
Complexity, Decidability and Undecidability Results forDomain-Independent PlanningKutluhan Erol, Dana S. Nau, and V.S. Subrahmanianemail: fkutluhan,nau,vsg@cs.umd.eduhttp: //www.cs.umd.edu/f~kutluhan,~nau,~vsgDepartment of Computer Science, Institute for Systems Research, and Institute forAdvanced Computer Studies. University of Maryland College Park, Maryland20742, U.S.A.AbstractIn this paper, we examine how the complexity of domain-independent planningwith STRIPS-style operators depends on the nature of the planning operators.We show conditions under which planning is decidable and undecidable. Ourresults on this topic solve an open problem posed by Chapman [5], and clear upsome di�culties with his undecidability theorems.For those cases where planning is decidable, we explain how the time complexityvaries depending on a wide variety of conditions:{ whether or not function symbols are allowed;{ whether or not delete lists are allowed;{ whether or not negative preconditions are allowed;{ whether or not the predicates are restricted to be propositional (i.e., 0-ary);{ whether the planning operators are given as part of the input to the planningproblem, or instead are �xed in advance.{ whether or not the operators can have conditional e�ects.?This work was supported in part by the Army Research O�ce under GrantNumber DAAL-03-92-G-0225, by the Air Force O�ce of Scienti�c Research undergrant F49620-93-1-0065, by an NSF Young Investigator Award IRI-93-57756, aswell as by NSF Grant NSFD CDR-88003012 to the University of Maryland SystemsResearch Center, and NSF grants IRI-8907890 and IRI-9109755.Preprint submitted to Elsevier Science 23 September 1994

1 IntroductionMuch planning research has been motivated, in one way or another, by the dif-�culty of producing complete and correct plans. For example, techniques suchas abstraction [27,6,24,31] and task reduction [28,6,31] were developed in ane�ort to make planning more e�cient, and concepts such as deleted-conditioninteractions were developed to describe situations which make planning di�-cult.Despite the acknowledged di�culty of planning, it is only recently that re-searchers have begun to examine the computational complexity of planningproblems and the reasons for that complexity [5,3,16,17,22,20]. This researchhas yielded some surprising results. For example, Gupta and Nau [16,17] haveshown that contrary to prior expectations, deleted-condition interactions areeasy to handle in blocks-world planning.Pednault [25] suggests that since planning is intractable in general, researchersshould try to identify constraints that will lead to e�cient planning. Thecurrent paper addresses this goal, by examining how the complexity of domain-independent planning depends on the nature of the planning operators.We consider planning problems in which the current state is a set of groundatoms, and each planning operator is a STRIPS-style operator consisting ofthree lists of atoms: a precondition list, an add list, and a delete list. Ourresults can be summarized as follows:(i) If function symbols are allowed, then determining, in general, whethera plan exists 1 is undecidable (more speci�cally, semidecidable). 2 Thisis true even if we have no delete lists and the precondition list of eachoperator contains at most one (non-negated) atom. If no function symbolsare allowed and only �nitely many constant symbols are allowed, thenplan existence is decidable, regardless of the presence or absence of deletelists and/or negated preconditions.Even when function symbols are present, plan existence is decidable ifthe planning domains being considered have no delete lists, no negatedatoms occur in the precondition list, and the domains satisfy certainacyclicity and boundedness properties.(ii) When there are no function symbols and only �nitely many constant sym-bols (so that planning is decidable), the computational complexity variesfrom constant time to expspace-complete, depending on the followingconditions:1The formal de�nition of this problem appears in Section 2.2We use \decidable" and \undecidable" interchangably with \recursive" and \re-cursively enumerable," respectively. 2

{ whether or not we allow delete lists and/or negative preconditions,{ whether or not we restrict the predicates to be propositional (i.e., 0-ary),{ whether we �x the planning operators in advance, or give them as partof the input.(iii) We have solved an open problem stated by Chapman in [5]: whether or notplanning is undecidable when the language contains in�nitely many con-stants but the initial state is �nite. In particular, this problem is decidablein the case where the planning operators have no negative preconditionsand no delete lists. If the planning operators are allowed to have negativepreconditions and/or delete lists, then the problem is undecidable.(iv) Chapman's Second Undecidability Theorem states that \planning is un-decidable even with a �nite initial situation if the action representation isextended to represent actions whose e�ects are a function of their inputsituation" [5], i.e., if the language contains function symbols and in�nitelymany constants. Our results show that even with a number of additionalrestrictions, planning is still undecidable.We also correct a misimpression about this theorem, which has beenthought by some researchers [26,11] to refer to operators that have con-ditional e�ects. It does not|and our decidability and complexity resultsare una�ected by whether or not the operators have conditional e�ects.(v) Chapman [5] and Dean and Boddy [8] studied planning with conditionaloperators, and showed that the problem of deciding whether a proposi-tion is necessarily true after a partially ordered plan (a.k.a modal truthcriterion) is NP-hard in the presence of conditional operators. The sameproblem can be solved in polynomial time when conditional operatorsare not allowed, and this led researchers to believe that planning withconditional operators is harder than planning with regular STRIPS op-erators. However, our results show that, contrary to the expectations,conditional operators do not a�ect the complexity of plan existence, northe complexity of plan optimality problems.The rest of this paper is organized as follows. Section 2 contains the basicde�nitions. Section 3 discusses the decidability and undecidability results.Section 4 discusses the complexity results. Section 5 discusses the relatedwork. Section 6 contains concluding remarks, and discusses future researchdirections. For a more extensive treatment, including all of the mathematicaldetails, see [10].2 PreliminariesResearchers in planning have long been interested in planning with STRIPS-style operators, and this interest still continues [3,5,16,22,20]. In the original3

STRIPS planner [13], the planning operators' precondition lists, add lists, anddelete lists were allowed to contain arbitrary well-formed formulas in �rst-order logic. However, there were a number of problems with this formulation,such as the di�culty of providing a well-de�ned semantics for it [19]. Thus, insubsequent work, researchers have placed some restrictions on the nature of theplanning operators [24]. Typically, the precondition lists, add lists and deletelists contain only atoms, and the goal is a conjunct of ground or existentiallyquanti�ed atoms. Our de�nitions below are in accordance with such commonlyaccepted formulations.2.1 Basic De�nitionsIf L is a �rst-order language, then a state is a set of ground atoms in L.Intuitively, a state tells us which ground atoms are currently true: if a groundatom A is in state S, then A is true in state S, and if B =2 S, then B is falsein state S. Thus, a state is simply an Herbrand interpretation (cf. Shoen�eld[29]) for the language L, and hence each formula of �rst-order logic is eithersatis�ed or not satis�ed in S according to the usual �rst-order logic de�nitionof satisfaction.We use STRIPS-style planning operators similar to those used by Nilsson [24].A planning operator � is a 4-tuple (Name(�);Pre(�);Add(�);Del(�)), where(i) Name(�) is a syntactic expression of the form �(X1; : : : ;Xn) where eachXi is a variable symbol of L;(ii) Pre(�) is a �nite set of literals (i.e., atoms and negated atoms), called theprecondition list of �, whose variables are all from the set fX1; : : : ;Xng;(iii) Add(�) and Del(�) are both �nite sets of atoms (possibly non-ground)whose variables are taken from the set fX1; : : : ;Xng. Add(�) is calledthe add list of �, and Del(�) is called the delete list of �.Observe that negated atoms are allowed in the precondition list, but not inthe add and delete lists.A planning domain is a pair P = (S0;O), where S0 is a state called the initialstate, and O is a �nite set of planning operators. The language of P is the �rst-order language L generated by the constant, function, predicate, and variablesymbols appearing in P, along with an in�nite number of additional variablesymbols.A goal is a conjunction of atoms which is existentially closed (i.e., the variables,if any, are existentially quanti�ed). A planning problem instance is a tripleP = (S0;O; G), where (S0;O) is a planning domain and G is a goal.4

Let P = (S0;O) be a planning domain, � be an operator in O whose nameis �(X1; : : : ;Xn), and � be a substitution that assigns ground terms to eachXi; 1 � i � n. Suppose that the following conditions hold for states S and S 0:fA� : A is a positive literal in Pre(�)g � S;fB� : :B is a negative literal in Pre(�)g \ S = ;;S0 = (S � (Del(�)�)) [(Add(�)�) :Then we say that � is �-executable in state S, resulting in state S 0. This isdenoted symbolically asS �;�=) S 0:Suppose P = (S0;O) is a planning domain and G is a goal. A plan thatachieves G is a sequence S0; : : : ; Sn of states, a sequence �1; : : : ; �n of planningoperators, and a sequence �1; : : : ; �n of substitutions such thatS0 �1;�1=) S1 �2;�2=) S2 � � � �n;�n=) Sn (1)and G is satis�ed by Sn, i.e. there exists a ground instance of G that is truein Sn. The length of the above plan is n.We now de�ne two decision problems:{ plan existence is the problem, \Given a planning problem instanceP = (S0;O; G), is there a plan in P that achieves G?"{ plan length is the problem, \Given a planning problem instanceP = (S0;O; G) and an integer k encoded in binary, is there a plan in P oflength k or less that achieves G?"In the de�nition of plan length, what really interests us is not whetherthere is a plan of length k or less, but �nding the shortest plan. This problemis at least as di�cult as plan length, and in some cases harder. For exam-ple, in the Towers of Hanoi problem [1] and certain generalizations of it [15],the length of the shortest plan can be found in low-order polynomial time|but actually producing this plan requires exponential time and space, sincethe plan has exponential length. The de�nition of plan length follows thestandard procedure for converting optimization problems into yes/no decisionproblems (cf. [14, pp. 115{117]). 5

2.2 Special-Case De�nitions2.2.1 Acyclicity and BoundednessIn this section, we introduce various restrictions on the structure of planningdomains and/or goals which guarantee that the planning problem is decidable,even if function symbols are allowed in the language.A level mapping for a language L is a mapping ` : AT (L)! N where AT (L)is the set of ground atoms in language L and N is the set of natural numbers.Intuitively, a level mapping partitions the set of all ground atoms into a col-lection of \levels." In the same vein, a predicate level mapping, de�ned below,partitions the set of predicate symbols into a collection of levels.A predicate level mapping for L is a mapping] : Pred(L)! N where Pred(L)is the set of predicate symbols in language L.Suppose P = (S0;O) is a planning domain in which no operator has negativepreconditions or delete lists. Intuitively, P is acyclic if achieving the atoms(resp. predicates) in the add list of any operator in P only depend on havingto achieve atoms (resp. predicates) at a strictly lower-level. Formally,P is saidto be atomically acyclic i� there exists a level mapping ` such that for anyground instance � of operators in P, it is the case that `(A) > `(B) for allA 2 Add(�) and B 2 Pre(�). P is said to be predicate acyclic i� there existsa predicate level mapping] such that for all operators � in P, it is the casethat](p) >](q) for all predicates p occurring in Add(�) and all predicates qoccurring in Pre(�).Sometimes, an atom in the add list of a ground instance of an operator maynot be achievable. If the only way that this can happen is because there isan unachievable atom at a lower level in the precondition of the same groundinstance of that operator, then the planning domain is said to be weaklyrecurrent.Formally, a planning domain P = (S0;O) is weakly recurrent i� there exists alevel mapping ` such that for every ground instance � of an operator in O, ifA 2 Add(�) is such that there is no plan to achieve A from P, then there is aBi 2 Pre(�) such that there is no plan to achieveBi fromP and `(A) > `(Bi).For some goals, there will exist an upper bound on the levels of all groundinstances of the goal. When this happens, we say that the goal is bounded, asde�ned formally below. When a goal is bounded in a weakly recurrent planningdomain, this allows us to infer a bound on the length of a plan to achieve thegoal, thus causing planning for such goals in such domains to be decidable.6

Suppose G = (9)(A1& : : :&An) is a goal. Let Grd(G) denote the set ofall ground instances of the quanti�er-free conjunction (A1& : : :&An). G isbounded w.r.t. a level mapping ` i� there is an integer b such that for everyground instance (A1& : : :&An)� in grd(G), it is the case that `(Ai) < b:2.2.2 Conditional Planning OperatorsSeveral researchers [5,8,26,25] have been interested in actions whose e�ectsdepend on the input situation. The following formulation of conditional plan-ning operators is due to Dean and Boddy [8]. A conditional operator � is a�nite set ft1; t2; : : : ; tng, where each ti is a triple of the form hPrei;Deli;Addii.Prei, Deli, and Addi correspond to the precondition list, delete list and addlist associated with the i'th triple, respectively.Suppose � is a conditional operator, � is a ground substitution for the variablesappearing in �, S is a state, I = fi : S satis�es Prei�g, andS0 = (S � [i2I Deli�) [[i2I Addi�:Then we say that � is �-executable in state S, resulting in state S 0. This is de-noted as S �;�=) S 0. Note that all triples with satis�ed preconditions contributeto the output state.Our results are independent of whether we use conditional operators such asthe ones de�ned above, or the ordinary STRIPS-style planning operators inSection 2.1.3 Decidability and Undecidability ResultsIn [10], we have proved theorems that show:(i) how to transform a planning domain with delete lists into one withoutdelete lists when L contains no function symbols;(ii) how to transform, in polynomial time, a planning domain without deletelists and without negative preconditions into a logic program such thatfor all goals G, the goal G is achievable from the planning domain i� thelogical query that G represents is provable from the corresponding logicprogram;(iii) how to transform, in polynomial time, a logic program into an equivalentplanning domain in which each operator has no negative preconditionsand no delete lists. 7

Table 1Decidability of domain-independent planning.�Allow Allow in�nitely in�nite Allow delete lists plan existencefunction many constant initial and/or negated (telling if a plansymbols? symbols?� states?� preconditions? exists)yes yes/no yes/no yes/no/no
 semidecidableno no no� decidableyes yes/no semidecidableno yes no yes semidecidableno decidableno no� yes/no decidable�All results are independent of whether the operators are given as part of theinput or �xed in advance, and whether or not the operators are allowed to haveconditional e�ects.�First-order languages are usually assumed to contain only �nitely many constantsymbols, and states are usually assumed to contain only �nitely many atoms.However, for comparison with Chapman's [5] results, we also consider the caseswhere they are in�nite.
No operator has more than one precondition.�With acyclicity and boundedness restrictions as described in Section 2.2.1.�In this case, the other restrictions ensure that the initial state will always be�nite.The above results establish that logic programming is essentially the same asplanning without delete lists. This equivalence allows us to transport manyresults from logic programming to planning, leading to a number of decidabil-ity and undecidability results. Our decidability and undecidability results aresummarized in Table 1 (for their details, see [10]). If we use the conventionalde�nitions of a �rst-order language (i.e., the language contains only �nitelymany constant symbols), then whether or not plan existence is decidabledepends largely on whether or not function symbols are allowed:(i) If the language is allowed to contain function symbols (and hence in-�nitely many ground terms), then, in general, plan existence is un-decidable, regardless of whether or not the operators have delete lists,negative preconditions, or more than one precondition.(ii) When certain syntactic (predicate and atomic acyclicity) and seman-tic properties (weak recurrence) are satis�ed by planning domains (eventhose containing function symbols) in which there are no delete lists ornegative preconditions, then plan existence for bounded goals is decid-able. 8

(iii) If the language does not contain function symbols (and hence has only�nitely many ground terms), then plan existence is decidable, regard-less of whether or not the planning operators have negative preconditions,delete lists, or more than one precondition.Whether the planning operators are �xed in advance or given as part of theinput, and whether or not they are conditional, does not a�ect these results.For comparison with Chapman's [5] results, Table 1 also includes decidabilityand undecidability results for the cases where we allow in�nitely many con-stant symbols, in�nite initial states, and operators with conditional e�ects.These results relate to Chapman's work as follows:{ Our results solve an open problem stated by Chapman in [5]: whether ornot planning is undecidable when the language contains in�nitely manyconstants but the initial state is �nite. In particular, our results show thatthis problem is decidable in the case where the planning operators haveno negative preconditions and no delete lists. If the planning operators areallowed to have negative preconditions and/or delete lists, then the problemis undecidable.{ Chapman's Second Undecidability Theorem states that \planning is unde-cidable even with a �nite initial situation if the action representation isextended to represent actions whose e�ects are a function of their inputsituation" [5], i.e., if the language contains function symbols and in�nitelymany constants. 3 Our results subsume this theorem, by showing that evenwith a number of additional restrictions, planning is still undecidable.4 Complexity ResultsBased on various syntactic criteria on what planning operators are allowedto look like, we have developed a comprehensive theory of the complexity ofplanning. The results are summarized in Table 2; for details see [10]. Whenthere are no function symbols and only �nitely many constant symbols (sothat planning is decidable), the computational complexity varies from constanttime to expspace-complete, depending on a wide variety of conditions:{ whether or not delete lists are allowed;{ whether or not negative preconditions are allowed;{ whether or not the predicates are restricted to be propositional (i.e., 0-ary);3The phrase \actions whose e�ects are a function of their input situation" has beenthought by some researchers [26,11] to refer to conditional operators. However, acareful examination of Chapman's proof makes it clear that he is referring to thecase where the planning operators are allowed to contain function symbols.9

Table 2Complexity of domain-independent planning.�Language How the Allow Allow ne- plan existence plan lengthrestrictions operators delete gated pre- (telling if a plan (if there is a planare given lists? conditions? exists) of length � k)datalog (no given yes yes/no expspace-comp. nexptime-comp.function in the yes nexptime-comp. nexptime-comp.symbols, input no no exptime-comp. nexptime-comp.and only no� pspace-complete pspace-comp.�nitely yes yes/no pspace � pspace �many �xed in yes np � np �constant advance no no p np �symbols) no� nlogspace nppropo- given yes yes/no pspace-complete� pspace-comp.sitional in the yes np-complete� np-complete(all input no no p � np-completepredicates no�/no
 nlogspace-comp. np-completeare 0-ary) �xed in yes/no yes/no constant time constant timeadvance�All results are independent of whether or not the operators are allowed to haveconditional e�ects.�No operator has more than one precondition.
Every operator with more than one precondition is the composition of otheroperators.�With pspace- or np-completeness for some sets of operators.�Results due to Bylander [3].{ whether the planning operators are given as part of the input to the planningproblem, or instead are �xed in advance.Below, we summarize how and why our parameters a�ect the complexity ofplanning:(i) If no restrictions are put on the planning domainP, any operator instancemight need to appear many times in the same plan, forcing us to searchthrough all the states, which are double exponential in number. Since thesize of any state is at most exponential, plan existence can be solved10

in expspace.(ii) If the planning operators are restricted to have no delete lists, then anypredicate instance asserted remains true throughout the plan, hence nooperator instance needs to appear in the same plan twice. Since the num-ber of operator instances is exponential, this reduces the complexity ofplan existence to nexptime.(iii) If the planning operators are further restricted to have no negative pre-conditions, then no operator can ever clobber another. Thus the order ofthe operators in the plan does not matter, and the complexity of planexistence reduces to exptime.(iv) In spite of the restrictions above, plan length remains nexptime.Since we try to �nd a plan of length at most k, which operator instanceswe choose, and how we order them makes a di�erence.(v) If each planning operator is restricted to have at most one precondition,then we can do backward search, and since each operator has at mostone precondition, the number of the subgoals does not increase. Thusboth plan existence and plan length with these restrictions can besolved in pspace.(vi) The previous arguments also hold for propositional planning, with theexception of the anomaly in the unrestricted case for plan length,which we discuss later on. As a result of restricting predicates to be 0-ary, the number of operator instances and the size of each state reduceto polynomial from exponential. Hence in general, the complexity resultsfor propositional planning are one level lower than the complexity resultswith datalog operators. We can get the same amount of reduction incomplexity by placing a constant bound on the arity of predicates and thenumber of variables in each operator. Propositional planning correspondsto the case where the bound is zero.(vii) When the operator set is �xed in advance, the arity of predicates andthe number of variables in each operator are bound by a constant, thusthe complexity of planning with a �xed set of operators is the same ascomplexity of propositional planning. Our results on planning with a�xed set of operators reveal that for any given planning domain that canbe described with STRIPS operators, the complexity of planning is atmost in pspace, and that there exists such domains for which planningis pspace-complete.Examination of Table 2 reveals several interesting properties:(i) If the planning operators are extended to allow conditional e�ects, thisdoes not a�ect our results. This contradicts a widespread belief thatplanning with conditional operators is harder than planning with regu-lar STRIPS operators. However, it should not be particularly surprising,because conditional operators are useful only when we have incompleteinformation about the initial state of the world, or the a�ects of the op-11

erators, so that we can try to come up with a plan that would work inany situation that is consistent with the information available. Other-wise, we can replace the conditional operators with a number of ordinarySTRIPS-style operators, to obtain an equivalent planning domain [10].(ii) Comparing the complexity of plan existence in the propositional case(in which all predicates are restricted to be 0-ary) with the datalogcase (in which the predicates may have constants or variables as ar-guments) reveals a regular pattern. In most cases, the complexity inthe datalog case is exactly one level harder than the complexity in thecorresponding propositional case. We have expspace-complete versuspspace-complete, nexptime-complete versus np-complete, and �nallyexptime-complete versus polynomial.(iii) If delete lists are allowed, then plan existence is expspace-completebut plan length is only nexptime-complete. Normally, one would notexpect plan length to be easier than plan existence. In this case, ithappens because the length of a plan can sometimes be doubly exponen-tial in the length of the input. In plan length we are given a bound k,encoded in binary, which con�nes us to plans of length at most exponen-tial in terms of the input. Hence �nding the answer is easier in the worstcase of plan length than in the worst case of plan existence.We do not observe the same anomaly in the propositional case, becausethe lengths of the plans are at most exponential in the length of the input.As a result, giving an exponential bound on the length of the plan doesnot reduce the complexity of plan length.(iv) plan length has the same complexity regardless of whether or notnegated preconditions are allowed. This is because what makes the prob-lem hard is how to handle enabling-condition interactions. Enabling-condition interactions are discussed in more detail in [17], but the ba-sic idea is that a sequence of actions that achieves one subgoal mightalso achieve other subgoals or make it easier to achieve them. Althoughsuch interactions will not a�ect plan existence, they will a�ect planlength, because they make it possible to produce a shorter plan. Itis not possible to detect and reason about these interactions if we planfor the subgoals independently; instead, we have to consider all possibleoperator choices and orderings, making plan length np-hard.(v) Delete lists are more powerful than negated preconditions. Thus, if theoperators are allowed to have delete lists, then whether or not they havenegated preconditions has no e�ect on the complexity.
12

5 Related Work5.1 PlanningBylander [3,4] has done several studies on the complexity of propositionalplanning. We have stated some of his results in Table 2. More recently, he hasstudied the complexity of propositional planning extended to allow a limitedamount of inference in the domain theory [4]. His complexity results for thiscase range from polynomial time to pspace-complete.Chapman was the �rst to study issues relating to the undecidability of plan-ning; we have discussed his work in detail in Section 3.Backstrom and Klein [2] found a class of planning problems called SAS-PUBS,for which planning can be done in polynomial time. Their planning formalismis somewhat di�erent from ours: they make use of state variables that takevalues from a �nite set, and consider a planning state to be an assignmentof values to these state variables. Since they restrict each state variable tohave a domain of exactly two values, we can consider each state variable tobe a proposition; thus, in e�ect they are doing propositional planning. Inorder to get polynomial time results, they further restrict each operator tochange at most one state variable, and do not allow more than one operator tochange a state variable to a given value. When these restrictions are released,their planning algorithm performs in exponential time. It is not very easy tocompare our results with theirs, because we use a di�erent formalism, but wecan safely state that we analyze a much broader range of problems.Korf [18] has pointed out that given certain assumptions, one can reduceexponentially the time required to solve a conjoined-goal planning problem,provided that the individual goals are independent. Yang, Nau, and Hendler[35] have generalized this, showing that one can still exponentially reduce thetime required for planning even if the goals are not independent, provided thatonly certain kinds of goal interactions are allowed. Under this same set of goalinteractions, they have also developed some e�cient algorithms for mergingplans to achieve multiple goals [34,35].Complexity results have been developed for blocks-world planning by Guptaand Nau [16,17] and also by Chenoweth [7]. Gupta and Nau [16,17] haveshown that the complexity of blocks-world planning arises not from deleted-condition interactions as was previously thought, but instead from enabling-condition interactions. Their speculations that enabling-condition interactionsare important for planning in general seem to be corroborated by some of ourresults, as discussed above. 13

5.2 Temporal ProjectionAnother problem that is closely related to planning is the problem of temporalprojection, or what Chapman calls the \modal truth" of an atom [5]. Givenan atom a, an initial state S0, and a partially ordered set of actions P , thequestion is whether a is necessarily/possibly true after execution of P . Thisquestion is especially important in partial-order planners such as NOAH [28],NONLIN [32], and SIPE [33]. For example, McDermott [21] says \unfortu-nately, partial orders have a big problem, that there is no way of decidingwhat is true for sure before a step without considering all possible step se-quences consistent with the current partial order," and Pednault [25] alsoexpresses similar sentiments.One problem is what it means for a to be necessarily true if not all totalorderings of P are executable. Chapman [5] assumes that a is necessarily trueafter executing P only if every total ordering of P is both executable andachieves a; and in return, he comes up with a polynomial-time algorithm fordetermining the necessary truth of a. However, his algorithm does not workcorrectly for establishing the possible truth of a (Nau [23] proves that problemis NP-hard).Chapman also proves that with conditional planning operators, establishingthe necessary truth of a is co-NP-hard; and Dean and Boddy [8] prove asimilar result with a more general notion of conditional planning operators(the same de�nition we gave in Section 2.2). 4 Dean and Boddy [8] also try tocome up with approximate solutions for the problem. They present algorithmsfor computing a subset of the propositions that are necessarily true, and forcomputing a superset of the propositions that are possibly true. Furthermore,the complexity of these algorithms is polynomial if the number of triples foreach operator is bounded with a constant. However, we do not know of anyresults concerning how close the approximations are.6 Conclusions and Future WorkAlthough our equivalence between planning and logic programming only holdsin certain limited cases, this equivalence has allowed us to transport manydecidability and undecidability results from logic programming to planning.Among other things, our results solve an open problem posed by Chapman[5], and clear up some di�culties with his undecidability theorems. It is not a4 In both cases, they state that the problem is NP-hard, but their proofs establishco-NP-hardness. 14

trivial task to extend this equivalence, because negation has di�erent semanticsfor logic programming and planning. One recent result in this direction isthe following: Subrahmanian and Zaniolo [30] have shown that STRIPS-styleplanning (with delete lists and negative preconditions) can be transformed,in polynomial time, to a class of logic programs with negation. Based on thistransformation, they show how logic programming update techniques can beused to handle \surprises" that may occur during plan execution.For those cases where planning is decidable, we have shown how the timecomplexity varies depending on a wide variety of conditions. Our results sug-gest that for �nding optimum plans, enabling-condition interactions (�rst de-scribed by Gupta and Nau [17]) can be just as important as the better-knowndeleted-condition interactions. In addition, we have also shown that delete listsare more powerful than negated preconditions, and that conditional operatorsdo not a�ect the complexity of planning. Thus, negated preconditions andconditional operators can be incorporated into planning systems, improving
exibility and usability without much cost.Although the past few years have seen much analysis of the properties oftotal- and partial-order planning systems using STRIPS-style planning oper-ators [22,20,5], a more popular approach for practical work on AI planningsystems is hierarchical task-network (HTN) decomposition [28,32,33]. How-ever, there has been very little analytical work on the properties of HTNplanners. One of the primary obstacles impeding such work has been the lackof a clear theoretical framework explaining what a HTN planning system is.To address this problem, some of us (together with Jim Hendler) are develop-ing a formalization of HTN planning [12,9]. We intend to use this formalismto correctly de�ne, explicate, and analyze various properties of HTN planningsystems, such as soundness, completeness, complexity, and expressivity.AcknowledgementWe appreciate the useful comments about this paper that we received fromTom Bylander, Jim Hendler, and the referees.References[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis ofComputer Algorithms. Addison-Wesley, Reading, MA, 1976.[2] Christer Backstrom and Inger Klein. Planning in polynomial time: the sas-pubsclass. Computational Intelligence, 7, 1991.15

[3] Tom Bylander. Complexity results for planning. In IJCAI-91, 1991.[4] Tom Bylander. Complexity results for extended planning. In Proc. FirstInternational Conference on AI Planning Systems, 1992.[5] David Chapman. Planning for conjunctive goals. Arti�cial Intelligence, 32:333{379, 1987.[6] Eugene Charniak and Drew McDermott. Introduction to Arti�cial Intelligence.Addison-Wesley, Reading, MA, 1985.[7] Stephen V. Chenoweth. On the NP-hardness of blocks world. In AAAI-91: Proc.Ninth National Conf. Arti�cial Intelligence, pages 623{628, July 1991.[8] Thomas Dean and Mark Boddy. Reasoning about partially ordered events.Arti�cial Intelligence, 36:375{399, 1988.[9] K. Erol, J. Hendler, and D. Nau. Complexity results for hierarchical task-networkplanning. 1993. Submitted for journal publication.[10] K. Erol, D. Nau, and V. S. Subrahmanian. Complexity, decidability andundecidability results for domain-independent planning. Technical Report CS-TR-2797, UMIACS-TR-91-154, SRC-TR-91-96, Computer Science Departmentand Institute for Systems Research, University of Maryland, College Park, MD,1991.[11] K. Erol, D. Nau, and V. S. Subrahmanian. When is planning decidable? InProc. First Internat. Conf. AI Planning Systems, pages 222{227, June 1992.[12] K. Erol, D. S. Nau, and J. Hendler. Toward a general framework for hierarchicaltask-network planning. In AAAI Spring Symposium, April 1993.[13] R. E. Fikes and N. J. Nilsson. Strips: a new approach to the application oftheorem proving to problem solving. Arti�cial Intelligence, 2(3/4):189{208, 1971.[14] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guideto the Theory of NP-Completeness. W. H. Freeman and Company, New York,1979.[15] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: aFoundation for Computer Science. Addison-Wesley, 1989.[16] Naresh Gupta and Dana S. Nau. Complexity results for blocks-world planning.In Proc. AAAI-91, 1991. Honorable mention for the best paper award.[17] Naresh Gupta and Dana S. Nau. On the complexity of blocks-world planning.Arti�cial Intelligence, 56(2-3):223{254, August 1992.[18] Richard Korf. Planning as search: A quantitative approach. Arti�cialIntelligence, 33(1):65{88, September 1987.[19] Vladimir Lifschitz. On the semantics of STRIPS. In James Allen, JamesHendler, and Austin Tate, editors, Readings in Planning, pages 523{530. MorganKaufman, 1990. 16

[20] David McAllester and David Rosenblitt. Systematic nonlinear planning. InAAAI-91, pages 634{639, July 1991.[21] Drew McDermott. Regression planning. International Journal of IntelligentSystems, 6:357{416, 1991.[22] S. Minton, J. Bresna, and M. Drummond. Commitment strategies in planning.In Proc. IJCAI-91, July 1991.[23] D. Nau. On the complexity of possible truth. In AAAI Spring Symposium,April 1993.[24] N. J. Nilsson. Principles of Arti�cial Intelligence. Tioga, Palo Alto, 1980.[25] Edwin Pednault. Synthesizing plans that contain actions with context-dependent e�ects. Computational Intelligence, 4:356{372, 1988.[26] M. A. Peot. Conditional nonlinear planning. In Proc. First InternationalConference on AI Planning Systems, pages 189{197, 1992.[27] E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Arti�cialIntelligence, 5:115{135, 1974.[28] Earl D. Sacerdoti. The nonlinear nature of plans. In James Allen, JamesHendler, and Austin Tate, editors, Readings in Planning, pages 162{170. MorganKaufman, 1990. Originally appeared in Proc. IJCAI-75, pp. 206-214.[29] J. Shoen�eld. Mathematical Logic. Academic Press, 1967.[30] V.S. Subrahmanian, C. Zaniolo. Database Updates and AI PlanningDomains. Technical Report CS-TR-3173, UMIACS-TR-93-118, ComputerScience Department, University of Maryland, College Park, MD, 1993.[31] A. Tate, J. Hendler, and M. Drummond. A review of ai planning techniques.In James Allen, James Hendler, and Austin Tate, editors, Readings in Planning,pages 26{49. Morgan Kaufman, 1990.[32] Austin Tate. Generating project networks. In Proc. 5th International JointConf. Arti�cial Intelligence, 1977.[33] David E. Wilkins. Domain-independent planning: Representation and plangeneration. In James Allen, James Hendler, and Austin Tate, editors, Readingsin Planning, pages 319{335. Morgan Kaufman, 1990. Originally appeared inArti�cial Intelligence 22(3), April 1984.[34] Q. Yang, D. S. Nau, and J. Hendler. Optimization of multiple-goal plans withlimited interaction. In Proc. DARPA Workshop on Innovative Approaches toPlanning, Scheduling and Control, 1990.[35] Q. Yang, D. S. Nau, and J. Hendler. Merging separately generated plans withrestricted interactions. Computational Intelligence, 8(2):648{676,February 1992.17

