitions 6 and 19
define a one-to-one correspondence between the valid plans
for a planning domainD and the trees accepted by automa-
tonADD .

Lemma 13 Let� be a tree accepted by automatonADD and
let � be the corresponding induced plan. Then� is a valid
plan for domainD and� is the execution tree correspond-
ing to plan�. Conversely, let� be a plan for domainD
and let� be the corresponding execution structure. Then�
is accepted by automatonADD and� is the plan induced by
tree� .

We now define a parity tree automaton that accepts only
the trees that correspond to the plans for domainD and that
satisfy goalg = �:'. This parity tree automaton in obtained
by combining in a suitable way the tree automaton forAE-
LTL formula g (Definition 17) and the tree automaton for
domainD (Definition 18).

Definition 20 (instrumented tree automaton) LetD be a
set of arities that is compatible with planning domainD.
Let alsoADg = h�;D; Q; q0; Æ; �i be a parity tree au-
tomaton that accepts only the trees that satisfy theAE-
LTL formula g. The parity tree automatonADD;g corre-
sponding to planning domainD and goal g is defined
as follows: ADD;g = h��A;D; Q��; (q0; �0); Æ0; �0i,
where h(q1; �1); : : : ; (qd; �d)i 2 Æ0((q; �); (�; a); d) ifhq1; : : : ; qdi 2 Æ(q; �; d) and h�1; : : : ; �di = R(�; a) withd > 0, and where�0(q; �) = �(q).

The following lemma shows that solutions to planning
problem(D; g) are in one-to-one correspondence with the
trees accepted by the tree automatonADD;g .
Lemma 14 Let � be a (��A)-labelled tree that is ac-
cepted by automatonADD;g , and let� be the plan induced
by� on domainD. Then plan� is a solution to planning
problem(D; g). Conversely, let� be a solution to planning
problem(D; g). Then the execution tree of� is accepted by
automatonADD;g.
As a consequence, checking whether goalg can be satisfied
on domainD is reduced to the problem of checking whether
automatonADD;g is nonempty.

Theorem 15 LetD be a planning domain andg be anAE-
LTL formula. A plan exists for goalg on domainD if, and
only if, tree automatonADD;g is nonempty.

Proposition 16 The parity tree automatonADD;g for do-

mainD = (�; �0; A;R) and goalg = �:' hasj�j �22O(j'j)
states and parity index2O(j'j).
4.3. Complexity

We now study the time complexity of the planning algo-
rithm defined in Subsection 4.2.

Given a planning domainD, the planning problem forAE-LTL goals g = �:' can be decided in a time that is
doubly exponential in the size of the formula' by applying
Theorem 1 to the tree automatonADD;g.
Lemma 17 LetD be a planning domain. The existence of
a plan forAE-LTL goal g = �:' on domainD can be
decided in time22O(j'j)

.



The doubly exponential time bound is tight. Indeed, the
realizability problemfor an LTL formula', that is known to
be 2EXPTIME-complete [25], can be reduced to a planning
problem for goal theA:'.

Theorem 18 LetD be a planning domain. The problem of
deciding the existence of a plan forAE-LTL goalg = �:'
on domainD is 2EXPTIME-complete.

We remark that, in the case of goals of the formE :',
an algorithm with a better complexity can be defined. In
this case, a plan exists for goalE :' if, and only if, there
is an infinite sequence�0; �1; : : : of states that satisfies'
and such that�i+1 2 R(�i; ai) for some actionai. That is,
the planning problem can be reduced to a model checking
problem for LTL formula', and this problem is known to
be PSPACE-complete [26]. We conjecture that, for all the
canonical path quantifiers� exceptE , the doubly exponen-
tial bound of Theorem 18 is tight.

Some remark are in order on the complexity of thesat-
isfiability andvalidity problemsfor AE-LTL goals. These
problems are PSPACE-complete. Indeed, theAE-LTL for-
mula�:' is satisfiable if, and only, if the LTL formula' is
satisfiable4, and the latter problem is known to be PSPACE-
complete [26]. A similar argument holds also for validity.
We leave for the full version of the paper the study of the
complexity of the model checking problem forAE-LTL.

5. Reachability and maintainability goals

In this section we consider two basic classes of goals,
namely thereachability goalscorresponding to the LTL for-
mula Fq and themaintainability goalscorresponding to the
LTL formula Gq.

Let us start from the case of the “classical” reachability
goals Fq, whereq is a propositional formula. In this case,
as soon as player E takes control, the reachability goal can
be achieved, if possible; therefore, the only relevant cases
areA:Fq, E :Fq, andAE :Fq.
Lemma 19 Let � be a labelled tree. Then� j= E :F q iff� j= EA:F q iff � j= EAE :F q iff � j= (EA)!:F q. More-
over� j=AE :F q iff � j=AEA:F q iff � j= (AE)! :F q.
We remark that the three goalsA:Fq, E :Fq, andAE :Fq
correspond, respectively, to the strong, weak, and strong
cyclic planning problems of [11].

We now consider another particular case, namely the
maintainability goals Gq, whereq is a propositional for-
mula. Maintainability goals have properties that are com-
plementary to the one of reachability goals. In this case, as

4If a tree satisfies�:' the some of its paths satisfy', and a path that
satisfies' can be seen also as a tree that satisfies�:'.

soon as player A takes control, the maintainability goal can
be violated, if possible; therefore, the only relevant cases
areA:Gq, E :Gq, andEA:Gq.
Lemma 20 Let � be a labelled tree. Then� j=A:Gq iff� j=AE :Gq iff � j=AEA:Gq iff � j= (AE)! :Gq. More-
over� j= EA:Gq iff � j= EAE :Gq iff � j= (EA)! :Gq.
The goalsA:Gq, E :Gq, andEA:Gq correspond to main-
tainability variants of strong, weak, and strong cyclic plan-
ning problems. Indeed, they correspond to require that con-
dition q is maintained for all evolutions despite nondeter-
minism (A:Gq), that conditionq is maintained for some
of the evolutions (E :Gq), and that it is possible to reach a
state where conditionq is always maintained despite non-
determinism (EA:Gp).
6. Related works and concluding remarks

In this paper we have definedAE-LTL, a new tempo-
ral logics that extends LTL with the possibility of declaring
complex path quantifiers that define the different degrees in
which an LTL formula can be satisfied by a computation
tree. We propose to useAE-LTL formulas for expressing
temporally extended goals in nondeterministic planning do-
mains. We have defined a planning algorithm forAE-LTL
goals that is based on an automata-theoretic framework, and
we have studied its time complexity.

In the field of planning, several works use temporal log-
ics for defining goals. Most of these approaches [2, 3, 6, 7,
12, 19] use linear temporal logics as the goal language, and
are not able to express conditions on the degree in which
the goal should be satisfied with respect to the nondeter-
minism in the execution. Notable exceptions are the works
described in [23, 24] and in [10]: in [23, 24], CTL is used
as goal language, while in [10] a new branching time logic
is defined that allows for expressing temporally extended
goals that can deal explicitly with failure and recovery in
goal achievement. In the goal languages of [10, 23, 24],
however, path quantifiers are interleaved with the temporal
operators, and are hence rather different fromAE-LTL.

In the field of temporal logics, the work on alternating
temporal logic (ATL) [1] is related to our work. In ATL,
the path quantifiers in CTL and CTL* are replaced by game
quantifiers. Nevertheless, there is no obvious way to ex-
pressed formulas of the form�:', where� is a path quan-
tifier and' is an LTL formula in ATL�, which is the most
expressive logic studied in [1]. Our conjecture is that our
logic and ATL� are of incomparable expressiveness.

The automata-theoretic framework that we have used in
the paper is of wider applicability thanAE-LTL goals. An
interesting direction for future investigations is the appli-
cation of the framework to variants ofAE-LTL that allow



for nesting of path quantifiers, or for goals that combineAE-LTL formulas with CTL and CTL* formulas. Another
direction for future investigations is the extension of theap-
proach proposed in this paper to the case of planning under
partial observability [12], where one assumes that the agent
executing the plan can observe only part of the state and
hence its choices on the actions to execute may depend only
on that part. We also plan to explore implementation issues
and, in particular, the possibility of exploiting BDD-based
symbolic techniques in a planning algorithm forAE-LTL
goals. In some cases, these techniques have shown to be
able to deal effectively with domains and goals of a signif-
icant complexity, despite the exponential worst-case time
complexity of the problems (see, e.g., [4, 23]).

Acknowledgments. We would like to thank Erich Grädel
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