1

Reflective Remote Method Invocation

G. K. Thiruvathukall Tools of Computing LLC and Argonne National Laboratory
Chicago, lllinois, U.S.A.

L. S. Thomas? lllinois Institute of Technology, Chicago, lllinois, U.S.A.
A. T. Korczynski3 llinois Institute of Technology, Chicago, lllinois, U.S.A.
Abstract

Remote Method Invocaion (RMI) is avail able in the aurrent Javalanguage design and
implementation, providing the much-needed capability of all owing objeds running in
different Java processesto collaborate using a variation on the popular Remote
Procedure Call (RPC).

Although RMI provides feaures which are desirable for high-performance distributed
computing, itsdesign andimplementation are deficient in key areas of importanceto the
high-performance @mmputing community in general. This paper addresses the key
deficiencies of RMI and how these deficiencies affed the design and implementation of
distributed oljead applications.

Refledive RMI (RRMI) isan open RMI implementation which makes better use of the
objed-oriented fedures of Java. RRMI is so-cdled refledive because it directly
employs the refledion capabilities of the aurrent Java language to invoke methods
remotely. RRMI makes use of the dynamic dassloader (a dass cdled NetClassL oader)
to allow client/server applicaionsto be built for high-performance mmputing systems
without having all of the.class fil es present on all nodesin a parallel computation.
Among other feaures discussed are support for asynchronous remote method
invocdions with deferred reply and exception semantics.

Keywords: Common Objed Request Broker Architedure (CORBA), Objed Request Broker
(ORB), Remote Method Invocaion (RMI), Remote Procedure Call (RPC), Message Passing
Interface(MPI), Reflection, Introspedion, Exception Handling, Asynchronous, Synchronous,
Delegation, and Futures.

Introduction

Is distributed computing easy in Java? Can it be made easier? Current optionsin Javafor
distributed computing are Common Object Request Broker Architecture (CORBA) and Remote
Method Invocaion (RMI).

Consider CORBA [13]. The Java language has made it easier to use CORBA as many of its
built-in frameworks suppat CORBA well. CORBA is both alanguage independent and a
location transparent framework, which means objects are interchangeable as long as the
interfaces to the objeds remain the same. The communication between different distributed
objectsishandled by an object request broker (ORB). Distributed oljectscommunicae using the
Internet Inter-ORB Protocol (110P). The Objed Management Group (OMG), a consortium
responsible for the design of CORBA, has not defined actual programmatic interfaces, the
so-called Application Programming Interfaces (API), but rather each ORB vendor is given the
latitude to defineits API. 11OP iswhat makesit possible for different ORB implementations to

1 All authors are members of the Java and High-Performance Computing Research Group. For more information,
please visit http://www.jhpc.org. George K. Thiruvathukal can be reached at geor ge.k.thir uvathukal @acm.org.

2 Lovely S. Thomas can be reached at lovelyst@aol.com or thomlov@rice.iit.edu.

3 Andy T. Korczynski can be reached at andyk@rice.iit.edu.

make use of one another’s objects. What makes this possible is Interface Definition Language
(IDL). OMG creded the IDL to makethe separation between interface andimplementation clear.
A language mappingis needed to translate an IDL fileinto the programming language of choice
A Javalanguage mapping has recently been completed andisin the process of getting OMG

approval.
CORBA itself isan excellent techndogy for building distributed applicationsinvolving multiple
languages and commercial vendors; however, for high-performance distributed computing
applications, often involving asingle language, it imposes a heavy burden on rogrammers to
create the remote object and deploy alarge-scale application. The ading processis rather
complicated:

» Define gplicationinterfaces using IDL.

» Generate stubs and skeletons from IDL.
Inherit implementation classes from the generated skeleton classes.
» Create aserver container object.
Register the objed.

CORBA also does not appear suitable for use with Java Applets. The large number of classes
(~400) to be loaded by an application affects the performance, program size, and deployment
costs significantly. Netscgpe Communicator bundles the VisiBroker ORB from Visigenic to
avoid this problem. Bunding also does nat appear to be a good solution when considering all
vendor ORBs are different and the applet may need to embed another vendor ORB. Such an
embedding would serve to make the dient even more bulky.

AlthoughCORBA isuseful, it is perhaps a severe ase of over-engineeringin what many people
believe will be a1 objed-centered, possibly Java-enabled, write-once and run everywhere world.
Thisled the Javalanguage designersto propose an alternative method d object-brokering cdled
Remote Method Invocation (RMI) [14]. Althoughcertain aspectsof RMI are similar to CORBA,
RMI itself is more similar to Remote Procedure Call (RPC).

Developing an RMI applicationis much simpler than developing anein CORBA, particularly
because an RMI program isawayswritten the sasme way: thereisonly oneimplementation. The
steps involved are as foll ows:

« Any object to be served must be inherit from RemoteServer or UnicastRemoteObject
classes.

» Stubsand skeletons are reverse engineaed using thermic toad provided with the Java
Developer’'sKit.

» Application must be translated and linked with the generated stubs.
e The server must be registered.

Thus there are many striking similarities between CORBA and Java. The use of CORBA front
loads much of the effort on the application designer. IDL is used to define the interfaces from
which stubs and skeletons are generated. Java RM| generates the stubs and skeletons but forces
that implementation to use RemoteServer or UnicastRemoteObjed as a base class, primarily so
the stubs and skeletons can be generated. This causes many problems for building applicaions
with amoduar design and in particular forces a design decision to be made up front: which
objects will be remote?

CORBA and Java RMI provide strong support for synchronous remote method invocation.
High-performance network computing demands suppart for atransparent asynchronous remote

21

method invocation capability. CORBA comes close to supporting this need partially with one
way cdls; however, abetter mechanism is needed to address the complicated matter of deferring
replies and exceptions which arise from a one way call.

Toward the goal of maintainingthe simplicity of JavaRMI and enabling distributed applications
to be developed specificdly in research areas requiring the best balance of performance and
fedures, this paper presents Refledive Remaote Method Invocation (RRMI). RRMI isaclass
library which suppatsthe core feaures of RMI but isnaot tied to the Java Virtual Machinein any
way. It uses a descriptor-based scheme for defining and invoking remote methods. It supparts
synchronous and asynchronous forms of remote method invocation, borrowing ideas from the
implementation o Message Passing Interface (MPI) and a delegation based mechanism for the
implementation d asynchronaus forms. RRMI has been tested under Solaris and Windows NT
andis known to work with the gopletviewer. The implementation depends on feaures of the
current Java Devel oper’s Kit (version 11 or later) and makes use of the Socket, SocketServer,
Serializable, and the Javareflection padkage (java.io, java.net, and javalang.reflect).

Organization of the Rest of the Paper

Theremainder of thispaper isorganized asfoll ows. First, we discuss Remote MethodInvocation
and Remote Procedure Call (RPC) as provided by Sun Microsystems. The discusson centers
around whether RMI isagood fit for objects and, in particular, distributed ohjeds. We then
discuss whether RMI can easily be used for high-performance distributed objed computing.
Following the discussion of RMI, we present Reflective Remote Method Invocaion (RRMI).
During this presentation, we discussthe qualitative strengths and weanesses of our approach
and compare it to RMI. That latter part of the paper presents a number of code examples,
preliminary performance data, conclusions, and future directions of the work.

Critique of RMI

Remote Method Invocation (RMI) represents the latest generation o technology based onthe
familiar Remote Procedure Call (RPC). This section addresses the relevant question of “What is
RMI?" and gresentsa aitique of RMI from the vantage points of objed-oriented and distributed
systems.

Remote Procedure Calls and Objects: A good fit?

The following dscussionisintended for overview purposes only and not to be an
all-encompassng dscussion d all available RPC implementations. This backgroundis
necessary to understand the ensuing dscussion of RMI, RRMI, and their application to
distributed objed computing.

Remote procedure cdls are widely familiar to researchersin parallel and distributed systems.
The popular RPC padkage has been developed commercially by Sun Microsystems (Sun RPC)
and the Open Software Foundation (DCE RPC).

The basic idea of aremote procedure cal is best understood by first establishing a dient/server
relationship between two entities. One aitity ads as a supplier of functionality (a set of
procedures). The other entity acts as a wnsumer and wishes to use the functionality provided by

the supplier. RPC was designed to make it easy for a consumer to accessfunctionality provided
by a supplier. A number of assumptions are made:

« the supdier and consumer are both running processes
» the supdier provides a set of global functions which may be called remotely
¢ anetwork or other shared communicaion medium exists

In an RPC system, the principal design gal isto provide aloca view of aremote procedure to
aconsumer. More precisely, the consumer wants a procedure cll, albeit remote, to work the
same way aslocal procedure cal.

Practicd RPC tools make this possible by doing the following:
e using interfaces

e generating stub procedures which can be used by a consumer to wrap the actual code
which calls the remote procedure

e providingaregistry service for the supgier
» providingsuppart for migrating data between different architedures (e.g., XDR encoding)

An important aspect of RPC systemsiis the presence of suppliers (servers) and consumers
(clients). The server isused to provide or extend functionality. Thus the supplier has the active
rolein adistributed computation, while the cnsumer has a more passive role. Thisis often a
severerestriction in many appli caions, especially parallel and dstributed applications, and leads
to the somewhat awkward andasymmetrical notion of aserver cdlbad which alowsa consumer
to act somewhat as a supgier but only to the server with which it registers acalbad. As an
interesting aside, the CORBA framework for distributed object computing employs cdlbadksin
asimilar fashion.

The nation of remote procedure callsis particularly useful as a starting point for building
distributed systems; however, there are many limitations. Before exploring these limitations in
depth, it paysto consider the objed world for amoment. The object paradigm can be considered
avariation onthe client/server theme of RPC. An object itself is commonly defined in the
literature as being “an instance of a dass’. The dass mechanism defines a set of attributes and a
set of methods (variables and member functions are the terms now in most widespread use). An
object-oriented system is built by constructing instances of aclass called oljeds, which employ
the services (methods) of other objects to effect computation or system behavior. This suggests
thereisanatural client/server relationship between oljeds, because a given olject can act asa
client of another object simply by invoking ane of its methods. It is precisely this client/server
relationship that led to the use of remote procedure calls asaway of remotely invoking methods
when two objeds are not co-locaed in a given process.

The client/server relationship between oljects, however, is not completely useful. Virtually all
objectsin an object-oriented system are supgliers of functionality. Objects that do not serve
functionality are cdled data objects. Because objedstend to be suppliers aswell as consumers,
the overall architecture tendsto shift from being client/server to server/server. While RPC itself
is alanguage-independent notion, RPC implementations which make the distinction between
client and server do not appear to be agood fasis for object oriented systems.

Object oriented systems are characterized by a highly dynamic nature. Objects come and go,
often with very high turnover rates. An RPC implementation in such aworld must be smarter
than in the non-object world. In the case of Java, aremote procedure call could be issued by an
object which ceasesto exist after making the call. As Java suppats exception handing, fadlities
must be provided to addressexceptions when the cdler disappears.

2.2

Most objed-oriented languages provide pointer and reference semantics which are not location
transparent. Without engaging in a discussion of why languages have been developed this way
(or discussing the von Neumann model), this presents a number of problems for RPC
implementations. RPC programmersin C and C++ always had to provide serialization code to
migrate data structures passed as parametersto o returned from remote procedure calls. Java
programmers do not have to do this, but remote method calls cause the reference semantics of
Javato beturned into value semantics. This gecific problem led to the design and popuarity of
CORBA as a solution, but CORBA continues to exhibit many problems of RPC when it comes
to presenting the view of a symmetrical server/server relationship.

Stubs and skeletons are a particularly good ideafor non-object oriented systems; however, the
whole purpose of generating them isto discover interfaces (in particular, public interfaces).
Interface discovery ispossbleviarefledion (or introspedion), an often overlooked capability in
thelatest Java programminglanguage. The &bility to cdl methods using reflection eliminatesthe
need for a RemoteObject and stub/skeleton generation and thus make it possible for any object
to be served and wsed remotely. Reflective RMI makes use of this capability asa cre part of the
framework, and support is provided to make it (almost) as easy as RMI from the standpoint of
the caller.

RMI and High-Performance Computing: A good fit?

In high-performance computing systems, TCP/IP is not the only protocol spoken between
computers. Often, multiple protocols are used as in the Globus metacomputing toolkit. RMI in
its current instantiation orly supports TCP/IP. Because RMI does not have an open designand is
tied to the virtual machine, it cannot be essily extended by any organizaion aher than Sunto
suppat other protocols. The MPICH [7] (Message Pasdng Interface on Channels) research
demonstrated successully that making the message passng interface open and allowing
different transport devices to be provided by different implementors led to awidely usable
message passnglayer which worked in al high-performance computing environments.

The current RMI implementationis tied to the Java Virtual Machine. Often the case for doing
thisis either aperformanceor security argument. Neither appearsto apply. Reflective RMI (the
subjed of this paper) isimplemented as a class library which achieves nearly identical
performance to RMI and provides security (inasmuch as Javais considered seaure).

RemoteObject isarequired base dassfor any objed whichisto be used remotely. This presents
aserious problem for high-performance and olject-oriented codes, where only singleinheritance
is provided. The reseach presented in this paper all ows any object to be suppied at any time.
The fact that RemoteObject isrequired breaks the natural client/server relationships between
objects, because programmers are forced to create anew class before agiven oljed can be used.

Reflective Remote Method Invocation

Refledive RMI is so-called reflective because it directly employs reflection to invoke remote
methods. This standsin contrast with RMI, where stubs and skeletons are used asin the familiar
RPC. We now present the dements of the design of RRMI. Followingthis design dscusson, we
will provide detailed examples of how the implementation of RRMI is used to construct
distributed programs from different patterns supported by RRMI.

3.1

3.2

Extending the Class Loader to be Network Aware

The network class loader is acentral asped of the design. A similar approach isemployedin
ObjectSpace Voyager [12]; arudimentary sketch of how to implement oneis discussed in [2].
Thebasicideaof anetwork classloader isto provide an extension to the Java dassloader, which
has an abstract classdefined in class java.lang.ClassL oader. We have extended this classto
provide a number of different classloaders. In our current implementation, we use acentral
server approach wherein consumers may load classes from a given server. Before proceeding,
this design decision daes serializeall requests for agiven classto be loaded; however, this
decision dbes not affect performance of the underlying RRMI mechanism for invoking remote
methods. We are experimenting with other designs which employ replication and push
technologies to ke a set of consumers coherent, but it is beyondthe scope of this paper to
discuss these designs as it represents future work. The network class loader itself is supplied in
the aurrent implementation as two classes NetServer and NetClient to allow RRMI to beused in
much the same manner as RMI for Java-to-Java client/server development.

Remote Method Descriptor Management

Descriptor-based method invocation is used as a preferred mecdhanism to calling alocal stub
procedure. The Icon programming language [6] successfully demonstrated the pradical use of
procedure descriptors as a user-level method of invoking procedures. Using descriptors
complicates slightly the manner by which remote methods are invoked; however, the
FunctionBuilder class (discussed shortly) provides an elegant solution to remedy this difficulty.

Two classes are provided to effect aremote method call: Descriptor and ActualParams. The
Descriptor classis constructed straightforwardly with the name of the method being described
and a method addParamDesc which allows each parameter to the methodto be defined. For
example, if the remote function is defined as below:

public void multiply(Matrix another);

A descriptor could be mnstructed as follows:

Descri ptor multiplyDescriptor = new Descriptor (“multiply™);
multip | yDescriptor.addParamDesc(“Matrix”, “ano t her);

You could then bind parameters and cdl the procedure (viaalocal broker) asfollows:

Actual Params ap = new ActualParams(multiplyDes criptor);
ap.add Param(“another, new IdentityMatrix(4,4)) ;
Object reply = localBroker.invoke(ap);

Note that all remote procedureinvocations result in an object beingreturned. C++ and Javabath
do nat consider thereturn typein the method signature. We providefadlitiesin RRMI which wil|
allow atype guard to be established to ensure the return type is valid and a meaningful cast can
be performed.

Remote method descriptors are nat the most user-friendly interfaces from a programming
standpant. RRMI provides the FunctionBuilder classto facilitate the management of remote
method descriptors. One must still create an ActualParams objed (which isreusable and
mutabl e) to invoke the actual method; however, thereisagreat ded of comfort achieved knowing
the remote function hes been described appropriately.

In general the client wants to be able to do:

result = remoteObject.remoteMethod(al, a2, ... , aN);

3.3

The FunctionBuilder class allows a descriptor to be generated from a method declaration. Any
Java method declaration can be specified to the FunctionBuilder class constructor as follows:

Functi onBuilder fb = new FunctionBuilder(“publ i ¢ void
multip | y(Matrix rhs)”);

The FunctionBuilder also provides a setFunction methodto change the function descriptor to be
built.

Functi onBuilder fb = new FunctionBuilder();
fb.set Function(“public void multiply(Matrix rh s)");

Much of what is shown here could be automated by using a simple preprocessor. It may not be
apparent immediately, but the key advantage of using a descriptor-based schemeisthe aility to
migrate away from the arrent RMI scheme which relies on the RemoteObject base class being
inherited by objectsto be used remotely. Also, the descriptor-based scheme makes it easy to
invoke methods over arbitrary transports, such as MPI and Nexus. We have arelated ongoing
effort precisely in thisarea

Remote Method Invocation Mechanisms

Thus far, we have discussed the network class loader and descriptor-based procedure alling.
These mechanisms represent the core of what is needed to build a flexible and open remote
method invocation mechanism. This also represents a significant shift from the design d RMI
and CORBA implementations. In RRMI, classes can beloaded into the application at any time,
thus allowing a suppier of objectsto be dynamically configurable. Pure Javalanguage
mechanisms are tapped to achieve thisresult. Aswell, the descriptor-based scheme allows any
object to serve functionality to consumers. Thisis particularly important from an engineering
perspective, where aprogrammer often timesisforced to perform various twistings and
contortions to coercethe design of a distributed application into the RMI-imposed world of
remote objects. Wewish to pdnt out CORBA doesnot completely solve the problem either. Most
implementations impose similar burdens on the programmer.

Essentialy, RRMI presents alightweight broker to the programmer with robust fadlities for
remote methodinvocation. RRMI supports both synchronous and asynchronous remote method
invocations, borrowing some ideas from MPI in the latter case of asynchronous calls.

The synchronous case has already been unveiled in presenting how the network class|oader used
from a supplier and consumer perspedive.

Asynchronous cdls present some additional complicationsfrom animplementation perspective.
First, multiple asynchronaus calls can be outstanding, taken strictly from the consumer’s
perspective. MPI has introduced the nation of a completion handle for the purpose of tracking
the progress of an oustanding, non-blocking send'receive cl. Seand, the method of an dbject
where the call was made may terminate. Thus the cdling context islost. Third, the objed itself
may cease to exist. Fourth, there is the ugly matter of exception handling.

Thisleads to a number of posshilities:

* Thecdlerisnot interested in the reply nor the exception.
» Thecdler wantsto doother processing and then poll for the reply and/or exception.

» The cdling method terminates; perhaps a runrning thread will continue to monitor for
completion and await the reply/exception.

* Theobjea where the cal was made ceases to exist; another object listens for the
reply/exception.

Oneway remote method invocations areimportant for high-performance computing. If a cdl can
be performed one-way, less state information is maintained for handling the cal and fewer
communication steps are involved. RRMI supports this with the invokeAsyncNoReply call via
the local NetClient.

The second case is often used in message passing styles of programming. An asynchronous call
is posted with the ideaof it completing somewhat soon but allowing aher processing to occur.
One might argue: Why nat simply use athread to invoke a synchronous procedure? The RRMI
perspectiveisthat threads programming (which not only involvesthreads but the often d sturbing
condtionvariables) isnot for everyone, and many programmersfindit difficult to use. In RRMI,
the asynchronaus forms of invoke employ threadsto allow programmersto use multithreading
implicitly. RRMI supparts the second case with the invokeAsync call, which returns a
RemoteMethod objed instance to the user. Note: this object isintended to be used as a
completion hande only. It in no way defines the actual remote method. Descriptors are used for
this purpose.

Thethird caseisabit more complicated, in particular, due to the passibility of anon-local
exception being generated. RRM I addresses this concern by deferring the handling of an
exception and couping exception handling with the facilities for getting the reply. As described
in the seocond case, a RemoteMethod objed all ows one to tradk the completion of an
asynchronous remote method invocation. This classprovides a method cdled getReply which
allowsthe programmer to oltain thereply, if it hasbeen received. Exceptions are delivered along
with any reply received. Thisforcesthe programmer to handle the exceptionwhen obtainingthe
reply. This means the exceptionis re-thrown locally by the getReply method itself.

Thefina and fourth case is where the objed from where the call was made ceases to exist and
another objed listens for the reply/exception. For this purpose, RRMI employs the

del egation-based listener model of Java. Two interfaces are provided: RemoteReplyListener and
RemoteExceptionListener. By separating replies and exceptions into two different interfaces,
some optimizations can be doneto minimizethe anount of stateinformationand communication
cost. Thelistener model also alowsalittle more sophistication to be adieved in remote method
calling. For example, theresult of acdl can be broadcast |ocally or remotely by havinganumber
of local listeners await it and then (concurrently) perform another remote methodcall in the
listener method itself. This cagpability very much looks like maao-dataflow.

Code Examples

Thusfar, this paper has been concerned with concepts and principles. Section "Remote Method
Invocation Mechanisms' presented a discussion d synchronous and asynchronous remote

procedure cals and described these casesin some detail along with a sketch of how these ases
are handed in RRMI. Each of these casesis presented in the following series of code examples.

RRMI dlowsthe server and clientsto creae objects onthe server. For the purpose of makingal
of our examples more self-contained, the clients use the aeateRemoteObject method d the
NetClient class to dynamicdly load and create an instance of a class onthe server.

Figure 1 demonstrates how to perform a synchronous remote procedure cll. The client obtains
areference to aremote object of a hypothetica class called Hello (which has a method remed
“hello”). Thisisillustrated in the body of the main method of class Worker. First, the client
creates an instance of NetClient and specifiesthe host and port where aNetServer can be found.
If thisis not successful, an exception will be thrown. The dient then creates aremote object of
class Hello. Thisresultsin the Hello classbeing loaded on the server, if it has not been loaded
already. Then the instance is created and a remote referenceis returned to the client. In RRMI,
RemoteObject is used to refer to remote objeds as opposed to being the base classfor
implementing remote objects, asin RMI.

Once the remote object reference has been obtained, any methodwhichis pubicly availablein
the dassHello can be executed remotely. It is possible the dassHello may depend onclasses not
available to the client. Using the NetClient, additional classes may be loaded onthe client side
aswell. To invoke aremote method, the dient must build a Descriptor instancewhich describes
the method to be called. In this and all subsequent examples, the method to be cdled is public
void hello(String name). The descriptor is constructed with the name of the remote methodto be
invoked. Then a series of addParamDesc calls is performed to add the parametersin order of
appearance The parameters must be specified as a <class name, parameter name> pair4.

Finally, the remote method can be invoked against the remote object. The synchronows form of
invocaion has the same name as foundin Java's refledion specification: invoke. Other forms of
invoke are provided for asynchronous cdls, which are presented in the remaining examples.

Exceptions which are raised remotely in the synchronous case must be handled locdly. Thetry
block will catch any exception which israised remotely.

Figure 1: Synchronous RRMI with local reply/exception semantics.

import org.jhpc.rrmi.*;
import java.io.*;

public class Worker
{
public stat i ¢ void main(String args[])
{
try {
NetClient broker = n ew NetClient(“tiamat.mcs.anl.gov:1000") ;
RemoteObject myObjec t = broker.createRemoteObject(“Hello”);
if (myObiject != null) {
Descriptor methodDesc = new Descriptor("hello");
methodDesc.addParamDesc(" java.lang.String", "name");
ActualParams actuals = n ew ActualParams(methodDesc);
actuals.addParam("name", "George");
Object result = myObject . invoke(actuals);
}
}
catch (Exceptio n e){
System.err.printin(e);
}
}
}

4 Scalar datatypes are not supported in the present implementation. We have figured out an elegant way to address
thisissue. We believe most users will prefer to work with real objeds (e.g., useInteger inlieu of int).

RMI programmers are accustomed to having amore local view of aremote procedure cdl. To
that end, RRMI attempts to bring more user-friendlinessto the manipulation of descriptors.
Spedfically, the FunctionBuilder classis provided to all ow one or more actua Java method
declarations (headers) to be parsed to generate aDescriptor instance. Thisisillustrated in
Figure 2. A future release of RRMI will build descriptors for all publicly defined methodsin a
class, making it even easier.

Figure 2: Synchronous RRMI employing FunctionBuilder for descriptors.

import org.jhpc.rrmi.*;
import java.io.*;

class \Worker

{
public stat i ¢ void main(String args[])
{
try {
NetClient broker = n ew NetClient(“tiamat.mcs.anl.gov:8000") ;
RemoteObject myObjec t = broker.createRemoteObject(“Hello”);
if (myObiject != null) {
FunctionBuilder fb =
new FunctionBuilder(“public v oid hello(String name)”);
Descriptor methodDesc = f b.getDescriptor();
ActualParams actuals = n ew ActualParams(methodDesc);
actuals.addParam("name", "George");
Object result = myObject . invoke(actuals);
}
} catch (Except ione){
System.err.printin(e);
}
}
}

Figure 3 demonstrates how the asynchronous capabilities of RRMI can be exploited when the
completion semantics are intended to be locd. The setup for performing the asynchronous call
is exactly the same as the synchronous call. Invocation is performed using the
invokeAsynchronous method. This methodreturns acompletion hand e object which can be used
to test for the completion d the all using polling. A similar method for non-blocking sends and
reaivesis used by Message Passng Interface (MPI) research.

Figure 3: Asynchronous RRMI with local reply and exception management semantics.

import org.jhpc.rrmi.*;
import java.io.*;

class Wbrker

{
public stat i ¢ void main(String argsl]) {
try {
NetClient broker = n ew NetClient(“tiamat.mcs.anl.gov:8000")

RemoteObject myObjec t = broker.createRemoteObject(“Hello”);
RemoteMethod methodH andle;
if (myObiject != null) |

FunctionBuilder fb =

new FunctionBuilder(“public v oid hello(String name)”);

Descriptor methodDesc = f b.getDescriptor();
ActualParams actuals = n ew ActualParams(methodDesc);
actuals.addParam("name", "Lovely");

methodHandle = myObject. i nvokeAsynchronous(actuals);
/l other computation cou | d occur here

Obiject result;
while ('methodHandle.isC omplete()) {
try {
result = methodHandle.getReply();
} catch(Exception e) {
/I the remote exception, if it oc curred, is re-thrown
/I and must be caught locally

}
}
}
}
catch (Exceptio n e){
System.err.printin(e);
}

}
}

Polling is not necessarily the most efficient and reliable way to work with asynchronous calls,
especially in an ojed-oriented languagelike Java. The Javalanguage provides extensive support
for event handling using a listener model based on delegation. Delegation haslong been used in
the object-oriented community and will not be defined hereb.

Example 4 demonstrates how thisideahas been adapted to help support asynchronous remote
method invocation. Two interfaces are provided in Java: RemoteReplyListener and
RemoteExceptionListener. Thisallowsan olject to be specified which can handle replies and/or
exceptions which occur remotely without the need for palling as shown in Figure 3. In Figure 4,
aworker thread is creaed bythe main methodwhich in turn fires off an asynchronous remote
method call. Thethread then loops forever. Eventually, areply or exceptionwill occur, in which
case the Worker instance will be notified via one of the interface methods.

Figure 4: Asynchronous RRMI in a thread using RemoteReplyListener and
RemoteExceptionListener.

import org.jhpc.rrmi.*;
import java.io.*;

class Worker extends Thread implements RemoteR eplyListener,
Remote ExceptionListener
{

RemoteMetho d completionHandle;

public stat i ¢ void main(String argsl]) {
Worker w = new Worker();

5 The Self reseach presents an approach to dojed-orientation based entirely on delegation. Bertrand Meyer presents
an excdlent discusgon on delegation versus inheritance in his clasgc text on Object Oriented Software
Construction.

w.start();

}
public void run() {
try {
NetClient broker = n ew NetClient(args[0]);
RemoteObject myObjec t = broker.createRemoteObject(args[1]);
if (myObiject != null) |
Descriptor methodDesc = new Descriptor("hello");
methodDesc.addRemoteRepl yListener(this);
methodDesc.addRemoteExce ptionListener(this);
methodDesc.addParamDesc(" java.lang.String", "name");
ActualParams actuals = n ew ActualParams(methodDesc);
actuals.addParam("name", "Andy");
completionHandle = myObj ect.invokeAsynchronous(actuals);
}
}
catch (Exceptio n e
System.err.printin(e)
while(true);
}
public void remoteReply(RemoteMethod m, Object res ult) {
if (completionH andle == m) {
/I the RRMI call has completed
}
}
public void remoteException(RemoteMethod m, Except ione){
if (completionH andle == m) {
/l the RRMI call res ulted in a remote exception
}
}

}

5 Performance Data/Preliminary Results

We mnducted an experiment between two SPARC madines running Solaris 2.51 ona10Mbps
LAN to determinethe cost of calling a parameterless procedure to oltain base performance data.
A loop of onethousand synchronous RMI callswas doneto determinethe average cost of calling
aprocedure. Regular RMI performed at 3.7 milliseconds, while Refledive RMI performed at 3.8
milliseconds. Thereis no statisticd difference between the two times. For this experiment we
used the standard Java Devel oper’sKit, version 1.1.3, running onSolaris 2.5 without the runtime
performance pack installed.

Theimportant result hereisthat our current results suggest RRMI performsamost identically to
RMI for procedure cdling on TCP/IP. Thisis asignificant result as we use a descriptor-based
calling scheme, Java's introspection capabilities, and dynamicdly load classes into the running
application.

6 Conclusions

This paper has presented RRMI. RRMI isvery similar to RMI in principle. It isdesigned to
suppat peer-to-peer remote procedure calls between consumers and suppliers. The work
presented here is afirst-generation product designed to mimic the behavior of the current RMI
offering from Sun Microsystems.

RRMI itself isintended to be abasisfor further investigation d a Java-to-Javatecdhnol ogy which
allowsinteraction of objects on multiple computers, particularly alarge number of networked
computers. Thus, animportant design considerationwasto provide fadlities which are open and
extensible. To that end, RRMI isimplemented as a dass library which runswith the current Java
implementation and does not require any changes to the virtual machine. We did nat believe
changes to the language or virtual machine are appropriate as these technologies are presently
proprietary to Sun. There is no reason to believe these technologies will become open any time
soon

Because we have been successful in creating an open design and implementation, we contend
RRMI will allow anumber of interesting investigations to be conducted. Of particular interest at
the moment isthe use of aternativetransportsfor performing remote methodinvocdions aswell
as the use of multiple transports. The RMI implementation from Sun will be difficult, if not
impossible, to extendto support aternative transport layers. By the time this paper is published,
we will be able to report on MPI as an aternative transport. We are working an an abstract
transport interface to allow third-party transportsto be incorporated in RRMI. Visit
http://www.jhpc.org for more information.

Aside from an open design, RRMI offers many useful featuresto the distributed ojea
programmer. Descriptor-based procedure caling enables any object to be served. Thisallowsfor
much more effedive use of inheritance, becausethe user applicationisnolonger forced to inherit
from RemoteObjed. One may argue thisisamatter of style; however, the aurrent Javalanguage
does not support multiple inheritance (the authors hope it never will), and the primary role
RemoteObject appears to havein RMI is much the same & the Serialization interface: itisa
tagging mechanism.

The use of anetwork class loader also dffers dgnificant deployment advantagesin alarge-scale
distributed application. Supgdiersand consumers can basically start with afixed and small set of
classes. These dasses, the network server and network client classes, can then dyramically load
classes and creae objedsonall nodes of the cmmputation. We ae using these features of RRMI
to build a ActiveJava (formerly JavaNow) which is adistributed computing environment based
on adors, dataflow, data-parallel, task-parallel, and Linda.

RRMI presents a clean and clear design for the management of synchronous and asynchronous
remote procedure alls. Using atechnique cdled use-case analysis [8], we have been ableto
identify the usage patterns of these different calls. Thishasled to avery simple design which also
accountsfor performance and flexibility. Animportant aspect of thedesignisthe streamlined and
elegant handling of exceptions. Both locd and nonlocd reply and exception semantics are
addressed thoroudhly.

7 Future Work/Status

RRMI ispresently being used to implement ActiveJava[18], a cordination environment similar
to JavaSpaces [17] and ObjectSpace Voyager [12)], targeted to both high-performance scientific

and commercial computing applications. More information about ActiveJava can be found at
http://www.jhpc.org.

At the time of writing, it is not known whether RRMI works with Netscape Communicator or
Internet Explorer. It is known to work with the gpletviewer. Sun hes previewed atechnology
called Java Activator which will alow usersto download and runa JvVM outside of the browser
which renders appl etsinside the browser. Individualsinterested in using RRM1 will be ableto do
so in the Activator-enabled environment which is fully compatible with the gopletviewer that
ships with JDK.

We have some improvements planned to further simplify the method calling scheme to the level
fourd in RMI. In particular, we ae planning the devel opment of asimple preprocessor to turn a
local view of aremote method cdl into code similar to that shown in our examples. For those
who arewillingto livewith the descriptorsasis, wewill provide codeto generate remote method
descriptors using the reflection interfaces to iterate over all methods of a given class.

We also have plans to incorporate NexusJava [4] and MPI [7] transports for RRMI. NexusJava
was created primarily for interoperability with other Nexus applications and thus does not
suppat al of the feaures of Nexus (e.g., multimethod communication, etc.). Nonetheless,
shoud these communication protocols become available, RRMI would beimmediately available
to use them, if NexusJava were augmented to support other communication protocols.

L ocating and naming dojectsis an ancther areawe are aurrently researching. The use of
rmiregistry isawkward and bulky for practical applications beyond simple client/server. The
next generation of RRMI will provide acomplete naming, registration, and location service for
objects and will be based on open standards, such as Lightweight Directory AccessProtocol
(LDAP).

8 Acknowledgments

The authors wish to thank Nina Wilfred for proofreading and editing the final version of this
paper and Gregor von Laszewski for making a number of useful suggestions for improving the
presentation of the paper.

9 Bibliography

9.1 Papers and Books

1 G.Agha and C. Hewitt, Concurrent Programming Using Actors, In A. Yonezawa and M. Tokoro,
Objed-Oriented Concurrent Programming, MIT Press, 1987.

2 PChanandR.Lee TheJava ClassLibraries: An Annotated Reference, Addison-Wesley, Reading,
Massadhusetts, 1997.

3 |. Foster, J. Geidler, C. Kesslman, and S. Tuedke, Managing multiple communication methodsin
high-performance networked computing systems, Journal of Parallel and Distributed Computing
Systems, 40 (1997), pp. 35-48.

4 |. Foster, G. K. Thiruvathukal, and S. Tuecke, Technologies for ubiquitous supercomputing: a Java
interface to the Nexus communication system, Concurrency: Pradice axd Experience, Vol. 9(6),
465-475.

5 |. Foster, C. Kesselman, and S. Tuecke, The Nexus approach to integrating multithreading and
communication, Journal of Parallel and Distributed Computing, 37 (1996), pp. 70-82.

9.2

6 R.Griswold and M. Griswold, The Icon Programming Language, 2nd Edition, Addison-Wesley,
1992.
7 W.Gropp, E. Lusk, N. Doss, and A. Skjellum, A high-performance, portableimplementation of the
MPI message passing interface standard, Parallel Computing, 22 (1996), pp. 789-828.
8 I.Jambsen, M. Christerson, P. Jonsson, and G. Overgaad, Object-oriented Software
Engineering--A Use Case Driven Approach, Addison-Wesl ey, Wokingham, England, 1992.
9 B. Meyer, Object Oriented Software Construction, 2nd Edition. Prentice Hall . 1997.
10 R.R.Rge, J. I. Williams, and M. Boyles, An Asynchronous Remote Method | nvocation (ARMI)
mechanism for Java, Concurrency: Pradice and Experience Vol. 9(11), pp. 1207-1211.
11 W.YuandA. Cox, Java/DSM: A platformfor heterogeneous computing. Concurrency: Pradice and
Experience Vol. 9(11), 1213-1224.
Web Sites
12 ObjedSpaceVoyager, http://www.objectspace.comy
13 CORBA 2.0 Spedficaion, http://www.omg.org/
14 RMI and Objed Seriaizaion Spedfication, http://mww.javasoft.conmy
15 JDK 1.1 Documentation, http://www.javasoft.com/
16 Visigenic Software, http://www.visigenic.com/
17 JavaSpaces, http://www.javasoft.com/
18 ActiveJava (and JavaNow), http://mwww.jhpc.org/

