The Planning Spectrum — One, Two, Three, Infinity

Marco Pistore Moshe Y. Vardi
University of Trento Rice University
pistore@dit.unitn.it vardi@cs.rice.edu
Abstract performed on it, and given a goal that defines a success con-

dition to be achieved, one has to find a suitable plan, that is,
Linear Temporal Logic (LTL) is widely used for defining a description of the actions to be executed on the domain in
conditions on the execution paths of dynamic systems. Inorderto achieve the goal. “Classical” planning concergat
the case of dynamic systems that allow for nondeterminis-on the so called “reachability” goals, that is, on goals that
tic evolutions, one has to specify, along with an LTL for- define a set of final desired states to be reached. Quite often,
mulay, which are the paths that are required to satisfy the practical applications require plans that deal with gofads t

formula. Two extreme cases are theiversalinterpreta- are more general than sets of final states. Several planning
tion A., which requires to satisfy the formula for all the approaches have been recently proposed, wtesrgporal
possible execution paths, and teeistentialinterpretation logic formulas are used as goal languages, thus allowing

£.p, which requires to satisfy the formula for some execu- for goals that define conditions on the whole plan execution
tion paths. When LTL is applied to the definition of goals in paths, i.e., on the sequences of states resulting from the ex
planning problems on nondeterministic domains, these twoecution of plans (see, e.g., [2, 3, 6, 7, 10, 12, 19, 24]). Most
extreme cases are too restrictive. It is often impossible to of these approaches usmear Temporal Logi¢LTL) [15]
develop plans that achieve the goal in all the nondetermin- as the goal language. LTL allows one to express reachabil-
istic evolutions of a system, and it is too weak to requird tha ity goals (e.g., l§ — reachg), maintainability goals (e.g.,
the goal is satisfied by some executions. In this paper weG ¢ — maintaing), as well as goals that combine reachabil-
explore alternative interpretations of an LTL formula that ity and maintainability requirements (e.g., FG—reach a

are between these extreme cases. We define a new languaget of states whergcan be maintained), and Boolean com-
that permits an arbitrary combination of ttbéand& quan- binations of these goals.

tifiers, thus allowing, for instance, to require that eachtén In planning in nondeterministic domair8, 22, 27],
execution can be extended to an execution satisfying an LTL, ~tions are allowed to have different outcomes, and it is
formulg AUE), or_thatthere is some finite execution whose ¢ possible to know at planning time which of the dif-
extensions all satisfy an LTL formuléi{.¢). We showthat ferent possible outcomes will actually take place. Non-
only eight of these combinations of path quantifiers are rel- yaoterminism in action outcome is necessary for modeling
evant, corresponding to an alternation of the quantifiers of , 5 realistic way several practical domains (e.g., rolsotic
length one f and £), two (A€ and £A), three AEA and autonomous controllers, etc.). For instance, in a realisti
EAE), and infinity (A£)* and (£4)). We also presents a gqtic application one has to take into account that astion
planning algorithm for the new language, that is based on i “pick up object” might result in a failure (e.g., if the
an automata-theoretic approach, and studies its complexit object slips out of the robot's hand). A consequence of
nondeterminism is that the execution of a plan may lead
to more than one possible execution paths. Therefore, one
has to distinguish whether a given goal has to be satisfied
1. Introduction by all the possible execution paths (in this case we speak of
“strong” planning), or only by some of the possible execu-
tion paths (“weak” planning). In the case of an LTL ggal
strong planning corresponds to interpret the formula in an
universal way, agl.y, while weak planning corresponds to

In automated task planning [16, 21], given a description
of a dynamic domain and of the basic actions that can be

*Supported in part by ASI project DOVES. interpret it in an existential way, @ p.
TSupported in part by NSF grants CCR-9988322, CCR-01240%7, |
9908435, 11S-9978135, and EIA-0086264, by BSF grant 986088d by Weak and strong plans are two very extreme ways of sat-

a grant from the Intel Corporation. isfiability of an LTL formula. In practical applications, it

might be impossible to achieve goals in a strong way: for player A can be extended by player E to a successful execu-
instance, in the robotic application it might be impossible tion that satisfies the formulg; in the case of a reachability
fulfill a given task if objects keep slipping from the robot's goal, this corresponds to asking for a strong cyclic sotutio
hand. On the other hand, weak plans are too unreliable With goal £4.¢ we require that, after an initial set of ac-
since they achieve the goal only under overly optimistic as- tions controlled by player E, we have the guarantee that for-
sumptions on the outcomes of action executions. mulap will be satisfied independently of how player A will

In the case of reachability goalstrong cyclic planning choose the outcome of the following actions. As a final ex-
[8, 11] has been shown to provide a viable compromise be-ample, with goalA€)¥ .o = AEAEA - - - . we require that
tween weak and strong planning. Formally, a plan is strong formula is satisfied in all those executions where player
cyclic if each possible partial execution of the plan can al- E has the possibility of controlling the action outcome an
ways be extended to an execution that reaches some goadbhfinite number of times.
state. Strong cyclic planning allows for plans that encode Path quantifiers can define arbitrary combinations of the
iterative trial-and-error strategies, like “pick up an et turns of players A and E, and hence different degrees in
until succeed”. The execution of such strategies may loopsatisfying an LTL goal. We show, however, that, rather sur-
forever only in the case the action “pick up object” con- prisingly, only a finite number of alternatives exist betwee
tinuously fails, and a failure in achieving the goal for such strong to weak planning: only eight “canonical” path quan-
an unfair execution is usually acceptable. Branching-time tifiers give rise to plans of different strength, and evetyeot
logics like CTL and CTL* allow for expressing goals that path quantifier is equivalent to a canonical one. The canon-
take into account nondeterminism. Indeed, [11] shows howical path quantifiers correspond to the games of length one
to encode strong cyclic reachability goals as CTL formu- (4 and&), two (A€ and £A), and three AEA and EAE),
las. However, in CTL and CTL* path quantifiers are in- and to the games defining an infinite alternation between
terleaved with temporal operators, making it difficult to ex players A and E((A€)“ and(£A)“). We also show that, in
tend to generic temporal goals the encoding of strong cyclic the case of reachability goajs = Fq, the canonical path
planning proposed in [11]. quantifiers further collapse. Only three different degrees

In this paper we define a new logic that allows for ex- solution are possible, corresponding to weéikK ¢), strong
ploring the different degrees in which an LTL formufa (4. Fg), and strong cyclic{£. F ¢) planning.
can be satisfied that exist between the strong goaland Finally, we present a planning algorithm for the new goal
the weak goaf .. We consider logic formulas of the form language and we study its complexity. The algorithm is
a.¢, whereyp is an LTL formula andx is a path quantifier ~ based on an automata-theoretic approach [13, 18]: planning
that generalizes thé and& quantifiers used for strong and domains and goals are represented as suitable automata, and
weak planning. A path quantifier is a (finite or infinite) word planning is reduced to the problem of checking whether a
on alphabefA, £}. The path quantifier can be seen as the given automaton is nonempty. The proposed algorithm has
definition of a two-players game for the selection of the out- a time complexity that is doubly exponential in the size of
come of action execution. Player A (corresponding to sym- the goal formula. It is known that the planning problem is
bol A) chooses the action outcomes in order to make goal2EXPTIME-complete for goals of the form., and hence
o fail, while player E (corresponding to symb8) chooses the complexity of our algorithm is optimal.
the action outcomes in order to satisfy the gpaDuring its The structure of the paper is as follows. In Section 2
turns, each player controls the outcome of action executionwe present some preliminaries on automata theory, on plan-
for a finite number of actions, and then passes the control toning, and on temporal logics. In Section 3 we defi&-
the other playet. We say that a plan satisfies the geap LTL, the new logic of path quantifier, and study its basic
if the player E has a winning strategy, namely if, for all the properties. In Section 4 we present a planning algorithm for
possible moves of player A, player E is always able to build AE-LTL, while in Section 5 we apply the new logic to the
an execution path that satisfies the LTL formula particular cases of reachability and maintainability goal

Different path quantifiers define different alternations in In Section 6 we make comparisons with related works and
the turns of players A and E. For instance, with gégt we ~ present some concluding remarks.
require that the formule is satisfied independently of how
the “hostile” player A chooses the outcomes of actions, that 2 Preliminaries
is, we ask for a strong plan. With goély we require that
the formu_lagp is satisfied for some action outcomes chosen 2.1. Automata theory
by the “friendly” player E, that is, we ask for a weak plan.

With goalAE.p we require that every plan execution led by Given a nonempty alphab&t, an infinite word ors” is

LI the path quantifier is a finite word, the player that has ts turn an infinite sequencey, 1, 02, ... of symbols frqu. Fi-
chooses the action outcome for the rest of the infinite ei@zut nite state automata have been proposed as finite structures

that accept sets of infinite words. In this paper, we are-inter Definition 3 (tree acceptance)The parity tree automaton
ested intree automata, namely in finite state automata that A = (X, D, @, qo, 9,) acceptshe X-labelledD-tree T if

recognize trees on alphab¥®f rather than words.

Definition 1 (tree) A (leafless) tree is a subset oN* such
that:

e ¢ ¢ 7 is the root of the tree;
e if z € 7 then there is somee N such thatr - i € 7;
e ifx-i e 7, withz € N* andi € N, then alsar € 7;

e if z-(i+1) € 7, withz € N* andi € N, then also
T-1€T.

Thearity of z € 7 is the number of its children, namely
arity(z) = |[{i : -7 € 7}|. LetD C N. Treer is a
D-treeif arity(x) € D for eachz € 7. A X-labelled tree
is a pair (7, T), wherer is a tree andT : 7 — X. In the
following, we will denote:-labelled tree(r, 7) as T, and
let7 = dom(7).

Let T be aX-labelled tree. Apathp of T is a (possibly infi-
nite) sequencey, z1, ... of nodesr; € dom(7) such that
Tpy1 = Ty - ige1. IN the following, we denote witl* (7))
the set of finite paths and witk“ (7)) the set of infinite
paths of7. Given a (finite or infinite) patty, we denote
with 7 (p) the string7 (zq) - T (z1) - - -, wherezg, x4, . . . iS
the sequence of nodes of pathWe say that a finite (resp.
infinite) pathp’ is a finite (resp. infinitegxtensiorof the fi-
nite pathp if the sequence of nodes pfis a prefix of the
sequence of nodes pf. A finite pathp' is astrict extension
of the finite patlp if it is an extension ang’ # p.

there exists amccepting run for 7, namely there exists a
mappingr : = — () such that:

e r(€) = qo;

e for eachz € 7 with arity(z) = d we have
(r(z-0),...r(z-(d-1))) € 6(r(z), T (x),d);

e along every infinite pathg, 21, . .. in 7, the minimal
integerh suchj(r(z;)) = h for infinitely manyi is
even.

The tree automator is nonemptyif there exists some tree
T that is accepted byl.

In [14] it is shown that the emptiness of a parity tree au-
tomaton can be decided in a time that is exponential in the
parity index and polynomial in the number of states.

Theorem 1 The emptiness of a parity tree automaton with
n states and indek can be determined in time”(%).

2.2. Planning domains and plans

A (nondeterministic) planning domaif®] can be ex-
pressed in terms of a set sfates one of which is desig-
nated as thénitial state of a set ofactions and of atran-
sition functiondescribing how (the execution of) an action
leads from one state to possibly many different states.

A tree automaton is an automaton that accepts sets of2€finition 4 (planning domain? A planning domainis a
trees. In this paper, we consider a particular family of tree UPIeD = (X, 00, A, R) where:

automata, namelparity tree automat#14].

Definition 2 (parity tree automata) A parity tree automa-
ton with parity indexk is a tupleA = (X, D, Q, qo, 9, 5),
where:

e Y is the finite, nonempty alphabet;

e D C Nis afinite set of arities;
Q is the finite set of states;
go € @ is the initial state;
§:QxXxD — 29 is the transition function, where
d(q,0,d) € 20"
e :0Q — {0,...,k} is the parity mapping.

e Y is the finite set of states;

e 0p € Y is the initial state;

e A is the finite set of actions;

e R:Y x A — 2% is the transition relation.

We require that the transition relation is total, namely fo
eacho € X there are some € A and somes’ € X such
thate' € R(o,a). We assume that statEsare ordered, and
we write R(o,a) = {(o1,09,...,0,) wheneverR(o,a) =

{o1,01,...,0p}andoy < g9 < -+ < 0y,

A plan guides the evolution of a planning domain
by issuing actions to be executed. In the case of non-

A tree automaton accepts a tree if 'Fhere is an accepting FUNjeterministic domainsgonditional plans[9, 24] are re-
of the automaton on the tree. Intuitively, when a parity tree quired, that is, the next action issued by the plan may de-

automaton is in state and it is reading @-ary node of the
tree that is labeled by, it nondeterministically chooses a
d-tuple{qs, ..., qq) in 6(g, o, d) and then maked copies of

pend on the outcome of the previous actions. Here we con-
sider a very general definition of plans: a plan is a mapping
from a sequence of states, representing the past history of

itself, one for each child node of the tree, with the state of {ne domain evolution. to an action to be executed.

thei-th copy updated tg;. A run of the parity tree automa-

ton is accepting, if along every infinite path, the minimal Definition 5 (plan) A planis a partial mapr : ¥+ — 4

priority that is visited infinitely often is an even number.

such that:

e if m(w - o) = a, theno’ € R(o,a) for somer’; Definition 8 (LTL) LTL formulasy on Prop are defined
e if 7(w - o) = a, theno’ € R(o,a) iff w-0-0' € by the following grammar, whewge Prop:

dom(n);
. : pu=ql-plenp|XelpUyp
e if w-o € dom(w) withw # €, thenw € dom(r);

e (o) is defined iffr = oy is the initial state of the ~ We define the following auxiliary operators:dF= T U ¢
domain. (eventually in the futurep) and Gy = —F—yp (always in
the futurey). LTL formulas are interpreted over infinite
The conditions in the previous definition ensure that a plan words onX. In the following, we writew =7 ¢ whenever
defines an action to be executed for all and only the finite the infinite wordw satisfies the LTL formulg. A formal
pathsw € X7 that can be reached executing the plan from definition of the semantics of LTL can be found in [15].
the initial state of the domain. CTL*[15] is an example of “branching-time” logic. Path
Since we consider nondeterministic planning domains, quantifiersA (*for all paths”) andE (“for some path”) can
the execution of an action may lead to different outcomes. prefix arbitrary combinations of linear time operators.

Therefore, the execution of a plan on a planning domain Definition 9 (CTL¥) CTL* formulas¢: on Prop are de-

can be described as(& x A)-labelled tree. Componeit fined by the following arammar. whetec Prop:
of the label of the tree corresponds to a state in the plan- y g9 » wheq rop:

ning domain, while component describes the action to be b ou= q| | YAy | Ap | Ep
executed in that state.

¢ w= PlopleAp[XelpUyp
Definition 6 (execution tree) The execution treefor do- CTL* formulas are interpreted ovef-labelled trees. The
main D and planm is the (X x A)-labelled treeT defined definition of the semantics of CTL* can be found in [15].
as follows: The following theorem states that it is possible to build a

tree automaton that accepts all the trees satisfying a CTL*
formula. The tree automaton has a number of states that is
doubly exponential and a parity index that is exponential in

e T(e) = (00,ap) Wheregy is the initial state of the
domain anthy = 7 (og);

oeif p = zo,...,2, € P*(T) with T(p) = the length of the formula. A proof of this theorem can be
(0'07 (lo) . (0’1,(11) e (Un; an)i and if R(an; an) = found in [13]
(0g,---,04_ 1) thenz, -i € dom(T) andT (z, -i) =
(o!,a!) with a! = (0o - 01+ 0, - o), for every Th_e(_)rem 2 Let_@b_ be a CTL* formula, an(_j leD C N* be
0<i<d. a finite set of arities. One can build a parity tree automaton

A}; that accepts all and only th&-labelled D-trees that

A planning problenconsists of a planning domain and satisfy:). The automatomg has22”"*" states and parity
of a goalyg that defines the set of desired behaviors. In the jndex20(¥D) where|t)| is the length of formulap.
following, we assume that goaldefines a set of execution
trees, namely the execution trees that exhibit the behsavior 3
described by the goal (we say that these execution trees sat-
isfy the goal).

A logic of path quantifiers

In this section we define a new logic that is based on LTL
and that extends it with the possibility of defining condio
of the sets of paths that satisfy the LTL property. More pre-
cisely, we consider logic formulas of the formyp, where
@ is an LTL formula andx is a path quantifier and defines
a set of infinite paths on which the formuashould be
. checked. Two extreme cases are the path quantifiénat
2.3. Temporal logics is used to denote that must hold orall the paths, and the
path quantifie€, that is used to denote thatmust hold on
Formulas ofLinear Temporal Logi¢LTL) [15] are built somepaths. In general, a path quantifier is a (finite or infi-
on top of a setProp of atomic propositions using the nite) word on alphabef4, £} and defines an alternation in
standard Boolean operators, the unary temporal operator Xthe selection of the two modalities corresponding tand
(next), and the binary temporal operator U (until). In the A. For instance, by writingl€.¢ we require that all finite
following we assume to have a fixed set of atomic proposi- paths have some infinite extension that satisfieshile by
tions Prop, and we defin& = 2°7°? as the set of subsets writing £4.¢ we require that all the extensions of some fi-
of Prop. nite path satisfyp.

Definition 7 (planning problem) A planning problenis a
pair (D, g), whereD is a planning domain and is agoal

A solutionto planning problen{ D, g) is a planz such that
the execution tree far satisfies goag.

The path quantifier can be seen as the definition of a two-

The following lemma describes the basic properties of

players game for the selection of the paths that should sat-path quantifiers.

isfy the LTL formula. Player A (corresponding 1) tries

to build a path that does not satisfy the LTL formula, while
player E (corresponding t6) tries to build the path so that
the LTL formula holds. Different path quantifiers define
different alternations in the turns of players A and E. The
game starts from the path consisting only of the initialestat

and, during their turns, players A and E extend the path by

Lemma 3 Leta anda’ be two finite path quantifiers.

1. cdAd’ ~ ada’ andalfa’ ~ ala’.

2. adad' ~ aa’ andaa’ ~ afa'.

3. ada’ ~ adEAQ’ andalAEa’ ~ afa.

4. aAEAEQ' ~ cAEa’ andalAEAQ’ ~ aEAa’.

a finite number of nodes. In the case the path quantifierisa \we can now prove the first main result of the paper: each
finite word, the player that moves last in the game extendsginjte path quantifier is equivalent tocanonical path quan-

the finite path built so far to an infinite path. The formulais

satisfied by the tree if the player E has a winning strategy,

namely if, for all the possible moves of the player A, it is

always able to build a path that satisfies the LTL formula.
In the rest of the section we give a formal definition and

study the basic properties of this logic of path quantifiers.

3.1. Finite games

We start considering only games with a finite number of

moves, that is path quantifiers corresponding to finite words

on{4,&}.

Definition 10 (AE-LTL) A AE-LTL formula is a pairg =
a.p, wherey is a LTL formula andy € {4, £} is a path
guantifier.

The following definition describes the games corre-
sponding to the finite path quantifiers.

Definition 11 (semantics ofAE-LTL) Let p be a finite
path of aX-labelled treeT. Then:

e p = Aa.yp if for all finite extensiong' of p it holds

thatp' = a.p.
e p = Ea.p if for some finite extensiopl of p it holds
thatp' E a.p.

e p = A.p if for all infinite extensiong’ of p it holds
that 7 (p') ‘:LTL ©.

e p = E.¢ if for some infinite extensiop of p it holds
that 7 (p') ‘:LTL ©.

We say that th&-labelled treeT satisfies thed£-LTL for-
mulag, and we writeT [g, if and only ifpy = g, where
po = (e) is the root ofT.

We now investigate when two path quantifiers are equiv-
alent, i.e., they select the same sets of paths.

Definition 12 (equivalent path quantifiers) Let a and o’
be two path quantifiers. We say thatmplies o/, written
a ~ o, if for all the X-labelled treesr and for all the LTL
formulasy, T |= a.p impliesT = o'.p. We say thatv is
equivalento o, writtena ~ o/, if @ ~ o' anda’ ~ a.

tifier of length at most three.

Theorem 4 For each path quantifiet: there is a canonical
path quantifiera’ € {A, €&, AE,EA,AEA, EAE} such that

a ~ o'. Moreover, the following implications hold between
the canonical path quantifiers:

A~~~ AEA ~~> AE

5 5

v v
EA ~~r=EAE ~~> &

We remark that Lemma 3 and Theorem 4 do not depend
on the usage of LTL for formule. They depend on the
general observation that ~ o' whenever player E can
select for game’’ a set of paths which is a subset of those
selected for gama. This consideration also applies to the
case of infinite path quantifiers.

3.2. Infinite games

We now consider infinite games, namely path quantifiers
consisting of infinite words on alphabé&t,£}. We will
see that infinite games can express all the finite path quan-
tifiers that we have studied in the previous subsection, but
that there are some infinite games, corresponding to an in-
finite alternation of the two players A and E, which cannot
be expressed with finite path quantifiers.

In the case of infinite games, we assume that player E
moves according to a strategyhat suggests how to extend
each finite path. We say that |= a.¢, wherea is an infi-
nite game, if there is some strategyor player E such that
if p is an infinite paths of” obtained according ta, by al-
lowing player A to extend the path in an arbitrary way and
by requiring that player E follows strategythenp satisfies
the LTL formulae.

Definition 13 (strategy) A strategy for2-labelled treeT is
a mapping : P*(T) — P*(T) that maps every finite path
p to one of its finite, strict extensiogép).

We require that patl§(p) is a strict extension op in or-
der to guarantee that, if player E takes control on the game,
situations are avoided where the path is never extended.

Definition 14 (semantics ofAE-LTL) Leta = TIpIl; - - -
with II; € {4, £} be an infinite path quantifier. An infinite
pathp is a possible outcomef gamea with strategy¢ if
there is an infinite sequengg, py, . . . of finite paths such
that:

p; are finite prefixes of;

po = € is the root of treeT;

if II; = & thenp; 11 = &(pi);

if I1; = A thenp;1, is an arbitrary strict extension of
Di-

The treeT satisfies thed£-LTL formulag = a.¢, written
T = g, if there is some strategysuch thatT (p) =irL ¢
for all pathsp of T that are possible outcomes of game
with strategy¢.

In the next lemmas we extend to the case of infinite

games the analysis of equivalence among path quantifiers.

The first lemma shows that finite path quantifiers are just
particular cases of infinite path quantifiers, namely, they
correspond to those infinite path quantifiers that end with
an infinite sequence of or of £.

Lemma5 Leta be afinite path quantifier. Them(4)~ ~
oA anda(&)Y ~ af.

In the next lemma we show that all the games where
players A and E alternate infinitely often are equivalent to
one of the two game§A€&)“ and (£A4)¥. That is, we can

assume that each player extends the path only once before

the turn passes to the other player.

Lemma 6 Leta be an infinite path quantifier that contains
an infinite number oft and an infinite number of. Then
a~ AE)Y ora~ (EA)“.

The next lemma contains other auxiliary results on path
quantifiers.

Lemma 7 Let a be a finite path quantifier and’ be an
infinite path quantifier.

1. cda’ ~ aad’ andaa’ ~ afa'.
2. a(d)¥ ~ ada’ andala’ ~ a(€)¥.

We can now complete the picture of Theorem 4: each
finite or infinite path quantifier is equivalent tocanonical
path quantifierthat defines a game consisting of alternated
moves of players A and E of length one, two, three, or in-
finity.

2The definitions of the implication and equivalence relagigBefini-
tion 12) also apply to the case of infinite path quantifiers.

Theorem 8 For each finite or infinite path quanti-
fier a there is a canonical path quantifien/ €
{A,EAE EALAEA, EAE, (AE)¥, (EA)¥} such thata ~

a'. Moreover, the following implications hold between the
canonical path quantifiers:

A~ AEA ~~ (AE)Y ~~= AE

5 ; 5

v
EA ~r= (EA)Y ~~s EAE ~~ €

We conclude this section by showing that all the arrows
in the diagram of Theorem 8 describe strict implications,
namely, the eight canonical path quantifiers are all differ-
ent. Let us consider the followin{, p, ¢}-labelled binary
tree, where the root is labelled Byand each node has two
children labelled withp andg:

(D
(@)

(D)
o g
A RAA

0000000

Let us consider the following LTL formulas:

e Fp: player E can satisfy this formula if he moves at
least once, by visiting g-labelled node.

e G Fp: player E can satisfy this formula if he can visit

an infinite number of-labelled nodes, that is, if he has

the final move in a finite game, or if he moves infinitely

often in an infinite game.

F Gp: player E can satisfy this formula only if he takes

control of the game from a certain point on, that is,

only if he has the final move in a finite game.

G —q: player E can satisfy this formula only if player

A never plays, since player A can immediately visit a

g-labelled node.

i U p: player E can satisfy this formula by playing the

first turn and moving to the left child of the root node.

The following graph shows which formulas hold for which
path quantifiers:

‘FGp

4. A planning algorithm for AE-LTL In the other cases, the CTL* formu]far.¢]] is the conjunc-
tion of two sub-formulas. The first one characterizes the

In this section we present a planning algorithm - good markings according to the path quantifiewhile the _
LTL goals. We start by showing how to build a parity tree second one guarantees that the paths selected according to
automaton that accepts all the trees that satisfy a giign ~ the marking satisfy the LTL formulg. In the case of path
LTL formula. Then we show how this tree automaton can guantifierséA andA£A, we mark withw the nodes that,
be adapted, so that it accepts only trees that correspond t®Nce reached, guarantee that the formula satisfied. The
valid plans for a given planning domain. In this way, the selected paths are hence those that contain a node labelled
problem of checking whether there exists some plan for aPY w (formula Fw). In the case of path quantifiess” and
given domain and for apd&-LTL goal is reduced to the EAE, we mgrk withw all the Qegcendants of a node that de-
emptiness problem on tree automata. Finally, we study thefine an infinite path that satisfigs The selected paths are

complexity of planning ford€-LTL goals and we prove that hence those that, from a certain node on, are continuously
this problem is 2EXPTIME-complete. labelled byw (formula F Gw), that is, from a certain node

on we follow the path marked with. In the case of path
quantifiers(4€)¥ and (£A)¥, finally, we mark withw all

the nodes that player E wants to reach according to its strat-
egy before passing the turn to player A. The selected paths

In [5] it is shown thatAE-LTL formulas can be ex- gr6 hence those that contain an infinite number of nodes la-
pressed directly as CTL* formulas. The reduction exploits pg|jed byw (formula G Fw), that is, the paths along which
the equivalence of expressive power of CTL* and monadic player E moves infinitely often.

path logic [20]. A tree can be obtained for a€-LTL for-
mula using this reduction and Theorem 2. In this paper we Theorem 9 A Y-labelled treeT satisfies thed£-LTL for-
describe a simpler reduction that is better suited for our al mulaa.y if, and only if, there is some-marking of7 that

4.1. Tree automata andA&-LTL formulas

gorithmic purposes. satisfies formuld/a.¢]].
A Y-labelled treeT satisfies a formula. if a there is
a suitable subset of paths of the tree that satjsfyThe In [17] an extension of CTL* with existential quantifica-

subset of paths should be chosen according.tén order tion over atomic propositions (EGCTL*) is defined and the
to characterize the subsets of paths that are suitable,for complexity of model checking and satisfiability for the new
we assume to havewrxmarking of the treeT, and we use l0gic is examined. We remark that€-LTL can be seen as
the labelsw to define the selected paths. More precisely, @ subset of EGCTL Indeed, according to Theorem 9¥a

we associate to eachE-LTL formula a.p a CTL* formula labelled tree satisfies af€-LTL formula a.¢ if and only if
[[a.¢]] such that the tree satisfies the formula.p if, and it satisfies the EGCTLformulazw.[[a.¢]].
only if, there is aw-marking of T that satisfieg|c.,]]. In the following definition we show how to transform a

parity tree automaton for the CTL* formulga.¢]] into a
Definition 15 (AE-LTL and CTL*) Let a.p be an A&- parity tree automaton for thel€-LTL formula .. This

LTL formula. The CTL* formuld[a.¢]] is defined as fol- transformation is performed by abstracting away the infor-
lows: mation on thas-marking from the input alphabet and from
the transition relation of the tree automaton.
) = A
.0l . v Definition 16 Let A = (Ex{w,w},D,Q,qo,0,5) be a
[Eell = By parity tree automaton. The parity tree automatan,, =
[[EA.p]] = EFw A A(Fw — ¢) (,D,Q, qo, 030, 3), obtained fromA abstracting away
[AEA.p]] = AGEFw A A(Fw —) the w-marking, is defined as follows:ds,,(¢,0,d) =
[AE¢]] = AGEXGw A A(FGuw — ¢) ¥(g, (o, w), d) U d(g, (0,), d).
[EAE.¢]] = EFAGEXGw A A(FGw — ¢) Lemma 10 Let A and A5, be two parity tree automata as
[AE)“.¢]] = AGEFw A A(GFw — o) in Definition 16. A5, accepts all and only th&-labelled
[(EA)*.¢]] = EFAGEFw A A(GFw — ¢) trees that have some-marking which is accepted by.

Now we have all the ingredients for defining the tree au-
tomaton that accepts all the trees that satisfy a giM€n
LTL formula.

In the case of path quantifiers and &, there is a direct
translation into CTL* that does not exploit themarking.

3A w-marking of theX-labelled tre€T is a(~ x {w, w})-labelled tree L
T such thatdom(T) = dom(T.) and, whenevefT (z) — o, then Definition 17 (tree automaton for AS-LTL) LetD C N*

Tw(z) = (0,w) or Ty (z) = (0,T). be a finite set of arities, and lety be anAE-LTL formula.

The parity tree automatoAE,w is obtained by applying the
transformation described in Definition 16 to the parity au-
tomatonAﬁa_wH built according to Theorem 2.

Theorem 11 The parity tree automatomf_w accepts all
and only theX-labelledD-trees that satisfy formula..

The parity tree automat(mf_@ has a parity index that is

exponential and a number of states that is doubly exponen

tial in the length of formulae.

Proposition 12 The parity tree automatonAE.w has
2277 states and parity index®(¢).

4.2. The planning algorithm
We now describe how the automatekf , can be ex-

ploited in order to build a plan for goal. on a given do-
main.

We now define a parity tree automaton that accepts only
the trees that correspond to the plans for donfaiand that
satisfy goal = a.¢. This parity tree automaton in obtained
by combining in a suitable way the tree automatonAdi-

LTL formula g (Definition 17) and the tree automaton for
domainD (Definition 18).

Definition 20 (instrumented tree automaton) Let D be a

set of arities that is compatible with planning domdin

Let also A? (£,D,Q,q0,9,5) be a parity tree au-
tomaton that accepts only the trees that satisfy the-

LTL formulag. The parity tree automatom% corre-

sponding to planning domai® and goal ¢ is defined
as follows: Ap (XxA,D,Qx%, (qu,00),6', 8",

where ((g1,01),...,(qa,04)) € ¢'((q,0),(0,a),d) if

,q4) € 6(q,0,d) and(o4,...,04) = R(0,a) with

d > 0, and wheres'(¢q, o) = S(q).

We start by defining a tree automaton that accepts all the The following lemma shows that solutions to planning

trees that define the valid plans of a planning domain
In the following we assume th&? is a finite set of arities
that is compatible with domai®, namely, if R(c, a)
(01,...,04) forsomes € ¥ anda € A, thend € D.

Definition 18 (tree automaton for a planning domain)

Let D = (X, 00,4, R) be a planning domain and let
D be a set of arities that is compatible with domain
D. The tree automatomtB corresponding to the plan-
ning domain isAD (YxA,D,¥%,00,6p, o), Where
(01,-..,04) € 0p(o,(0,a),d) if (o1,...,04) = R(o,a)
withd > 0, andfy(0) = 0forall o € X.

According to Definition 6, X x A)-labelled tree can be
obtained from each plan for domainD. Now we show
that also the converse is true, namely, egchk A)-labelled
tree accepted by the tree automatb}) induces a plan.

Definition 19 (plan induced by atree) Let T be a
(XxA)-labelled tree that is accepted by automatdr.
The plan 7 induced by7T on domainD is defined as
follows: 7 (6q,01,...,0,) = a if there is some finite path
p in T with 7(p) = (09,a0) - (01,a1) - (on,a,) and
a = a,.

The following lemma shows that Definitions 6 and 19

define a one-to-one correspondence between the valid plans

for a planning domairD and the trees accepted by automa-
ton AD.

Lemma 13 LetT be a tree accepted by automatdf and
let w be the corresponding induced plan. Theis a valid
plan for domainD and T is the execution tree correspond-
ing to planzw. Conversely, letr be a plan for domainD
and letT be the corresponding execution structure. Then
is accepted by automatoh’ andr is the plan induced by
treeT.

problem(D, g) are in one-to-one correspondence with the
trees accepted by the tree automattfy, .

Lemma 14 Let T be a (X xA)-labelled tree that is ac-
cepted by automatoABg, and letw be the plan induced
by 7 on domainD. Then planr is a solution to planning
problem(D, g). Conversely, let be a solution to planning
problem(D, g). Then the execution tree ofis accepted by
automatondp .

As a consequence, checking whether gpedin be satisfied
on domainD is reduced to the problem of checking whether
automatonél,’g’g is nonempty.

Theorem 15 Let D be a planning domain anglbe anA¢-
LTL formula. A plan exists for gogl on domainD if, and
only if, tree automatom,’gyg is nonempty.

for do-
200l

Proposition 16 The parity tree automatomy p

mainD = (¥, 04, 4, R) and goaly = a.¢ has|X|-2
states and parity index(1#),

4.3. Complexity

We now study the time complexity of the planning algo-
rithm defined in Subsection 4.2.

Given a planning domai®, the planning problem for
AE-LTL goalsg = a.¢ can be decided in a time that is
doubly exponential in the size of the formuteby applying
Theorem 1 to the tree automatary .

Lemma 17 Let D be a planning domain. The existence of
a plan for AE-LTL goalg = a.¢ on domainD can be

lel)

decided in time2""*" .

The doubly exponential time bound is tight. Indeed, the soon as player A takes control, the maintainability goal can
realizability problenfor an LTL formulay, that is known to be violated, if possible; therefore, the only relevant sase
be 2EXPTIME-complete [25], can be reduced to a planning ared. Gg, £.Gq, andéA. Gg.
problem for goal thel.y.

Lemma 20 Let 7 be a labelled tree. Thef = A. Gg iff
Theorem 18 Let D be a planning domain. The problem of 7 = AE. Gqiff T = AEA.Gqiff T | (A€)*. Gq. More-
deciding the existence of a plan f@£-LTL goalg = a.p overT |= EA.Gqiff T = EAE.Gqiff T |= (EA)¥. Gg.
on domainD is 2EXPTIME-complete.

The goalsd. Gq, £.Ggq, andEA. Gg correspond to main-

We remark that, in the case of goals of the fofip, tainability variants of strong, weak, and strong cyclicrpla
an algorithm with a better complexity can be defined. In ning problems. Indeed, they correspond to require that con-
this case, a plan exists for gaoély if, and only if, there dition ¢ is maintained for all evolutions despite nondeter-
is an infinite sequencey, o1, ... of states that satisfies minism (. Gg), that conditiong is maintained for some
and such that;, € R(o;,a;) for some actioru;. Thatis, of the evolutions£. G¢), and that it is possible to reach a
the planning problem can be reduced to a model checkingstate where condition is always maintained despite non-
problem for LTL formulayp, and this problem is known to determinism £A4. G p).
be PSPACE-complete [26]. We conjecture that, for all the
canonical path quantifiers exceptf, the doubly exponen-
tial bound of Theorem 18 is tight.

Some remark are in order on the complexity of da- _]
isfiability and validity problemsfor A£-LTL goals. These In this paper we have definedc-LTL, a new tempo-
problems are PSPACE-complete. Indeed, & LTL for- ral logics that extenq_s LTL with the poss@llty of declagin _
mulaa.y is satisfiable if, and only, if the LTL formula is cor_nplex path quantifiers that defln_e Fhe different degregs in
satisfiablé, and the latter problem is known to be PSPACE- Which an LTL formula can be satisfied by a computation
complete [26]. A similar argument holds also for validity. €€ We propose to usd&-LTL formulas for expressing
We leave for the full version of the paper the study of the temporally extended goals in nondeterministic planning do

complexity of the model checking problem fa€-LTL. mains. We have defined a planning algorithm fof-LTL
goals that is based on an automata-theoretic framework, and

we have studied its time complexity.

In the field of planning, several works use temporal log-
ics for defining goals. Most of these approaches [2, 3, 6, 7,

In this section we consider two basic classes of goals, 12, 19] use linear temporal logics as the goal language, and
namely theeachability goalorrespondingto the LTL for- are not able to express conditions on the degree in which
mula Fg and themaintainability goalorresponding to the the goal should be satisfied with respect to the nondeter-
LTL formula Gg. minism in the execution. Notable exceptions are the works

Let us start from the case of the “classical” reachability described in [23, 24] and in [10]: in [23, 24], CTL is used
goals Fy, whereg is a propositional formula. In this case, as goal language, while in [10] a new branching time logic
as soon as player E takes control, the reachability goal canis defined that allows for expressing temporally extended
be achieved, if possible; therefore, the only relevantgase goals that can deal explicitly with failure and recovery in
ared.Fq, £.Fqg, andA&. Fg. goal achievement. In the goal languages of [10, 23, 24],

however, path quantifiers are interleaved with the temporal

Lemma 19 Let 7 be a labelled tree. Them |= £.Fqiff operators, and are hence rather different frd@LTL.
T = EAFqiff T |= EAE.Fqiff T = (£A)”.Fq. More- In the field of temporal logics, the work on alternating
overT EAE. Fqiff T EAEA.Fqiff T = (A€)~. Fq. temporal logic (ATL) [1] is related to our work. In ATL,

the path quantifiers in CTL and CTL* are replaced by game
We remark that the three goals Fq, £.Fg, andA¢. Fq quantifiers. Nevertheless, there is no obvious way to ex-

corr_espond,_ respectively, to the strong, weak, and Strongpressed formulas of the form., wherea is a path quan-

cyclic planning pr_oblems of [11].) tifier andy is an LTL formula in ATL*, which is the most
We now consider another particular case, namely the o,y essive logic studied in [1]. Our conjecture is that our

maintainability goals @, whereq is a propositional for- logic and ATL* are of incomparable expressiveness.

mula. Maintainability goals have properties that are com- "¢ 5 tomata-theoretic framework that we have used in

plementary to the one of reachability goals. In this case, asy,o paper is of wider applicability thad&-LTL goals. An

4If a tree satisfiesy. the some of its paths satisfy, and a path that inte_reSting direction for fUture.inveStigaﬁonS is the Bpp
satisfiesp can be seen also as a tree that satigfies cation of the framework to variants of£-LTL that allow

6. Related works and concluding remarks

5. Reachability and maintainability goals

for nesting of path quantifiers, or for goals that combine [11] M. Daniele, P. Traverso, and M. Vardi. Strong cyclicrpla
AE-LTL formulas with CTL and CTL* formulas. Another
direction for future investigations is the extension of #pe

proach proposed in this paper to the case of planning under
partial observability [12], where one assumes that thetagen [12
executing the plan can observe only part of the state and

hence its choices on the actions to execute may depend only
on that part. We also plan to explore implementation issues [13]

and,

in particular, the possibility of exploiting BDD-base

symbolic techniques in a planning algorithm fd€-LTL
goals. In some cases, these techniques have shown to bl4]
able to deal effectively with domains and goals of a signif-
icant complexity, despite the exponential worst-case time
complexity of the problems (see, e.g., [4, 23]).

Acknowledgments. We would like to thank Erich Gradel
for his comments on the reduction gf€-LTL formulas to
CTL* formulas.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

R. Alur, T. Henzinger, and O. Kupferman. Alternatingat
temporal logic. IrProc. of 38th IEEE Symp. on Foundations
of Computer Scien¢cpages 100-109, 1997.

F. Bacchus and F. Kabanza. Planning for temporally ex-
tended goals. Ann. of Mathematics and Artificial Intelli-
gence 22:5-27, 1998.

F. Bacchus and F. Kabanza. Using temporal logic to ex-
press search control knowledge for planninftificial In-
telligence 116(1-2):123-191, 2000.

P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and
P. Traverso. MBP: A Model Based Planner. Pmoc. of
IJCAI'01 workshop on Planning under Uncertainty and In-
complete Information2001.

D. Berwanger, E. Gradel, and S. Kreutzer. Once upon a tim
in the west (a note on path games), 2003. Private communi-
cation.

D. Calvanese, G. de Giacomo, and M. Vardi. Reasoning
about actions and planning in LTL action theories.Pimoc.

of 8th Int. Conf. on the Principles of Knowledge Represen-
tation and Reasoning (KR'02pages 593-602, 2002.

S. Cerrito and M. Mayer. Bounded model search in linear
temporal logic and its application to planning. Pmoc. of
2nd Int. Conf. on Analytic Tableaux and Related Methods
(TABLEAUX'98) volume 1397 ofLNAI, pages 124-140.
Springer Verlag, 1998.

[8] A. Cimatti, M. Roveri, and P. Traverso. Automatic OBDD-

based generation of universal plans in non-deterministic d
mains. InProc. of 15th National Conf. on Atrtificial Intelli-
gence (AAAI'98)pages 875-881. AAAI Press, 1998.

[9] A. Cimatti, M. Roveri, and P. Traverso. Strong planning

(10]

in non-deterministic domains via model checking.Froc.

of 4th Int. Conf. on Atrtificial Intelligence Planning System
(AIPS-98) pages 36—43. AAAI-Press, 1998.

U. Dal Lago, M. Pistore, and P. Traverso. Planning with a
language for extended goals.Pmoc. of 18th National Conf.
on Artificial Intelligence (AAAI'02)AAAI Press, 2002.

15] E. A. Emerson.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

ning revisited. InProc. of 5th European Conf. in Planning
(ECP’99), volume 1809 ofLNAI, pages 35-48. Springer
Verlag, 1999.

] G. de Giacomo and M. Vardi. Automata-theoretic apploac

to planning with temporally extended goals. Rroc. of
5th European Conf. in Planning (ECP’99)olume 1809 of
LNAI, pages 226-238. Springer Verlag, 1999.

E. Emerson and C. Jutla. The complexity of tree automata
and logics of programs. [Rroc. of 29th IEEE Symp. on
Foundations of Computer Sciengmges 328-337, 1988.

E. Emerson and C. Jutla. Tree automatecalculus and
determinacy. IrProc. of 32nd IEEE Symp. on Foundations
of Computer Scien¢g@ages 368-377, 1991.

Temporal and modal logic. In J. van
Leeuwen, editorHandbook of Theoretical Computer Sci-
ence, Volume B: Formal Models and SemantiEsevier,
1990.

R. Fikes and N. Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solvirfgtificial
Intelligence 2(3-4):189-208, 1971.

O. Kupferman. Augmenting branching temporal logichwi
existential quantification over atomic propositions.Proc.

8th Int. Conf. on Computer Aided Verification (CAV'9&)I-
ume 939 ofLNCS pages 325-338. Springer-Verlag, 1995.
O. Kupferman, M. Vardi, and P. Wolper. An automata-
theoretic approach to branching time model checkifayr-

nal of the ACM47(2), 2000.

J. Kvarnstrom and P. Doherty. TALplanner: A temporal
logic based forward chaining planneAnn. of Mathemat-
ics and Artificial Intelligence30:119-169, 2001.

F. Moller and A. Rabinovich. On the expressive power of
CTL*. In Proc. of 4th Annual IEEE Symposium on Logic in
Computer Science (LICS'99pages 360-369. IEEE Com-
puter Science Press, 1999.

J. Penberthy and D. Wed. UCPOP: A sound, complete,
partial order planner for adl. IRroc. of 3rd Int. Conf. on
the Principles of Knowledge Representation and Reasoning
(KR'92), 1992.

M. Peot and D. Smith. Conditional nonlinear planning. |
Proc. of 1st Int. Conf. on Al Planning Systems (AIPS’92)
pages 189-197. Morgan Kaufmann Publisher, 1992.

M. Pistore, R. Bettin, and P. Traverso. Symbolic tech-
niques for planning with extended goals in non-determimist
domains. InProc. of 6th European Conf. in Planning
(ECP’01), 2001.

24] M. Pistore and P. Traverso. Planning as model checldang f

[25]

[26]

[27]

extended goals in non-deterministic domains. Pitoc. of
17th Int. Joint Conf. on Artificial Intelligence (IJCAI'01)
AAAI Press, 2001.

A. Pnueli and R. Rosner. Distributed reactive systenes a
hard to synthesize. IRroc. of 31st IEEE Symp. on Founda-
tion of Computer Sciencpages 746—757, 1990.

A. Sistla and E. Clarke. The complexity of propositibna
linear temporal logicJournal ACM 32:733-749, 1985.

D. Warren. Generating conditional plans and prograins.
Proc. of the Summer Conf. on Artificial Intelligence and Sim-
ulation of Behaviour (AISB’76)pages 344-354, 1976.

