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Abstract

Compared to dynamic object-oriented languages like CommonLisp or Smalltalk,
Java has a fairly simple and restrictive object and type system. Some of the key
differences between Java and these other languages is that they offer structural
conformance, automatic delegation, and dynamic mixins. When such constructs
are needed in a language like Java, they are usually expressed in terms of standard
object-oriented design patterns, requiring the manual implementation of “glue”
or “helper” classes. This paper describes ways in which such features can be
provided efficiently and automatically in terms of Java’s platform-independent
binary format and dynamic loading mechanisms. The implementation does not
require any changes to the Java runtime, bytecodes, or class loader and yields
performance comparable to manually implemented design patterns. The approach
should prove useful both as a programming tool for Java and as an strategy for
building efficient implementations of dynamic languages on top of the Java virtual
machine.

1: Introduction

Java is a programming language originally based on a simplification of the C++ program-
ming language. The language has a fairly simple static type system, with some support for
safe runtime type casting and reflection. Java is considerably less expressive than dynamic
programming languages like Smalltalk or CommonLisp. Some of the constructs available
in others languages are:

• Objects can be used interchangeably as long as they implement compatible methods.
This is referred to as “structural conformance” (e.g. Smalltalk-80, [5]).

• Methods on instances can be “wrapped” by other methods; that is, the programmer
can define methods that are executed before and/or after a method of the target
instance. (e.g. CLOS, [1]).

• Method calls on one object can be delegated to another object (e.g. Objective-C,
[11]).

• Instances can be created of classes that “mix” multiple parent classes dynamically
(e.g., CLOS, [1]).

These and similar constructs do not exist in standard Java. There have been suggestions
for implementing some of these facilities by using preprocessing or compilation techniques



or modifications to the Java runtime. For example, Läufer et al. [10] propose a method for
implementing safe structual conformance using a precompiler and optional modifications
to the Java runtime. Viega et al. [14] propose a mechanism for automated delegation in
class-based languages, primarily as an alternative to multiple inheritance. Aspect Oriented
Programming (AOP) (Kiczales et al. [9]) is a related approach, providing facilities closely
related to wrappers and delegation. Keller and Hölzle [8] have proposed a mechanism for
binary component adaptation (BCA) based on load-time modification of Java byte codes.
They also provide an extensive bibliography on the subject of component adaptation and
the creation of adapter classes.

In addition to these approaches, there are several languages built on to of the Java VM,
some of which support structural conformance, multiple inheritance, and/or delegation
[3]. Of particular note is Jython [7, 6], which uses a combination of reflection, dynamic
compilation, and class loaders to achieve structural conformance and multiple inheritance.

This paper describes implementation strategies for structural conformance, wrapping,
delegation, and mixins that do not rely on compile-time type information, do not impose
the overhead of reflection on method calls, and do not require modifications to the Java
runtime. The techniques described in this paper can also be used for implementing a
number of other interesting language features, including method pointers, bound meth-
ods (Microsoft’s “delegates”), fast marshalling/unmarshalling, member variable indexing,
automatically changing overloading into dynamic dispatch over multiple arguments,

The prototype implementation be used as a library with a standard Java compiler and no
changes to the Java language. It also does not require changes to the default class loader,
or changes to the Java virtual machine. It also appears that it can also be made safe for
use with sandboxed Java code (e.g., applets).

2: Examples

Before describing the implementation techniques, let us look at some examples of how
these features can be used in Java.

Structural Conformance Structural conformance is perhaps the simplest of the func-
tions that can be implemented using the methods described in this paper. Here, we give
only a superficial discussion of the subject; for a more in-depth analysis, as well as a compile-
time extension to the Java language permitting structural conformance, see the paper by
Läufer et al. [10].

In object-oriented languages like Smalltalk or CommonLisp, function arguments and
variables carry no type declarations. All that matters when using an object is that it
implements methods by the names that the callers expect and that those methods have the
right semantics.

In Java, of course, this is not possible, since Java uses conformance by name: types are
compatible based on named inheritance, not their structure. Callers need to ensure that
objects they pass already implement the required interfaces required by the callee. The
problems with this is that new interfaces cannot be added to existing classes after those
classes have been defined, even if the existing classes actually implement the new interface.
A commonly used workaround is the use of the “Adapter” or “Wrapper” classes (see [4] for
a description of the corresponding pattern in the language of design patterns).



For example, the interface java.io.Reader requires nine methods to be defined, but
many users of that interface probably get by with a much simpler interface, requiring
only the presence of the read() method. If, in implementing a new method, we require
conformance to the java.io.Reader interface, we force users of that method that want
to pass some other kind of object to implement eight methods that do not need to be
implemented. On the other hand, if we define a new interface, say, SimpleReader, then
no existing class that implements java.io.Reader will conform to that new interface.
Furthermore, we cannot retroactively make SimpleReader a parent of java.io.Reader.
So, if we want to use an instance of such a class, we have to write an explicit wrapper class:

Example 1
interface SimpleReader {

int read();
}

class UsesSimpleReader {
void callee(SimpleReader r) {...}
void caller(Reader r) {

SimpleReader scr = new SimpleReader() { public int read() { return r.read(); } }
callee(scr);

}
}

Of course, this is a particularly simple example: creating the anonymous glue class inside
method caller is only a few lines. However, for more complex interfaces, every method
needs to get forwarded manually (a simple form of delegation).

Furthermore, any changes to the interface will also require every location where a glue
class is created explicitly to be maintained and updated. Sometimes, this enforced code
review may be desirable, but usually, it is unnecessary work and only risks the acciden-
tal introduction of errors. Structural conformance gives us the choice to reduce coupling
between the interface and its uses.

Delegation Many Java APIs are defined in terms of Java interfaces (rather than classes).
Instances of classes conforming to those interfaces are generated using methods on “factory”
objects [4]. The java.sql (JDBC) package, for example, contains interfaces defining an
SQL Statement and its extension, PreparedStatement. Instances conforming to those
interfaces are generated by instances of factory classes (conforming to the Connection
interface).

Sometimes it is desirable to override some of the methods in a Statement or Prepared-
Statement. For example, we might want to track resources associated with a statement
or perform performance measurements. If we obtain an object implementing one of those
interfaces from a factory method, we cannot necessarily access or extend the actual class
that that object is an instance of. Even if we could, we may not be able to invoke its
constructor. This means that we are unable to take advantage of the primary mechanism
for reuse in object-oriented languages: inheritance.

The only approach that we have for overriding some of the methods is that of delegation.
In practice, this may look like:

Example 2
final Statement stmt = connection.getStatement();
Statement stmt_with_delegation = new Statement() {



// statements we want to instrument

public boolean execute(String s) {
start_timer();

boolean result = stmt.execute(s);
stop_timer();
return result;

}

public ResultSet executeQuery(String s) {
start_timer();
ResultSet result = stmt.executeStatement(s);
stop_timer();
return result;

}

public int executeUpdate(String s) {
start_timer();
int result = stmt.executeUpdate(s);
stop_timer();
return result;

}

// now we need to forward all the other calls

public void addBatch(String s) { stmt.addBatch(s); }
public void cancel() { stmt.cancel(); }
public void clearBatch() { stmt.clearBatch(); }
// ... 22 more methods ...

};

As this example shows, manual delegation in Java is rather laborious. If we had wanted
to do the same for a PreparedStatement, we would have had to forward more than 30 ad-
ditional methods. Furthermore, the class performing delegation becomes tightly dependent
on the definition of the interface it is delegating to, because it needs to explicitly forward
every method in the interface. That means that if additional methods are added to the
interface (as happened in the case of JDBC between versions 1 and 2), the delegation class
will fail to compile and need to be updated.

In CommonLisp, Smalltalk and some other dynamic object oriented languages, this kind
of delegation could be easily accomplished via a doesNotUnderstand method which for-
wards all the unknown methods to the target object (see [9] for another approach). The
dynamic code generation techniques described in this paper alow this form of delegation
to be implemented much closer to the way it would be implemented in CommonLisp or
Smalltalk. In particular, the programmer only needs to concern himself with the forward-
ing of the classes he actually wants to override or instrument; all the other forwarding is
handled automatically.

Mixins As a third example, consider writing a simulation system in which each agent is
composed of a number of “mixins”. An important capability of these mixins is to be able
to refer to methods contributed to the complete agent by other mixins. For example, we
might define:

Example 3
interface Animal {



void predatorDetected(Direction d);
void runIntoDirection(Direction d);

}
class VisualBehavior {

void predatorDetected(Direction d) { runIntoDirection(d.reverse()); }
};
class MotorBehavior {

void runIntoDirection(Direction d) { ... }
};
class TimidAnimal

extends VisualBehavior,MotorBehavior
implements Animal {}

Of course, this code is not legal Java because VisualBehavior does not actually define
a runIntoDirection method. We could express this code in Java as:

Example 4
interface Animal {

void predatorDetected(Direction d);
void runIntoDirection(Direction d);

}
class VisualBehavior {

MotorBehavior motorBehavior;
void predatorDetected(Direction d) { motorBehavior.runIntoDirection(d.reverse()); }

};
class MotorBehavior {

void runIntoDirection(Direction d) { ... }
};
class TimidAnimal implements Animal {

VisualBehavior visualBehavior;
MotorBehavior motorBehavior;
TimidAnimal() {

visualBehavior = new VisualBehavior();
motorBehavior = new MotorBehavior();
visualBehavior.motorBehavior = motorBehavior;

}
void predatorDetected(Direction d) { visualBehavior.predatorDetected(d); }
void runIntoDirection(Direction d) { motorBehavior.runIntoDirection(d); }

};

So, in order to achieve mixin semantics, we need to again manually write forwarding
methods for each method required by the interface, and we need to introduce additional
instance variables that make it possible for the different mixins to refer to each other. This
is gets quite complex for any significant use of mixins.

The dynamic code generation techniques described in this paper let us write the mixin
code almost as easily as shown in the first (hypothetical) code example. All the bookkeeping,
creation of auxilliary instance variables, and method forwarding are handled automatically.

3: Approach

The basic approach we to adding dynamic features as described in the examples above
is to use Java’s reflection APIs to get information about the different classes (e.g., which
methods need to be forwarded) and to use on-the-fly generation of byte-codes to create
the “glue classes” that implement the forwarding methods and auxilliary variables (let us



use the term “glue classes”, since “adapter” or “wrapper” more specifically refers to the
technique of interface adaptation [4]).

The glue classes are generated in their own class loader, but this class loader is used com-
pletely internally to the library; this means that the approach works even for systems that
themselves manipulate class loaders. Furthermore, the glue classes need to be generated
only once for each combination of types; once generated, references to their class objects
are maintained in a hash table and can be looked up and instantiated quickly.

Some implementation techniques for advanced language constructs (e.g., genericity or
object persistence) use a modified class loader that rewrites method byte codes as objects
are loaded. None of the implementations described here require actually examining or
rewriting the byte codes of methods on the objects being manipulated.

By choosing semantics of the different operations carefully, we can obtain usable APIs
for features like delegation and mixins without any syntactic modifications to Java (and
using a standard Java runtime).

4: Structual Conformance

Using the Dynamic library, we can automate the process of adapting a class to an interface
to implement structural conformance:

Example 5
class UsesSimpleReader {

void callee(SimpleReader r) { ... }
void caller(Reader r) { callee((SimpleReader)Dynamic.adapt(SimpleReader.class,scr)); }

}

We can also move the adaptation step inside the callee. This is more convenient for
callers but offers somewhat less opportunity for static type checking:

Example 6
class UsesSimpleReader {

void callee(Object obj) {
SimpleReader r = (SimpleReader)Dynamic.adapt(SimpleReader.class,obj);
...

}
void caller(Reader r) { callee(r); }

}

In a simple example like this, the savings in terms of programmer effort are not very
large, but automating the process of adapting interfaces may encourage programmers to
define interfaces that actually express the requirements of the code they are writing, rather
than picking convenient existing interfaces even if those require more functionality to be
implemented than necessary.

Here is how we implement Dynamic.adapt(Class I,Object O):
1. Check whether we have already generated an instance of a glue class for this combination of arguments

and hold it in the cache; if so, return it.

2. Check whether we have already generated runtime code for the particular combination of types; if
so, skip forward to Step 9

3. Start generating a glue class G that implements the given return interface I.

4. Add an instance variable f of the same class as object O.



5. Use java.lang.reflect to obtain a list of methods required by the return interface I.

6. For each method m required by I, check whether m is implemented by O. If it is, generate a method
on G with the same signature as m that forwards the method to the object held by f. If object O
does not implement m, there are two choices depending on the style of structual conformance we want
to implement: we can either throw a runtime error, or we can generate code that implements m by
throwing a runtime error.

7. Load the class G into the internal class loader.

8. Store a reference to the resulting class in a hash table that is indexed by the interface I and the type
of O. We can use this on subsequent calls to the Dynamic.adapt method to avoid re-generating class
G from scratch.

9. Instantiate G and fill in its instance variable f with a reference to objects O. Return the instance.

Note that because the automatically generated instance of the glue class is stateless, we can
cache the instance itself, in addition to caching the code for the glue class. Strategies for
when and how glue classes and instances of glue classes are cached is something that requires
more extensive benchmarking. The author expects that a strategy similar to backpatching
at specific call sites, used in high performance Smalltalk-80 implementations, would work,
and such a strategy can still be expressed conveniently in terms of existing Java language
constructs.

5: Delegation/Forwarding

Let us look at the delegation example above using the Dynamic library:

Example 7
Statement stmt = connection.getStatement();
Statement stmt_with_delegation =

(Statement)Dynamic.wrap(Statement.class,stmt,new Object() {
public boolean execute(Statement stmt,String s) {

start_timer();
boolean result = stmt.execute(s);
stop_timer();
return result;

}

public ResultSet executeQuery(Statement stmt,String s) {
start_timer();
ResultSet result = stmt.executeStatement(s);
stop_timer();
return result;

}

public int executeUpdate(Statement stmt,String s) {
start_timer();
int result = stmt.executeUpdate(s);
stop_timer();
return result;

}
};

Here, the call to Dynamic.wrap takes three arguments: a reference to the interface the
resulting object needs to implement (Statement.class), an instance to which methods
are to be fowarded (stmt), and an instance of Object that holds methods that override
functionality of the target object.

Note that the overriding methods defined on this object take an additional argument



compared to Example 2. This corresponds to the forwarder keyword in [14] and allows
the method to which the call is delegated to refer to the delegator

In order to be able to type the static method Dynamic.wrap, it needs to return an
instance of type Object that we then cast explicity to the type we require (Statement).

Let us look now at how Dynamic.wrap(Class I,Object E,Object R) is actually im-
plemented. Here are the steps it performs:

1. Immediately return a cached instance of the glue class if it exists for the type/object combination.

2. Immediately skip to the instantiation step (Step 9) if we have already generated code for the particular
type combinations on a previous call.

3. Start generating a glue class G that implements the given return interface I.

4. Add two instance variables to the glue class. The first instance variable holds the wrapping object
R, the second instance variable holds the object being wrapped E.

5. Use java.lang.reflect to obtain a list of methods required by the return interface I.

6. For each method m required by I, first check whether there exists a method on the wrapping object R
that has the same name and a type signature that is derived from m by inserting an additional argu-
ment at the beginning that has the type of the object being wrapped, E. If so, generate a forwarding
method with the same signature as method m that forwards to the corresponding method on R with
E as its first argument. If not, generate a forwarding method that forwards to the corresponding
method on the object being wrapped, E.

7. Load the class G into the internal class loader.

8. Store a reference to the resulting class in a hash table that is indexed by the interface I and the types
of R and E. We can use this on subsequent calls to the Dynamic.wrap method to avoid re-generating
class G from scratch.

9. Instantiate G and fill in its instance variables with references to objects R and E. Return this instance.

Viega et al. [14] describe a similar delegation mechanism for Java. Their system is based
on a preprocessor and requires compile-time declarations of delegation relationships.

6: Mixins

For implementing mixins, our goal is to implement a function Object Dynamic.mix(Class
I,Class A,Class B) that takes an interface I and two classes A and B as arguments and
returns an instance of a class constructed by mixing the methods of A and B, making the
resulting class conform to interface I, creating an instance of that class and returning it
(the extension to mixing more than two classes is straightforward).

In Example 4, we have already seen the general approach to generating classes that inherit
from multiple parent classes. However, we encounter the following problem when trying
to define mixins that call methods on each other: since Java has no means of expressing
dependency on another mixin, the Java compiler will not compile a mixin class that calls
a method defined by another mixin.

There is a fairly simple solution to expressing these mixin relationships using existing
syntactic constructs in Java: each mixin defines the methods it expects to be contributed
to the complete object by other mixins and that it wants to call as abstract methods. With
this modification, our mixin example above (Example 3) looks like this:

Example 8
interface Animal {

void predatorDetected(Direction d);
void runIntoDirection(Direction d);

}
class VisualBehavior {

abstract void runIntoDirection(Direction d);



void predatorDetected(Direction d) { runIntoDirection(d.reverse()); }
};
class MotorBehavior {

void runIntoDirection(Direction d) { ... }
};

TimidAnimal timidAnimal =
Dynamic.mix(Animal.class, VisualBehavior.class, MotorBehavior.class);

Here is how Dynamic.mix(Class I,Class A,Class B) implements the creation of mix-
ins:

1. Immediately return a cached instance of the glue class if it exists for the type/object combination.

2. Immediately skip to the instantiation step (Step 9) if we have already generated code for the particular
type combinations on a previous call.

3. We generate a container class C that implements all the methods required by I.

4. We generate two classes, AX and BX that extend classes A and B, respectively. These new subclasses
add an instance variable c of type C each.

5. We add two instance variables ax and bx to C of type AX and BX, respectively.

6. For each method required by interface I, we forward it either to the object held by ax or by bx. In
case of ambiguities, the simplest and least surprising thing is to raise an error, but some form of
method combination would be possible as well.

7. For each abstract method in mixin A that refers to a method defined by mixin B, we generate a
non-abstract method on class AX that forwards the method call through c.ax. We do the analogous
thing for mixin B.

8. In the constructor of class C, we create instances of classes AX and BX and store them in the instance
variables ax and bx, respectively. We also initialize the instance variables c to the container class
instance.

9. Instantiate C and initialize all the instance variables of the generated classes as needed. Return this
instance.

Dynamic.mix gives us something very similar to multiple inheritance based on delega-
tion (for a more in-depth discussion of the relationship between multiple inheritance and
delegation, see [12, 13, 14]).

A significant extension compared to multiple inheritance in languages like C++ or Eiffel,
and compared to the method described in [14], is that Dynamic.mix allows the parent
classes of a derived class to be determined at runtime. Among widely used languages,
this feature is mostly known in CLOS, Perl, and Python, and there it is generally made
possible because method lookup uses general purpose but slow data structures. Because
Dynamic.mix compiles glue classes on the fly, its performance is as good as if the required
delegation code had been statically compiled.

7: Implementation and Benchmarking

The techniques described in this paper were implemented in a prototype implementation
initially under the Sun JDK 1.1 distribution and later ported to the IBM Jikes compiler
and JDK 1.3. Using the prototype implementation, it was verified that for cache hits
in the Dynamic.adapt case, calls through automatically generated glue classes execute at
approximately the same speed as calls through a manually written glue class, and they
execute at about four times the speed of calls through the java.reflection API. More
detailed benchmarking results will be presented elsewhere.



8: Discussion

While dynamic features would be most naturally implemented by simply extending the
Java virtual machine (JVM), for practical reasons, the definition of the JVM is unlikely
to change. This paper has shown how dynamic language features can be implemented
efficiently without extensions to the JVM using dynamic code generation.

Of course, dynamic code generation and dynamic compilation techniques have been used
widely over the last decade in the implementation of object-oriented programming languages
(see, for example, [2]), and dynamic and adaptive native code generation in Java runtimes
themselves is an example of this.

The main contribution of this paper is to show how dynamic and adaptive code generation
can also be used by Java programs themselves at the level of Java bytecodes to implement
high-level dynamic constructs efficiently and under program control. In different words,
the availability of a well-defined platform-independent binary format as part of the Java
standard and the ability to generate and dynamically load code in that format gives us a
very powerful tool for extending the behavior of the Java runtime with features ordinarily
only found in dynamic programming languages.

The techniques described in this paper may find application in the efficient implemen-
tation of dynamic languages like Smalltalk and Lisp on top of the JVM, as well as for
standardizable extensions of the Java language and libraries with more dynamic features.
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