The EigenTrust Algorithm for

Reputation Management in

P2P Networks

Sepandar D. Kamvar
Stanford University

sdkamvar@stanford.edu

Stanford Un

ABSTRACT

Peer-to-peer file-sharing networks are currently receivinuch at-
tention as a means of sharing and distributing informatidow-
ever, as recent experience shows, the anonymous, opere retur
these networks offers an almost ideal environment for theazpof
self-replicating inauthentic files.

We describe an algorithm to decrease the number of downloads
of inauthentic files in a peer-to-peer file-sharing netwdrttas-
signs each peer a unique global trust value, based on thés peer
history of uploads. We present a distributed and secure gddth
compute global trust values, based on Power iteration. Bynga
peers use these global trust values to choose the peers finom w
they download, the network effectively identifies malicdgopeers
and isolates them from the network.

In simulations, this reputation system, called EigenTrsts
been shown to significantly decrease the number of inauthi#es
on the network, even under a variety of conditions where cials
peers cooperate in an attempt to deliberately subvert tsiesy

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applicationsH.3.3 Information Systemq: In-
formation Storage and RetrievalSelection H.2.7 [Information
System$. Database ManagementSecurity, integrity and protec-
tion

General Terms
Algorithms,Performance, Theory

Keywords

Peer-to-Peer, reputation, distributed eigenvector caatjmn

1. INTRODUCTION

Peer-to-peer file-sharing networks have many benefits eagr s
dard client-server approaches to data distribution, uliclg im-
proved robustness, scalability, and diversity of avadatdta. How-
ever, the open and anonymous nature of these networks leads t
complete lack of accountability for the content a peer putshe
network, opening the door to abuses of these networks byinati
peers.

Attacks by anonymous malicious peers have been observed on
today’s popular peer-to-peer networks. For example, rwal&
users have used these networks to introduce viruses sudteas t
Copyright is held by the author/owner(s).

WWW2003May 20-24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.

Mario T. Schlosser

schloss@db.stanford.edu

Hector Garcia-Molina
Stanford University

hector@db.stanford.edu

iversity

VBS.Gnutellavorm, which spreads by making a copy of itself in a
peer's Gnutella program directory, then modifying the Gatlatini
file to allow sharing of .vbs files [19]. Far more common haverbe
inauthentic file attacks, wherein malicious peers respondrtu-
ally any query providing “decoy files” that are tampered wittdo
not work.

It has been suggested that the future development of P2¢hsyst
will depend largely on the availability of novel methods @rsur-
ing that peers obtain reliable information on the qualityesfources
they are receiving [6]. In this context, attempting to idBnmali-
cious peers that provide inauthentic files is superior rafiting to
identify inauthentic files themselves, since maliciouspean eas-
ily generate a virtually unlimited number of inauthentiefilif they
are not banned from participating in the network. We presaoh a
method wherein each pegis assigned a uniquglobal trust value
that reflects the experiences of all peers in the network pégr:.

In our approach, all peers in the network participate in cotimg
these values in a distributed and node-symmetric mannamaiit-
imal overhead on the network. Furthermore, we describe foow t
ensure the security of the computations, minimizing thebphal-

ity that malicious peers in the system can lie to their ownelfién
And finally, we show how to use these values to identify peleas t
provide material deemed inappropriate by the users of a-foeer
peer network, and effectively isolate them from the network

2. DESIGN CONSIDERATIONS

There are five issues that are important to address in any P2P
reputation system.

1. The system should tself-policing That is, the shared ethics
of the user population are defined and enforced by the peers

themselves and not by some central authority.

. The system should maintaamonymity That is, a peer’s rep-
utation should be associated with an opaque identifier (such
as the peer’s Gnutella username) rather than with an exter-
nally associated identity (such as a peer’s IP address).

. The system should not assign gmgfit to newcomersThat
is, reputation should be obtained by consistent good behav-
ior through several transactions, and it should not be advan
tageous for malicious peers with poor reputations to centin
uously change their opaque identifiers to obtain newcomers
status.

. The system should hawainimal overheadn terms of com-
putation, infrastructure, storage, and message complexit

. The system should lrebust to malicious collectivesf peers
who know one another and attempt to collectively subvert the
system.

3. REPUTATION SYSTEMS

An important example of successful reputation managensent i
the online auction system eBay [9]. In eBay’s reputatiortesys
buyers and sellers can rate each other after each transaatid
the overall reputation of a participant is the sum of thesimga
over the last 6 months. This system relies on a centralizetégy
to store and manage these ratings.

In a distributed environment, peers may still rate eachradfter
each transaction, as in the eBay system. For example, gaeh ti
peer: downloads a file from peey, it may rate the transaction as
positive ¢r(¢,7) = 1) or negative {r (i, 7) —1). Peeri may
rate a download as negative, for example, if the file dowrddad
is inauthentic or tampered with, or if the download is intgted.
Like in the eBay model, we may definelacal trust values;; as
the sum of the ratings of the individual transactions tharpéas
downloaded from peef: s;; = > trs;.

Equivalently, each peércan store the number satisfactory trans-
actions it has had with pegr sat (4, j) and the number of unsatis-
factory transactions it has had with peernsat(i, j). Then,s;;
is defined:

1)
Previous work in P2P reputation systems [6, 1] has all besada
on similar notions of local trust values. The challenge feputa-
tion systems in a distributed environment is how to aggegjas
local trust values;; without a centralized storage and management
facility. While each of the previous systems cited aboveresiks
this issue, each of the previous systems proposed suffarsdne
of two drawbacks. Either it aggregates the ratings of onlgw f
peers and doesn't get a wide view about a peer’s reputatioit, o
aggregates the ratings of all the peers and congests thenketith
system messages asking for each peer’s local trust vallmeat

query.

sij = sat(i,j) — unsat(i, j)

We present here a reputation system that aggregates the loca

trust values of all of the users in a natural manner, with madi
overhead in terms of message complexity. Our approach edbas
on the notion of transitive trust: A peéwill have a high opinion of
those peers who have provided it authentic files. Moreoesrp

is likely to trust the opinions of those peers, since peers we
honest about the files they provide are also likely to be hoimes
reporting their local trust values.

We show that the idea of transitive trust leads to a systemavhe
global trust values correspond to the left principal eiganor of a
matrix of normalized local trust values. We show how to perfo
this eigenvector computation in a distributed manner wigh f few
lines of code, where the message complexity is provably dedn
and empirically low. Most importantly, we show that this®ym is
highly effective in decreasing the number of unsatisfactiwn-
loads, even when up to 70% of the peers in the network form a
malicious collective in an attempt to subvert the system.

4. EIGENTRUST

In this section, we describe the EigenTrust algorithm. IgeBk
Trust, the global reputation of each peés given by the local trust
values assigned to peérby other peers, weighted by the global
reputations of the assigning peers. In Section 4.1, we stoowtb
normalize the local trust values in a manner that leads tdemyant
probabilistic interpretation and an efficient algorithnm égygregat-
ing these values. In Section 4.2, we discuss how to aggréigate
normalized trust values in a sensible manner. In Sectionwe3
discuss the probabilistic interpretation of the local afabgl trust
values. In Section 4.4 through Section 4.6, we present amidign
for computing the global trust values.

4.1 Normalizing Local Trust Values

In order to aggregate local trust values, it is necessarptmal-
ize them in some manner. Otherwise, malicious peers cagrassi
arbitrarily high local trust values to other malicious pgeand ar-
bitrarily low local trust values to good peers, easily suting the
system. We define mormalized local trust value:;;, as follows:

_ max(s;,0)
o ZJ. max(s;;,0) 2)

This ensures that all values will be between 0 and 1. (Notice
that if 3° max(s;;) = 0, thene;; is undefined. We address this
case in Section 4.4.) There are some drawbacks to normaiizin
this manner. For one, the normalized trust values do noindist
guish between a peer with whom peaetid not interact and a peer
with whom peeri has had poor experience. Also, thesge val-
ues are relative, and there is no absolute interpretatitat iB, if
cij = cik, We know that peej has the same reputation as peén
the eyes of peer, but we don't know if both of them are very rep-
utable, or if both of them are mediocre. However, we are akle
to achieve substantially good results despite the dravghamn-
tioned above. We choose to normalize the local trust valudisis
manner because it allows us to perform the computation thatex
scribe below without renormalizing the global trust vala¢®ach
iteration (which is prohibitively costly in a large disttited envi-
ronment) and leads to an elegant probabilistic model.

4.2 Aggregating Local Trust Values

We wish to aggregate the normalized local trust values. A-nat
ral way to do this in a distributed environment is for peéeo ask
its acquaintances about their opinions about other peergould
make sense to weight their opinions by the trust peplaces in

them:
tik = Z Cij Cik
J

wheret;;, represents the trust that peeplaces in peek based on
asking his friends.

We can write this in matrix notation: If we defing@ to be the
matrix [c;;] andi; to be vector containing the valueg, theni; =
C*é. (Note thaty ti; = 1 as desired.)

This is a useful way to have each peer gain a view of the network
that is wider than his own experience. However, the trustesl
stored by peet still reflect only the experience of peémand his
acquantainces. In order to get a wider view, pemiay wish to ask
his friends’ friends £ = (C7)2¢;). If he continues in this manner,
(t = (CT)™¢;), he will have a complete view of the network after
n = large iterations (under the assumptions thais irreducible
and aperiodic, which we guarantee in practice and addreSegn
tion 4.5).

Fortunately, ifn is large, the trust vectar; will converge to the
same vectofor every peer.i Namely, it will converge to the left
principal eigenvector of. In other words{'is a global trust vector
in this model. Its elements;, quantify how much trust the system
as a whole places pegr

4.3 Probabilistic Interpretation

Itis useful to note that there exists a straightforward phmlistic
interpretation of this method, similar to the Random Sunfiedel
of [12]. If an agent were searching for reputable peers,ntaawl
the network using the following rule: at each péeit will crawl
to peerj with probability c;;. After crawling for a while in this
manner, the agent is more likely to be at reputable peersuhan
reputable peers. The stationary distribution of the Markbain

Cij

®)

A

repeat
FE+1) _ oT).
§ = |[t* D) — ¢F);

until § < ¢

Algorithm 1: Simple non-distributed EigenTrust algorithm

defined by the normalized local trust matiiXis our global trust
vectort.

4.4 Basic EigenTrust

In this section, we describe the basic EigenTrust algoritigm
noring for now the distributed nature of the peer-to-pedmoek.
That is, we assume that some central server knows adl;thalues
and performs the computation. In Section 4.6, we descrilethe
computation may be performed in a distributed environment.

We simply wish to computé = (C7)"¢, for n =large, where
we definee to be them-vector representing a uniform probability
distribution over allm peers,e; = 1/m. (In Section 4.2, we said
we wish to compute = (CT)"¢;, whereg; is the normalized local
trust vector of some peér However, since they both converge to
the principal left eigenvector af', we may use’ instead.)

At the most basic level, the algorithm would proceed as incAlg
rithm 1.

45 Practical Issues

There are three practical issues that are not addressedidy th
simple algorithm: a priori notions of trust, inactive pgesad ma-
licious collectives.

A priori notions of trust. Often, there are some peers in the
network that are known to be trustworthy. For example, tte faw
peers to join a network are often known to be trustworthycsitne
designers and early users of a P2P network are likely to rese |
motivation to destroy the network they built. It would be fudeo
incorporate such notions of trust in a natural and seamlessanr.
We do this by defining some distributighover pre-trusted peers
For example, if some set of peeFsare known to be trusted, we
may definep; = 1/|P| if ¢ € P, andp; = 0 otherwise.) We
use this distributioy’ in three ways. First of all, in the presence of
malicious peerst = (CT)" will generally converge faster than
t'= (CT)"€, so we use as our start vector. We describe the other
two ways to use this distributiopibelow.

Inactive Peers. If peeri doesn’t download from anybody else,
or if it assigns a zero score to all other peetg,from Equation 1
will be undefined. In this case, we sgf = p;. So we redefine;;

> max(s;j)

as:
Cij =
pj

That is, if peeri doesn’t know anybody, or doesn'’t trust anybody,
he will choose to trust the pre-trusted peers.

Malicious Collectives.In peer-to-peer networks, there is poten-
tial for malicious collectives to form [8]. A malicious celttive is
a group of malicious peers who know each other, who give each
other high local trust values and give all other peers lovaldist
values in an attempt to subvert the system and gain high dialsh

maz(si;,0)

if =, max(si;,0) # 0;
otherwise

4)

'The idea of pre-trusted peers is also used in [2], where theoe
tation of the trust metric is performed relative to a “seefitrosted
accounts.

0 = p;

repeat
FU1) — TR
t*HD = (1 — @)t 4 o
6= ||t<k+1) — t(k)||;

until § < ¢

Algorithm 2: Basic EigenTrust algorithm

values. We address this issue by taking

D = (1 —)T 4 ap (5)

wherea is some constant less than 1. This is equivalent to setting
the opinion vector for all peers to kg = (1 — a)¢; + ap, break-

ing collectives by having each peer place at least someitrike
peersP that are not part of a collective. Probabilistically, thés i
equivalent to saying that the agent that is crawling the agtvy

the probabilistic model given in Section 4 is less likely & gtuck
crawling a malicious collective, because at each step, baltar-
tain probability of crawling to a pre-trusted peer. Notitat this
also makes the matri¥' is irreducible and aperiodic, guaranteeing
that the computation will converge.

The modified algorithm is given in Algorithm 2.

It should be emphasized that the pre-trusted peers aretiedsen
to this algorithm, as they guarantee convergence and breahkad
licious collectives. Therefore, the choice of pre-truspasers is
important. In particular, it is important that no pre-tredtpeer be
a member of a malicious collective. This would compromise th
quality of the algorithm. To avoid this, the system may cleoas
very few number of pre-trusted peers (for example, the desiy
of the network). A thorough investigation of different metts of
choosing pre-trusted peers is an interesting research lawedt is
outside of the scope of this paper.

4.6 Distributed EigenTrust

Here, we present an algorithm where all peers in the netwark ¢
operate to compute and store the global trust vector, anddhe
putation, storage, and message overhead for each peerrareahi

In a distributed environment, the first challenge that arisénow
to storeC and. In previous sections, we suggested that each peer
could store its local trust vectat. Here, we also suggest that each
peer store its own global trust valug (For presentation purposes,
we ignore issues of security for the moment and allow peestore
their own trust values. We address issues of security ind@ebt)

In fact, each peer can compute its own global trust value:

(6)

Inspection will show that this is the component-wise varsad
t*) = (1—a)CTi™ +ap. Notice that, since peéhas had lim-
ited interaction with other peers, many of the componentxjua-
tion 6 will be zero. This lends itself to the simple distribdtalgo-
rithm shown in Algorithm 3. It is interesting to note two tiyim
here. First of all, only the pre-trusted peers need to knawir th .
This means that pre-trusted peers may remain anonymousggob
else needs to know that they are pre-truétetherefore, the pre-
trusted peers maintain anonymity as pre-trusted peerse (@ay
imagine that pre-trusted peers may be identified becaugehthe
high global trust values. However, simulations show thdtijevhe

t5 D — (1= a) (et + .+ it + aps

2Recall that, for the moment, we assume that peers are hamegst a
may report their own trust values, including whether or hettare
a pre-trusted peer. The secure version is presented inoBecti

Definitions:
e A;: set of peers which have downloaded files from peer
e B;: set of peers from which peéhas downloaded files

Algorithm :
Each peet do {

Query all peers € A; for t\” = p;;
repeat
Computet "™ = (1 — a)(c1it’™ + 2t + ...+
it) + aps;
Sendc;; 1™ to all peersj € B;;
Computes = [t* 1) — ¢¥).
Wait for all peersj € A; to returnc;;
until § < e,

}

(k+1).
¢,

Algorithm 3: Distributed EigenTrust Algorithm.

pre-trusted peers have above averagalues, they rarely have the
highest values of;.)

Secondly, in most P2P networks, each peer has limited itrtera
tion with other peers. There are two benefits to this. Firg,dom-
putationt,EkH) = (1 — a)(clitgk) —‘rCzit;k) +.. .+C7”'tgbk)) “+ap; is
not intensive, since mos}; are zero. Second, the number of mes-
sages passed is small, sinégand B; are small. In the case where
a network is full of heavily active peers, we can enforce ¢hesn-
efits by limiting the number of local trust valueg that each peer
can report.

4.7 Algorithm Complexity

The complexity of the algorithm is bounded in two ways. First
the algorithm converges fast: For a network of 1000 peees 480
query cycles (refer to Section 7.1 for a description of howsive-
ulate our system), Figure 1 depicts the residiaf ™ — ¢,
Clearly, the algorithm has converged after less than 1@titars,
i.e., the computed global trust values do not change sigmifig
any more after a low number of iterations. In the distribuved
sion of our algorithms, this corresponds to less than 10 axgbs
of updated trust values among peers. The reason for thedast ¢
vergence of the EigenTrust algorithm is discussed in [10].

Second, we can specifically limit the number of local trustea
that a peer reports. In the modified version of EigenTrustheeer
reports a subset of its total set of local trust values. Priiekry
simulations have shown this scheme to perform comparabhase
the algorithm presented here, where peers report all of theal
trust values.

5. SECURE EIGENTRUST

In the algorithm presented in the previous section, each pee
computes and reports its own trust valye Malicious peers can
easily report false trust values, subverting the system.

We combat this by implementing two basic ideas. First, the cu

1.4

1.2}

Residual
o
[e0)

o
o

10 20
Iterations

Figure 1: EigenTrust convergence

posg = h,(ID,)

®

OO
o

pos, = h,(ID,)

Q)
o

pos, = h,(ID,)

OO,

Figure 2: Two-dimensional CAN hash space

In the secure version of the distributed trust algorithm, dé&1rs
(dubbedscore managersf a peeri) compute the trust value of a
peer:. If a peer needs the trust value of pégit can query all M
score managers for it. A majority vote on the trust value thetties
conflicts arising from a number of malicious peers being agribe
score managers and presenting faulty trust values as oppotee
correct one presented by the non-malicious score managers.

To assign score managers, we use a distributed hash tabfg) (DH
such as CAN [13] or Chord [18]. DHTSs use a hash function to de-
terministically map keys such as file names into points ingickl
coordinate space. At any time, the coordinate space igipagd
dynamically among the peers in the system such that eveny pee
covers a region in the coordinate space. Peers are respofib
storing (key, value) pairs the keys of which are hashed irgoiat
that is located within their region.

In our approach, a peer’s score manager is located by hasahing
unique ID of the peer, such as its IP address and TCP portainto
point in the DHT hash space. The peer which currently covéss t
point as part of its DHT region is appointed as the score manag

rent trust value of a peer must not be computed by and reside atof that peer. All peers in the system which know the unique 1D o

the peer itself, where it can easily become subject to méanipu
tion. Thus, we have a different peer in the network compuée th
trust value of a peer. Second, it will be in the interest ofinialis
peers to return wrong results when they are supposed to dempu
any peer’s trust value. Therefore, the trust value of one pethe
network will be computed by more than one other peer.

a peer can thus locate its score manager. We can modify diad ini
algorithm such that it can be executed by score managers.

As an example, consider the CAN in Figure 2. Peer 1's unique
ID, I D,, is mapped into points covered by peers 2, 3 and 6, respec-
tively, by hash function&., he andhs. Thus, these peers become
peer 1's score managers.

To cope with the inherent dynamics of a P2P system, we rely

for one peer. To assign several score managers to a peerg\sews

on the robustness of a well-designed DHT. For example, when a eral multi-dimensional hash functions. Peers in the systihtake

score manager leaves the system, it passes on its stater(se.
values or ongoing trust computations) to its neighbor peehe
DHT coordinate space. DHTs also introduce replication dada
to prevent loss of data (in this case, trust values) in cassoees
manager fails.

5.1 Algorithm Description

Here we describe the secure algorithm to compute a glohstl tru
vector. We will use these definitions: Each peer has a number
of score managers, whose DHT coordinates are determineg-by a
plying a set of one-way secure hash functiépshi, . .., ha—1 to
the peer’s unique identifiepos; are the coordinates of pegin the
hash space. Since each peer also acts as a score managas: it is
signed a set of daughtefs; - the set contains the indexes of peers
whose trust value computation is covered by the peer. As @sco
manager, peer also maintains the opinion vectej; of its daugh-
ter peerd (whered € D;) at some point in the algorithm. Also,
peeri will learn A% which is the set of peers which downloaded
files from its daughter peet: It will receive trust assessments from
these peers referring to its daughter péeFinally, peer: will get
to know the seB’, which denotes the set of peers which its daugh-
ter peerd downloaded files from: Upon kicking off a global trust
value computation, its daughter peélis supposed to submit its
trust assessments on other peers to its score managedipmthie
score manager witlB?.

foreach peeri do
Submit local trust valueg; to all score managers at posi-
tionshm, (pos;),m=1...M — 1,
Collect local trust values;; and sets of acquaintancé
of daughter peerg € D;;
Submit daughtet!’s local trust values:q; to score man-
agershm (posq), m =1...M —1,VYj € BY;
Collect acquaintances’, of daughter peers;
foreach daughter peetl € D, do
Query all peerg € A’ for cjap;;
repeat
Computet) = (1
ot cnatt)) + apa;
Sendeq;t"™ to all peersj € Bj;

—a) (C1dt§k) + C2dtgk) +

Wait for all peersj € A¢ to returncjdtg.k“);
until [t —) < e
end
end

Algorithm 4: Secure EigenTrust Algorithm

Upsides of the secure algorithm in terms of increased sycuri
and reliability include:

Anonymity. It is not possible for a peer at a specific coordinate
to find out the peer ID for whom it computes the trust values —
hence malicious peers cannot increase the reputation ef otali-
cious peers.

Randomization. Peers that enter the system cannot select at
which coordinates in the hash space they want to be locatéd (t
should be a property of a well-designed DHT) - hence it is not
possible for a peer to, for example, compute the hash valits of
own ID and locate itself at precisely this position in thethapace
to be able to compute its own trust value.

Redundancy. Several score managers compute the trust value

over a particular region in the coordinate space, yet nowethee
several coordinate spaces, each of which is created by oite mu
dimensional hash function. A peer’s unigue ID is thus mappex

a different point in every multi-dimensional hash space.

5.2 Discussion

A couple of points are important to note here. First, theessu
secure score management in P2P networks is an importaneprpb
with implications for reputation management, incentivsteyns,
and P2P micropayment schemes, among others. An extended dis
cussion of secure score management in P2P networks, amdiari
concrete score management schemes (including a variam ofie
presented above), are given in [20]. The main contributibtiis
work is not in the secure score management scheme, but iather
the core EigenTrust algorithm. We discuss the secure scare m
agement scheme becausmmesecure score management scheme
is essential to the EigenTrust algorithm. However, it is amant
to note that the core EigenTrust algorithm may be used withyma
different secure score management schemes.

Second, the secure protocols proposed here and in [20]ibescr
how to use large collections of entities to mitigate singatagroup-
based manipulation of the protocol. These protocols arsemired
in the traditional sense; rather, we can show that the piitityais
small that a peer is able to get away with misreporting a scbines
is discussed further in [20].

6. USING GLOBAL TRUST VALUES

There are two clear ways to use these global trust values in a
peer-to-peer system. The first is to isolate malicious pé&eras
the network by biasing users to download from reputable geer
The second is to incent peers to share files by rewarding abjaut
peers.

Isolating Malicious Peers.When peet issues a query, the sys-
tem may use the trust valuésto bias the user towards download-
ing from more reputable peers. One way to do this would be to
have each peer download from the most highly trusted peer who
responds to its query. However, such a policy leads to the mos
highly trusted peers being overloaded, as shown in Secti¢iui?
thermore, since reputation is built upon sharing authdiiés, this
policy does not enable new peers to build up reputation irsyise
tem.

A different strategy is to select the peers from whom to down-
load probabilistically based on their trust values. In joaitar, we
can make type probability that a peer will download a file from
responding peej be directly proportional to the trust value of
peer;.

Such a policy limits the number of unsatisfactory downloads
the network, while balancing the load in the network andvadlo
ing newcomers to build reputation. The experiments in $acti
validate this.

It should be noted here that peers may easily choose to l@as th
choice of download by a convex combination of the globalttrus
values and their own local trust assessments of other peedise
the trust values given by the vect@fcrsonas = di + (1 — d)¢,
whered is a constant between 0 and 1. This way, a peer can avoid
downloading from a peer that has given it bad service, evén if
gives the rest of the network good service.

Incenting Freeriders to Share. Secondly, the system may re-
ward peers with high trust values. For example, reputabrpe
may be rewarded with increased connectivity to other rdpata
peers, or greater bandwidth. Rewarding highly trustedpbas a

twofold effect. First, it gives users an incentive to shalesfisince
a high global trust value may only be achieved by sharingemitt
files. In the current Gnutella network, less than 7% of therpee

number of query cycles. In each query cycle, a peerthe net-
work may be actively issuing a query, inactive, or even dowd a
not responding to queries passing by. Upon issuing a qugryen

are responsible for over 50% of the files, and as many as 25% of waits for incoming responses, selects a download sourceng@gmo

peers on the network share no files at all [16]. Incentivesthas
trust values should reduce the number of free riders on fepeer
networks. Some such incentives are discussed in [11].

Second, rewarding highly trusted peers gives non-mali&cpaers
an incentive to delete inauthentic files that they may hacelao-
tally downloaded from malicious peers, actively keeping tiet-
work tidy. This makes it more difficult for inauthentic files tepli-
cate in the system.

7. EXPERIMENTS

In this section, we will assess the performance of our scheesne
compared to a P2P network where no reputation system is imple
mented. We shall demonstrate the scheme’s performance ande
variety of threat models.

7.1 Simulation

Our findings are based on simulations of a P2P network model

which we shall explain briefly in the following.

Network model. We consider a typical P2P network: Intercon-
nected, file-sharing peers are able to issue queries for filsers
can respond to queries, and files can be transferred betweaen t
peers to conclude a search process. When a query is issued by
peer, itis propagated by broadcast with hop-count horiboough-
out the network (in the usual Gnutella way), peers which ixece
the query forward it and check if they are able to respond .to it
We interconnect peers by a power-law network, a type of nd¢wo
prevalent in real-world P2P networks [15].

Node model.Our network consists of good nodes (normal nodes,
participating in the network to download and upload files) ara-
licious nodes (adversarial nodes, participating in thevoet to un-
dermine its performance). In our experiments, we considéred
ent threat models, where a threat model describes the lwehafvi
a malicious peer in the network. Threat models will be démsati
in more detail later on. Note also that, based on the coreidais

in Section 4.5, some good nodes in the network are appoirged a

highly trusted nodes.

Content distribution model. Interactions between peers — i.e.,
which queries are issued and which queries are answered/éy gi
peers — are computed based on a probabilistic contentllittrn
model. The detailed model will not be described here, it & pr
sented in [17]. Briefly, peers are assumed to be interestadib-
set of the total available content in the network, i.e., ga@ér ini-
tially picks a number of content categories and shares fitgsia
these categories. Reference [7] has shown that files shaeeE2P
network are often clustered by content categories. Alscasgeime
that within one content category files with different popities ex-
ist, governed by a Zipf distribution. When our simulator geates
a query, it does not generate a search string. Instead, @rgess
the category and rank (or popularity) of the file that willist
the query. The category and rank are based on Zipf distabati
Each peer that receives the query checks if it supports ttegoey
and if it shares the file. Files are assigned probabilidtidal peers
at initialization based on file popularity and the contertegaries
the peer is interested (that is, peers are likely to sharelpofiles,
even if they have few files). The number of files shared by peeads
other distributions used in the model are taken from measenés
in real-world P2P networks [16].

Simulation execution. The simulation of a network proceeds
in simulation cycles: Each simulation cycle is subdividatbia

those nodes that responded and starts downloading the file. T
latter two steps are repeated until a peer has properlyvede
good copy of the file that it has been looking¥otJpon the con-
clusion of each simulation cycle, the global trust value patation
is kicked off. Statistics are collected at each node, inipalgr, we
are interested in the number of authentic and inauthenticaod
downloads of each node. Each experiment is run several tame:s
the results of all runs are averaged. We run an experimeiitvat
see convergence to a steady state (to be defined in the diestip
of the experiments), initial transient states are exclufilech the
data.

The base settings that apply for most of the experimentsane s
marized in Table 1. The settings represent a fairly smallogk to
make our simulations tractable. However, we have expeltieten
with larger networks in some instances and our conclusiams c
tinue to hold. That is, schemes that do well in a small settileg
proportionately as well as the network is scaled up. Als@ ribat
our settings describe a pessimistic scenario with a powadver-
sary: Malicious peers connect to the most highly connectsts
when joining the network (see Section 7.3), they responbeadp
20% of queries received and thus have a large bandwidth ateey
zglble to communicate among themselves in most of our thredt mo
els, and they make up a significant fraction of the network asm
of our experiments. Yet, our experiments indicate that chesme
works well in this hostile a scenario, and thus will also worlkess
hostile environments.

As metrics, we are particularly interested in the numbernafur
thentic file downloads versus the number of authentic file rdow
loads: If the computed global trust values accurately refach
peer's actual behavior, the number of inauthentic file doads
should be minimized.

Before we consider the strengths of our scheme in suppessin
inauthentic downloads in a P2P network, we examine if it $etad
unwanted load imbalance in the network. In the followingtiess
we also give a precise definition on how we use global trustesl
in downloading files.

7.2 Load Distribution in a Trust-based
Network

In P2P networks, a natural load distribution is establishgd
peers with more content and higher bandwidth being able to re
spond to more queries and thus having a higher likelihooceofd
chosen as download source for a file transfer. In our schelmigha
global trust value of a peer additionally contributes to arfsdike-
lihood of being chosen as download source. Possibly, thigimi
lead a peer into a vicious circle of accumulating reputabgrre-
sponding to many queries, thus being chosen even more fidgue
as download source in the future, thus accumulating evee nepr
utation. In a non-trust based system, this situation do¢co
cur: From responding peers, a peer usually is randomly plickel
selected as download source, somewhat balancing the Icthe in
network. In the following, we are interested in integratiogd-
distributing randomization into our scheme. In the experinin
Figures 3 and 4, we study the load distribution performarfca o

3In Section 7.2 we will consider two different ways of choagin
download sources from those nodes that respond to a query and
compare their performance in one of our experiments.

Network

of good peers

of malicious peers

of pre-trusted peers

of initial neighbors of good peers

of initial neighbors of malicious peers
of initial neighbors of pre-trusted peers
Time-to-live for query messages

60
42
3
2
10
10
7

Content Distribution

of distinct files at good peer
set of content categories supported by good pe
of distinct files at good peérin categoryj

top % of queries for most popular categories an
files malicious peers respond to
top % of queries for most popular categories an
files pre-trusted peers respond to

% of time peeri is up and processing queries
% of time pre-trusted peeris up and processing
queries

% of up-time good peerissues queries

% of up-time pre-trusted pegiissues queries

file distribution in [16]

eZipf distribution over 20 content categories
uniform random distribution over peés
total number of distinct files

d20%

d5%

uniform random distribution over [0%, 1009
1

uniform random distribution over [0%, 50%]
1

Peer Behavior

% of download requests in which good peer
returns inauthentic file

% of download requests in which malicious pee
returns inauthentic file

download source selection algorithm
probability that peer with global trust value 0 is
selected as download source

5%
r 0% (varied in Section 7.3)

probabilistic algorithm (varied in Section 7.2
10%

Simulation

of simulation cycles in one experiment
of query cycles in one simulation cycle

30
50
b

of experiments over which results are averagg

Table 1: Simulation settings

‘D Random download source selection B Deterministic trust-based download source selection

0.8 q

0.7 4

Peer load share

—_

Deterministic algorithm Choose the peer with the highest trust

valuet .., among the peers responding to a query as down-
load source.

Probabilistic algorithm Choose peet as download source with

probability

ti
R .
Z]‘:() tj

With a probability of 10%,

peer;j that has a trust valug = 0.

select a

If a download returns an inauthentic file, delete the peanftbe

list of responding peers and repeat the algorithm.
To give new peers in the network — which start with a globattru

value of 0 — the chance of building up reputation, the proisitu

Figure 3: Load distribution in a network using deterministi ¢
download source selection versus a non-trust based netwark
The load distribution is heavily skewed, peer 2 will eventully
accumulate all reputation in the network.

network in which our scheme is activated. We consider twiedif
ent trust-based algorithms for selecting download souaresng
peers responding to a query, a deterministic algorithm gomba-

[

bilistic algorithm.

If {to

follows.

7t17-'

Lokbhol hoiMoaklnlonn

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

.,tr—1} are the trust values of peers responding to
a query, the deterministic and probabilistic algorithmegared as

Peer

algorithm assigns a fixed 10% chance to download from thepyrou
of responding peers with trust value 0. Otherwise, new psersd
maybe never be chosen as download source, depriving thelme of t

chance to become a trusted member of the network. Based on our

experience, a probability of 10% strikes a balance betweamtigg
malicious peers (which might also have a trust value of Ohigh
a chance of uploading inauthentic files and allowing new pé®r
prove themselves as download sources of authentic files.

We compare these download source selection algorithmset an
work where no reputation system is deployed, i.e., amongspee

ment?

sponding to a query a peer is picked as download source lgrdire
random. We examine the load distribution in these netwowks.
do not assume the existence of any malicious peers in thisriexp

“Malicious peers would not impact the load distribution agon
good peers since downloading peers keep trying until thex ha

found an authentic copy of a file (assuming they have enougt-ba

0.12 q

@ Random download source selection B Probabilistic trust-based download source selection

0.06

Peer load share

0.04 4

0.02 4

8 9 10 11 12 13 14 15 16 17 18 19 20
Peer

1 2 3 4 5 6 7

Figure 4: Load distribution in a network using probabilisti ¢
download source selection versus a non-trust based netwark
The load distribution does not deviate too much from the load
distribution in a network based on random, non-trust based
download source selection and is thus close to the naturaldd
distribution in a normal Gnutella network.

Setup. We simulate a network consisting of 20 good peers, no
pre-trusted peers and no malicious peers. Other than Heastan-
dard settings in Table 1 apply. After running queries on tfstesm
for 20 query cycles, the load distribution is measured inurég
3 and 4: For each peer 1 — 20 in the network, we depict its load
share, i.e., the fraction of its uploads after a full run of #xperi-
ment divided by the total number of uploads in the entire oekw
The load distribution in a network using the deterministeviiload
source selection algorithm is compared to the load didinbuin
a network using no reputation system at all in Figure 3, wheie
system employing the probabilistic download source siEleail-
gorithm is compared to the non-trust based network in Figure

Discussion.Always choosing the responding peer with the high-
est global trust value as download source leads to a vastridzead-
ance in the network: Popular peers do not stop accumulatirsg t
value and gain further popularity. In Figure 3, peer 2 wileetu-
ally become the download source for virtually all querieatti is
able to answer. Also note that in each experiment we ran anoth
peer turned out to be the most trusted peer. Choosing dodnloa
sources probabilistically yields only a slight deviationterms of
individual load share of each peer from the case where talaeg
are not used to select download sources among respondimng, pee
therefore leading to a much better natural load distributiothe
network. In Figure 4, peer 2 becomes the download sourceor 8
of all queries in the system, and many other peers partieipat
sharing the load, mainly determined by the number of and laopu
ity of files the peers share. Our measurements also showhbat t
efficiency in suppressing inauthentic downloads does not ve-
tween the two approaches. Thus, for the remaining expetswea
use the probabilistic peer selection algorithm.

7.3 Threat Models

@ non-trust based Mtrust based

0.9 4

0.8 4

0.7

0.6 4

0.5 4

0.4 4

0.3 4

Fraction of inauthentic downloads

0.2

o1 H

N1

0% 10% 20% 30% 40% 50% 60% 70%

Fraction of malicious peers

Figure 5: Reduction of inauthentic downloads by basing down
load source selection on global trust values in a network whre
independent malicious peers are present. Upon activationfo
our reputation scheme, the number of inauthentic downloads
in the network is significantly decreased to around 10% of all
downloads in the system, malicious peers in the network are
virtually banned from uploading inauthentic files.

simply try to upload inauthentic files and assign high trudtes

to any other malicious peer they get to interact with whiletipa
ipating in the network. In threat model B, malicious peerswkn
each other upfront and deterministically give high locaistrval-
ues to each other. In threat model C, malicious peers try to ge
some high local trust values from good peers by providindneiut

tic files in some cases when selected as download sourcesr Und
threat model D, one group of malicious peers in the netwodk pr
vides only authentic files and uses the reputation they geoost

the trust values of another group of malicious peers that pro-
vides inauthentic files.

We start our experiments considering the simplest threataio
where malicious peers are not initially aware of other nialis
peers and simply upload inauthentic files.

Threat Model A. Individual Malicious PeersMalicious peers
always provide an inauthentic file when selected as dowrdoacte.
Malicious peers set their local trust values toshe= inauth(j)—
auth(j), i.e., malicious peers valueauthenticfile downloads in-
stead of authentic file downloads.

Setup. We simulate a network consisting of 63 good nodes, 3
of which are highly trusted nodes, applying the standartinggst
from Table 1. In each experiment, we add a number of malicious
peers to the network such that malicious nodes make up betwee
0% and 70% of all nodes in the network. For each fraction ipste
of 10% we run experiments and depict the results in FiguregarJ
joining the network, malicious peers connect to the 10 miggtli
connected peers already in the network in order to receiveaas/
queries travelling through the network as possible. InticacP2P
protocols such as the Gnutella protocol enable nodes tol ¢thew
network in search of highly connected nodes. We run the exper
iments on a system where download sources are selected-proba

We now evaluate the performance of our system in suppressing pjjistically based on our global trust values and on a systérere

inauthentic downloads. We will consider several strategfamali-
cious peers to cause inauthentic uploads even when our scisem
activated. In short, malicious peers operating under thremlel A

width to do so) — hence malicious peers would add inautheitic
loads to the network, but not change anything about the nuofbe
authentic uploads from good peers.

download sources are chosen randomly from the set of peers re
sponding to a query. Bars depict the fraction of inauthefilis
downloaded in one simulation cycle versus the total numbfiles
downloaded in the same period of time. The results are agdrag
over the last 10 query cycles in each experiment.

Discussion. In the absence of a reputation system, malicious

Threat Model || File Upload Behavior Local Trust Behavior Figure

A Always upload inauthentic files. Assign trust to peers which upload inauthentic files. 5

B Always upload inauthentic files. Assign trust to previously known malicious 6
peer to form malicious collective.

C Upload inauthentic files iff % of all cases.| Assign trust to previously known malicious 7,8
peer to form malicious collective.

D Upload authentic files. Assign equal trust share to all type B nodes in the netwpr8.

Table 2: Threat models and associated experiments

peers succeed in inflicting many inauthentic downloads emtt-
work. Yet, if our scheme is activated, malicious peers rexbigh
local trust values only from other malicious peers, and etext
only occasionally — since malicious peers have to happeettag
quainted with each other through a file exchange. Becaudeif t
low trust values, malicious peers are rarely chosen as dmanl
source which minimizes the number of inauthentic file dowd®
in the network. We observed a 10% fraction of inauthentic mlow
loads, mostly due to the fact that good nodes make mistalasion
a while and upload inauthentic files (for example, by not tilede
a downloaded inauthentic file from their shared folders) ertif
no malicious peers are present in the network, downloade\ale
uated as inauthentic in 5% of all cases — this accounts faakes
users make when creating and sharing a file, e.g., by prayitiie
wrong meta-data or creating and sharing an unreadable file.

Note that, due to the fact that our current secure algoritsesu
majority vote, a cooperating malicious collective that quives
over 40% of the network will be able to influence the assigrimén
global trust values values in the network during their cotapan.
This is not represented in Figure 5, which assumes that tst tr
values are computed correctly. However, it is unlikely tbaer
40% of the peers in a network are in a single malicious callect
unless the malicious collective is a result of pseudospgdfirk.a.
the Sybil attack [8]), where a single adversary initiatesugands
of peers onto the network. This type of attack can be avoided b
imposing a cost of entry into the network. For example, a peer
wishing to enter the network may be required to solve a pulae
a computer cannot solve [3, 5]. CurrentlyaNOO! requires a user
to read some text from a JPEG file in order to opema&o! Mail
account.

Thus, in knowing that our scheme is present in a system, mali-
cious peers know that they have to gain a somewhat high lncsl t
value in order to be considered as download sources. Thetafe
will examine strategies on how malicious peers can incréaesie
global trust valualespiteuploading inauthentic files.

Since malicious peers cannot expect to receive any high loca
trust values from non-malicious peers, they can try to iasestheir
global trust value by teaming up as a malicious collectivethie
experiment depicted in Figure 6, we vary the number of malisi
peers in the network to assess their impact on the netwodds p
formance when they are aware of each other and form a madiciou
collective.

Threat Model B. Malicious CollectivesMalicious peers always
provide an inauthentic file when selected as download soi#ee
licious peers form a malicious collective by assigning @kenrust
value of 1 to another malicious peer in the network. PregisielM
denotes the set of malicious peers in the network, eaeh; € M
sets

1 ifj=i+1
Speeripeerj = 1 |f 1= |M| andj =0
0 else

which resembles a malicious chain of mutual high local tuadt

@ non-trust based Mtrust based

o
©

o
=)

o
J

o
o

I
~

o
w

Fraction of inauthentic downloads
o
o

o
N

QLLLLLLLL

0% 10% 20% 30% 40% 50% 60% 70%

Fraction of malicious peers

o

o

Figure 6: Trust-based reduction of inauthentic downloads i
a network where a fraction of peers forms a malicious collec-
tive and always uploads authentic files. Forming a malicious
collective does not boost the trust values of malicious peesig-
nificantly, they are still virtually banned from uploading i nau-
thentic files, similar to Figure 5.

ues. Interms of the probabilistic interpretation of ourestte, mali-
cious peers form a collective out of which a random surfergard,
once it has entered the collective, will not be able to esctpes
boosting the trust values of all peers in the collective.

Setup.We proceed exactly as in the previously described exper-
iment, albeit with malicious nodes operating under threatieh B.

As shown in Figure 6, we run the experiments on a system where
download sources are selected based on our global trugs/ahd

on a system where download sources are chosen randomlyHiem t
set of peers responding to a query.

Discussion.Our system performs well even if a majority of ma-
licious peers is present in the network at a prominent plabe.ex-
periment clearly shows that forming a malicious collectiees not
decisively boost the global trust values of malicious pe@itsese
peers are tagged with a low trust value and thus rarely chasen
download source. The system manages to break up malicidus co
lectives through the presence of pre-trusted peers (samBdc):

If pre-trusted peers were not present in the network, fogi@ma-
licious collective in fact heavily boosts the trust valué¢snalicious
nodes. Under the presence of pre-trusted peers, the losaMal-
ues of malicious peers are significantly lower than thoseaafdg
peers already after one simulation cycle. This minimizesrthm-
ber of inauthentic downloads, and the numbers are virtueilyal

to the numbers in Figure 5 when peers do not form a malicious
collective. For example, with 40% of all peers in a networknge
malicious, around 87% of all file downloads will end up in dewn
loading an inauthentic version of the file in a normal, narsted
network. Upon activation of our scheme, around 10% of all file

@ non-trust based M trust-based

o
3

o
o

o
13
L

o
~

o
w

=}
N
L

Fraction of inauthentic downloads

o

il

0 10%

o
|

20% 30% 40% 50%

%

60% 70% 80% 90%

Figure 7: Trust-based reduction of inauthentic downloads i
a network where a fraction of peers forms a malicious collec-
tive and returns authentic files with certain probabilities. When
malicious peers partly provide authentic uploads, they reeive
more positive local trust values and will be selected as doviwad
sources more often, also increasing their chances to uploaa-
authentic files. Yet, uploading authentic files may be assated
with a cost for malicious peers.

downloads return an inauthentic file.

Forming a malicious collective obviously does not incretise
global trust values of malicious peers sufficiently in orf@rthem
to have impact on the network. This leaves malicious peetis wi
one choice: They have to increase their local trust values bgiv-
ing positive local trust values from at least some good anstéd
peers in the network. In the experiment in Figure 7, we carsid
strategy for malicious peers that is built on the idea thaicioas
peers try to get some positive local trust values from goazte

Threat Model C. Malicious Collectives with Camofloug&la-
licious peers provide an inauthentic file ji% of all cases when
selected as download source. Malicious peers form a mascio
collective as described above.

Setup. We simulate a network consisting of 53 good peers, 3
of which are pre-trusted peers, and 20 type C malicious pegers
plying the standard settings in Table 1. In each experiment,
apply a different setting of parametgrin threat model B such that
the probability that malicious peers return an authenti fihen
selected as download source varies from 0% to 90%. We run ex-
periments for each setting of paramefan steps of 10%. Running
the experiments on both a non-trust based system and on sur sy
tem vyields Figure 7. Bars depict the fraction of inautherfilies
downloaded in one simulation cycle divided by the total nendif
files downloaded in the same period of time.

Discussion. Malicious peers that operate under threat model C
attempt to gain positive local trust values from some peerheé
network by sometimes providing authentic files. Thus, thély w
not be assigned zero trust values by all peers in the netviode s
some peers will receive an authentic file from them. This imtu
provides them with higher global trust values and more uggoaa
fraction of which will be inauthentic. Figure 7 shows thatlitiaus
peers have maximum impact on the network when providing 50%
authentic files: 28% of all download requests return inantibe
files then. However, this strategy comes at a cost for maigio
peers: They have to provide some share of authentic fileghaki
undesirable for them. First of all, they try to prevent theteange

—trust-based —= non-trust based

45000 -
40000 4.
35000 1
30000 A
25000 -

20000

Inauthentic downloads

15000 -
10000 -

5000 | =
=
LN
‘I

6000 7000 8000

peers

2000 3000 4000 5000

A ic uploads by

0 1000

Figure 8: Inauthentic downloads versus authentic uploads -
vided by malicious peers with trust-based and non-trust basd
download source selection. When malicious peers provide au
thentic files in more than 20% of the cases when selected as
download source, the increase in authentic files uploaded by
malicious peers exceeds the increase in inauthentic dowlds

in the network, hence possibly coming at a higher cost than
benefit for malicious peers.

of authentic files on the network, and in this strategy theyeha
participate in it; second, maintaining a repository of aumtic files
requires a certain maintenance overhead.

Figure 8 depicts the trade-off between authentic (horiantis)
and inauthentic (vertical axis) downloads. Each scenaoim fFig-
ure 7 is represented by one data point in Figure 8. For example
consider the fourth dark bar in Figure 7, corresponding te 30%
and our reputation scheme in place. In this scenario, noaléci
peers provide 1850 authentic downloads and 5000 inauthenis
in a particular rurf. The value(1850, 5000) is plotted in Figure 8
as the fourth data point (left to right) on the lower curvegressent-
ing the case when our reputation scheme is used. The points on
each curve represent increasifigalues, from left to right.

In Figure 8, malicious nodes would like to operate in the up-
per left quadrant, providing a high number of inauthentievde
loads, and a low number of authentic downloads. Howeveffjléne
sharing mechanism in place constrains malicious hodesematp
along one of the curves shown. Without our reputation schigope
curve), malicious nodes can séto a small value and move to the
upper left quadrant. On the other hand, with our scheme cinab
peers have no good choices. In particular, increagibhgyond 20%
does not make much sense to malicious peers since the increme
tal authentic uploads they have to host outnumber the iserea
inauthentic downloads. Moreover, for all settings of paeten f
below 50%, malicious peers will lose all positive local trualues
assigned by other peers in the long run — since on averagedthey
provide more inauthentic than authentic files.

Notice that the lines cross at the lower right hand side. @ibis
not show that the non-trust-based scheme works betterdbn/ail-
ues of f. Rather, it shows that, when the trust-based scheme is
implemented, malicious peers must upload more authengis ifil
order to be able to upload the same number of inauthentic files
This is the desired behavior.

5More precisely, we run 30 query cycles, exclude the first I&gu
cycles, and count the number of inauthentic and authentimeo
loads. We execute a second run, and add the numbers form both
runs.

—trusted —=-non-trusted

35000 -
30000 1
25000

20000

15000 - -

Inauthentic downloads

10000 -

5000 -

1500 2000 2500 3000 3500 4000 4500

Authentic malicious uploads

1000

Figure 9: Inauthentic downloads versus authentic uploads -
vided by malicious peers with trust-based and non-trust basd
download source selection in a network populated by type D
and type B peers. As with threat model C, malicious peers
have to provide a number of authentic uploads in order to in-
crease their global trust values. Yet, as compared to Figure
8, less authentic uploads by malicious peers are necessary t
achieve equal numbers of inauthentic downloads in the net-
work: 5000 inauthentic downloads cost 400 authentic uploasl
with this strategy as compared to more than 1000 authentic up
loads with threat model C.

The previous experiment has shown that malicious peersncan i
crease their impact by partly concealing their maliciousniity.
Yet over time, their malicious identity will be uncovereddatmey
lose their impact on the network. In the experiment in Figurere
consider a team effort strategy that malicious peers caiouserk
around this drawback. Two different types of malicious pese
present in the network: Malicious nodes of type B and of type D

Threat Model D. Malicious SpiesMalicious peers answer 0.05%
of the most popular queries and provide a good file when salect
as download source. Malicious peers of type D assign trugesa
of 1 to all malicious nodes of type B in the network. Precisédly
Mp andMp denote the set of malicious type B peers resp. type D
peers in the network, eagleer; € Mp sets

if peer; € Mp
else

1
Speeripeerj = { ”NIB!)

Setup. We simulate a network consisting of 63 good peers, 3 of
which are pre-trusted peers, and 40 (39%) malicious pestiged
into two groups of malicious type B and type D peers. Othezwis
the standard settings from Table 1 apply. In each experinveat
consider a different number of type B and type D peers. Configu
rations considered are: I. 40 type B, 0 type D peers Il. 39 §pe
1 type D peer lll. 36 type B, 4 type D peers IV. 35 type B, 5 type
D peers V. 30 type B, 10 type D peers VI. 25 type B, 15 type D
peers VII. 20 type B, 20 type D peers VIII. 15 type B, 25 type D

peers IX. 10 type B, 30 type D peers X. 5 type B, 35 type D peers.

From left to right, we plot these data points in a graph thaicts
the number of inauthentic file downloads versus the humbauef
thentic file uploads provided by malicious peers, as in tlewipus
experiment.

Discussion. Malicious peers establish an efficient division of
labor in this scheme: Type D peers act as nhormal peers in the ne
work and try to increase their global trust value, which théit

in turn assign to malicious nodes of type B providing inaatite
files. The malicious nature of type D peers will not be unceder
over time since these peers do not provide inauthentic filemnee
they can continue to increase the global local trust valddgpe

B peers in the network. An interesting configuration for roialiis
peers would be configuration I: Malicious peers provide alyfai
low number of authentic downloads (around 100), yet achéve
most the same number of inauthentic downloads in the netasrk
in other configurations with a higher share of authentic doads
by malicious peers. In any configuration though, our scheare p
forms better than a system without trust-based downloadcsou
selection. Also, this strategy would probably be the sttef
choice for malicious peers in order to attack a trust-bassad/ork:
For example, by hosting 500 authentic file uploads in thistsgy
malicious peers achieve around 5000 inauthentic file doaddo-
as opposed to about 2500 inauthentic file downloads in theque
strategy, given the same effort on providing authentic agt

7.3.1 Other Threat Models

In this section, we discuss two slightly more nuanced thread-
els.

Threat Model E. Sybil Attack.An adversary initiates thousands
of peers on the network. Each time one of the peers is selémted
download, it sends an inauthentic file, after which it diseected
and replaced with a new peer identity.

Discussion. This threat scenario simply takes advantage of the
fact that the fudge-factor that allows previously unknoveens to
obtain a reputation can be abused. Essentially, becauseitheo
cost to create a new ID, the adversary can dominate that pdtbl (
ghost identities). Because 10% of all traffic goes to the tiovin”
pool, the malicious entity can behave arbitrarily withoataif of
losing reputation. To make matters worse, this kind of &ttal
prevent good peers from being able to garner a good repntatio
(they are so outnumbered that they will almost never be tal@c

However, this threat scenario can be averted by imposingta co
to creating a new ID as discussed in Section 7.3 and [3]. For ex
ample, if a user must read the text off of a JPEG (or solve some
othercaptcha[5]), it will be costly for a single adversary to create
thousands of users.

Threat Model F. Virus-Disseminators(variant of threat model
C) A malicious peer sends one virus-laden (inauthenticy arfa
particular file every 100th request. At all other times, théhantic
file is sent.

Discussion. This is a threat scenario that is not addressed by
EigenTrust. EigenTrust greatly reduces — but does not ceielyl
eliminate — corrupt files on a P2P network. This is useful orea fi
sharing network where executables are not shared. If exblag
are introduced that have potential to do great damage, tt@h m
cious peers can develop strategies to upload a few of therhit Bu
should be noted that no reputation system to date claimsroe co
pletely eliminate all corrupt files on a P2P network in an éffit
manner. It should also be noted that the main problem on teday
P2P networks is not the distribution of malicious execigali.e.
viruses), but rather the flooding of the network with inauntie
files. This is likely because today’s P2P networks are mastd
to trade digital media, and relatively few users make usénese
networks to share executables.

8. RELATED WORK

An overview of many key issues in reputation management is
given in [14]. Trust metrics on graphs have been present¢d]in
and [4]. Beth et al. [4], also use the notion of transitivestriut
their approach is quite different from ours. Reputationeys for

P2P networks in particular are presented in [6] and [1], ared a [6] F. Cornelli, E. Damiani, S. D. C. D. Vimercati, S. Parablis

largely based on notions similar to our local trust valuelse €on- and S. Samarati. Choosing Reputable Servents in a P2P

tribution of this work is that it shows how to aggregate thealo Network. InProceedings of the 11th World Wide Web

trust assessments of all peers in the network in an efficiist, ConferenceHawaii, USA, May 2002.

tributed manner that is robust to malicious peers. [7] A. Crespo and H. Garcia-Molina. Semantic Overlay
Networks. Submitted for publication 2002.

9. CONCLUSION [8] J. Douceur. The Sybil Attack. IRirst IPTPS March 2002.

We have presented a method to minimize the impact of mali- [9] eBay website. www.ebay.com. _
cious peers on the performance of a P2P system. The system com[10] T. H. Haveliwala and S. D. Kamvar. The second eigenvalue

putes a global trust value for a peer by calculating the Iefigipal of the google matrix. Technical report, Stanford Univefsit
eigenvector of a matrix of normalized local trust valuesstitak- 2003.
ing into consideration the entire system’s history withteamgle [11] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
peer. We also show how to carry out the computations in a scal- Incentives for Combatting Freeriding on P2P Networks.
able and distributed manner. In P2P simulations, usingethest Technical report, Stanford University, 2003.
values to bias downloads has shown to reduce the number of in-[12] L. Page, S. Brin, R. Motwani, and T. Winograd. The
authentic files on the network under a variety of threat siesa PageRank Citation Ranking: Bringing Order to the Web.
Furthermore, rewarding highly reputable peers with bedigality Technical report, Stanford Digital Library Technologies
of service incents non-malicious peers to share more fildstan Project, 1998.
self-police their own file repository for inauthentic files. [13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
ACknOWledgementS Proceedings of ACM SIGCOMMugust 2001.
We would like to thank the reviewers of this paper for dethided [14] P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara
insightful comments. Reputation SystemE€ommunications of the ACM
This paper is supported in part by the Research Collabaratio 43(12):45-48, 2000.
between NTT Communication Science Laboratories, Nippde-Te [15] M. Ripeanu and |. Foster. Mapping the Gnutella Network -
graph and Telephone Corporation and CSLI, Stanford Urityers Macroscopic Properties of Large-scale P2P Networks and
(research project on Concept Bases for Lexical Acquisitiod In- Implications for System Design. Internet Computing
telligently Reasoning with Meaning). Journal 6(1) 2002.
[16] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
10. REFERENCES Measurement Study of Peer-to-Peer File Sharing Systems. In
[1] K. Aberer and Z. Despotovic. Managing Trust in a Proceedings of Multimedia Computing and Networking 2002
Peer-2-Peer Information System.Rmoceedings of the 10th (MMCN '02), San Jose, CA, USA, January 2002.
International Conference on Information and Knowledge [17] M. T. Schlosser and S. D. Kamvar. Simulating P2P
Management (ACM CIKMNew York, USA, 2001. Networks. Technical report, Stanford University, 2003.
[2] Advogato’s Trust Metric (White Paper), [18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
http://ww.advogato.org/trust-metric.html. H. Balakrishnan. Chord: A scalable peer-to-peer lookup
[3] T. Aura, P. Nikander, and J. Leiwo. Dos-resistant service for internet applications. Proceedings of the 2001
authentication with client puzzles. 8th International Conference on Applications, Technologies, Architectures
Workshop on Security Protoco2000. and Protocols for Computer Communicatiopages
[4] T. Beth, M. Borcherding, and B. Klein. Valuation of triist 149-160. ACM Press, 2001.
open networks. IProc. 3rd European Symposium on [19] VBS.Gnutella Worm.
Research in Computer Security — ESORICS jges 3-18, http://securityresponse.symantec.com/avcenter/detsn/
1994, vbs.gnutella.html.
[5] Captcha Project. http:/mww.captcha.net. [20] B. Yang, S. D. Kamvar, and H. Garcia-Molina. Secure 8cor

Management for P2P Systems. Technical report, Stanford
University, 2003.

