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We introduce a new variation of Tree Encoding with Nested Intervals, find connections with Materialized Path, 
and suggest a method for moving parts of the hierarchy.    
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1. INTRODUCTION  

There are several SQL techniques to query graph structures, in general, and trees, in 

particular. They can be classified into 2 major categories:  

• Hierarchical/recursive SQL extensions 

• Tree Encodings 

This article focuses upon Tree Encodings.  

 

Tree encodings methods themselves can be split into 2 groups: 

• Materialized Path 

• Nested Sets  

Materialized Path is nearly ubiquitous encoding, where each tree node is labeled with the 

path from the node to the root. UNIX global filenames is well known showcase for this 

idea.  Materialized path could be either represented as character string of unique sibling 

identifiers (concatenated with some separator), or enveloped into user defined type (Roy 

[2003]). 

 
 
Querying trees with Materialized Path technique doesn’t appear especially elegant. It 

implies either string parsing, or leveraging complex data types that are realm of Object-

Relational Databases. The alternative tree encoding - Nested Sets (Celko [2000],[2004]) 
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labels each node with just a pair of integers. Ancestor-descendant relationship is reflected 

by subset relation between intervals of integers, which provides very intuitive base for 

hierarchical queries. A slight variation of Nested Sets is Dietz labeling with 

<preorder#, postorder#> pair of integers (Li et al. [2001]). The linear mapping  

left = total#nodes - postorder# +1  

right = 2*total#nodes - preorder# 

translates Dietz schema into Nested Intervals with integer boundaries (also called Nested 

Sets with gaps). 

 

Although Nested Sets elegant technique was certainly appealing to many database 

developers, it has 2 fundamental disadvantages: 

• The encoding is volatile. In a word, roughly half of the tree nodes should be 

relabeled whenever a new node were inserted. 

• Querying ranges is asymmetric from performance perspective. It is easy to 

answer if a point falls inside some interval, but it is hard to index a set of 

intervals that contain a given point. For Nested Sets this translates into a 

difficulty answering queries about node’s ancestors.  

 

Tropashko [2003a] introduced Nested Intervals that generalize Nested Sets. Since Nested 

Sets encoding with integers allows only finite gaps to insert new nodes, it is natural to use 

dense domain such as rational numbers. One particular encoding schema with Binary 

Rational Numbers was developed in the rest of the article, and was a subject of further 

improvements in the follow up articles. Binary Rational Encoding has many nice 

theoretical properties, and essentially is a numeric reflection of Materialized Path. It has, 

however, one significant flaw from practical perspective. Binary Fractions utilize domain 

of integer numbers rather uneconomically, so that numeric overflow prevents tree scaling 

to any significant size. 

 

In general, Nested Intervals allow a certain freedom choosing particular encoding 

schema. Tropashko [2004] developed alternative encoding with Farey Fractions. It 

solved scalability problems, but it remained unclear how this new encoding is related to 

Materialized Path. Furthermore, a predictable question from developers’ community was 

“How to relocate subtrees in this new schema?” 

 



This article addresses both concerns. We expand our perspective and invoke some 

elementary math methods, including Continued Fractions, Greatest Common Divisor 

(GCD), Euclid Algorithm, 2x2 Matrix Algebra.  This technique provides unexpected 

insight into connection of Farey Encoding with Materialized Path.  

 

2. THE ENCODING 

We label tree nodes with rational numbers a/b such that a≥b≥1 and GCD(a,b)=1. 

Node with a=4913 and b=1594 would be used as our primary example through the 

entire article. Euclidean Algorithm maps the 4913/1594 node it into a sequence  

4913 = 1594*3  + 131 

1594 = 131 *12 + 22 

131  = 22  *5  + 21 

22   = 21  *1  + 1 

21   = 1   *21 + 0 

that we interpret as Materialized Path 3.12.5.1.21. The opposite mapping – from 

Materialized Path to Rational Numbers – is implemented via Continued Fractions.  

 

3. CONTINUED FRACTIONS 

Simple Continued Fraction is a list of integers structurally arranged like this: 

 + 3
1

 + 12
1

 + 5
1

 + 1
1

21

 

When converting Continued Fraction into Rational Number, we go through the steps of 

Euclidean Algorithm in the reverse order, so that in our example we would necessarily 

get  

 =  + 3
1

 + 12
1

 + 5
1

 + 1
1

21

4913
1594  

4. NESTED INTERVALS 

Nested Intervals Tropashko [2003a] enjoy desirable Nested Sets properties and, 

therefore, it is important that continued fractions could be interpreted as nested intervals. 



We map every Continued Fraction into a [semiopen] interval in 2 steps. First, we 

associate a Rational Function with every Continued Fraction as follows: 

 =  + 3
1

 + 12
1

 + 5
1

 + 1
1

 + 21
1
x

 + 4913 x 225
 + 1594 x 73

 
Then, we assume x∈[1,∞). Substituting the boundary values for x into the Rational 

Function for 3.12.5.1.21 we find that it ranges inside the (4913/1594, 

5138/1667] semiopen interval.  

 

Let’s demonstrate that the intervals are nested. Indeed, if x is allowed to be any number 

in the range [1,∞), then we could substitute x for another Rational Function! 

Therefore, nesting Rational Functions derived from Continued Fractions corresponds to 

Materialized Path Concatenation. For example, concatenating paths 3.12 and 5.1.21 

is nesting  

 = x  + 5
1

 + 1
1

 + 21
1
y

 

inside of 

 = 3.12  + 3
1

 + 12
1
x

 

 

which is a formal substitution of variable x.  

 

Let’s double check that the interval for 3.12.5.1.21 is indeed nested inside the 

interval corresponding to the path 3.12. We have [3+1/(12+1/1),3+1/12) = 

[40/13,37/12) and 40/13 < 4913/1594 < 5138/1667 < 37/12.  

 

Rational function with linear numerator and denominator polynomials is called Möbius 

transformation and, therefore, we’ll refer to the latest tree encoding as Möbius encoding. 

Let’s summarize details of mapping among Rational numbers, Continued fractions, 



Möbius encodings, and Intervals with Rational Boundaries that we have already 

established: 

• Rational number → Materialized Path (by Euclid Algorithm) 

• Materialized Path → Rational number (by simplifying Continued Fraction) 

• Möbius encoding (ax+b)/(cx+d) ↔  Interval (a/c, (a+b)/(c+d)] 

• Interval (a/c,(a+b)/(c+d)] → Rational number a/c 

• Materialized Path → Möbius encoding (appending 1/x to Continued Fraction 

and simplifying) 

We’ll use these encodings interchangeably. In the next section we’ll show that Rational 

Number encodings for the parent and sibling are expressed in terms of original node’s 

Möbius representation with astonishing simplicity. 

 

5. PARENT AND NEXT SIBLING 

Lemma 1. 225/73 is parent of  (4913x+225)/(1594x+73). 

Proof. Assume that parent encoding in Möbius representation is (ay+b)/(cy+d), 

where we changed free variable to y. Then, concatenating path 3.12.5.1 with 21 

corresponds to nesting y=21+1/x inside (ay+b)/(cy+d). By substitution we have 

((21a+b)x+a)/((21c+d)x+c) which, on the other hand, should be equal to 

(4913x+225)/(1594x+73). Therefore, a=225, c=73.  

Lemma 2. (4913+225)/(1594+73) is the next sibling of  (4913x+225)/ 

(1594x+73).  

Proof. As we already established in lemma 1, parent encoding is (225y+b)/ 

(73y+d). Also in lemma 1 we nested Möbius encoding y=21+1/x for node 21 inside 

its parent, and got resulting encoding ((21*225+b)x+225)/((21*72+d)x+73). 

If we were nested encoding y=22+1/x for node 22 instead, then, we would have got 

((22*225+b)x+225)/((22*72+d)x+73). Given that 21*225+b=4913 and 

21*72+d=1594 we immediately have 22*225+b=4913+225 and 22*72+d= 

=1594+72.  

 

With the help of lemma 1 we expect the next sibling’s Möbius encoding to be 

((4913+225)x+225)/((1594+73)x+73)   

 

6. MAIN LEMMA 



Lemma 3. Let (ax+b)/(cx+d) is Möbius encoding. Then, either bc - ad = 1 or 

ad - bc = 1. 

 

Proof. Induction by nesting level. Assume bc = ad + 1. Increasing level one more 

corresponds to nesting x=n+1/y inside the parent (ax+b)/(cx+d) for some integer 

n. New Möbius encoding is (any+by+a)/(cny+dy+c) and we only have to verify 

that acn+ad=acn+bc+1. The other case is symmetric.  

 

Lemma 3 has at least two interpretations. Möbius transformation (ax+b)/(cx+d)  

parallels algebra of 2x2 matrices 

�
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�

�
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a b
c d

 

where composition of Möbius transformations corresponds to matrix multiplication. 

Lemma 3 constraints matrix algebra to those matrices that have determinants -1 or 1 only. 

Without going into too much detail let’s represent path 3.12.5.1.21 as matrix 

product  
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4913 225
1594 73  

where each one node path primitive matrix has determinant -1 and, therefore, it’s obvious 

that the multiplication result should have determinant 1 or -1. 

 

We provide another interpretation of Lemma 3 in terms of GCD in the next section.  

 

6. EXTENDED EUCLIDEAN ALGORITHM 

Extended version of the Euclidean algorithm calculates three numbers GCD(a,b), x and 

y which meet the following identity 

ax-by=GCD(a,b) 

Since GCD(a,b)=1 for our rational encodings, then the above identity coincides with 

the one from Lemma 3. Therefore, we could use Extended Euclidean algorithm to 

calculate Möbius encoding if we know rational representation. Let’s demonstrate this for 

the familiar node 4913/1594 

4913-1594*3=                                       = 4913*1 -1594*3  = 131 

1594-131*12= 1594             –(4913*1-1594*3)  *12= 1594*37-4913*12 = 22 

131 -22*5  = (4913*1-1594*3)  –(1594*37-4913*12) *5= 4913*61-1594*188= 21   

22  -21*1  = (1594*37-4913*12)–(4913*61-1594*188)*1= 1594*225-4913*73= 1 



As expected, the result 225/73 is the parent encoding. This algorithm presents 

significant speed improvement compared to naïve loop iterating through all numbers 

from 1 to denom when finding next Farey fraction in Tropashko [2004] 2 

 

7. RELOCATING SUBTREES 

Consider subtree rooted at the node 3.12. When relocating all the descendants of 3.12 

we’ll apply a set operation like in Tropashko [2003a], but for clarity we focus on single 

node 3.12.5.1.21 only. We want to “detach” this node from its ancestor, first. 

Speaking path language, we represent 3.12.5.1.21 as a concatenation of path 

fragments 3.12 and 5.1.21 so that 5.1.21 can be later reattached to the other parent. 

Speaking matrix algebra language from section 5, we multiply matrix corresponding to 

3.12 to unknown matrix and the result have to be equal to matrix corresponding to 

3.12.5.1.21. Therefore, we have to solve matrix equation  
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which reduces to a system of 4 linear equations. The solution matrix is 
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131 6
22 1

 

We could have calculated this matrix directly, because we know the path fragment 

5.1.21 it corresponds to 
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but the idea is that we cold do calculations in any of the encodings that we introduced in 

this article without being forced to translate to Materialized path.  

 

Finally, let’s attach this path fragment the other part of hierarchy, say under the path 

4.7. In matrix language the matrix corresponding to 4.7 

 =  . �

�
��

�

�
��

4 1
1 0

�

�
��

�

�
��

7 1
1 0

�

�
��

�

�
��

29 4
7 1

 

should be [right] multiplied by the matrix corresponding to the moving path fragment 

5.1.21 that we found previously  
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3887 178
939 43  

which concludes our single node relocation.  

 

CONCLUSION 

In this article we focused on tree encodings with rational numbers that are greater or 

equal to 1. Farey Fractions tree encoding in Tropashko [2004] used rational numbers that 

are less or equal to 1. This choice, was incidental, because Farey sequence is symmetrical 

with respect to multiplicative inverse operation. Likewise, in this article we could have 

studied continued fractions and rational functions of the kind: 

1

 + 3
1

 + 12
1

 + 5
1

 + 1
1
 + 20 x  

where both x and the value rational function is between 0 and 1. Some our results would 

have changed to multiplicative inverse. The fundamental identity ad - bc = 1, 

however, holds for two adjacent fractions a/c and b/d in all these encoding schema 

variations.  
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