
Don't be lazy, be consistent: Postgres-R,A new way to implement Database Replication �Bettina Kemme Gustavo AlonsoInformation and Communication Systems Group, ETH Z�urich, Switzerlandfkemme,alonsog@inf.ethz.chAbstractDatabase designers often point out that eager,update everywhere replication su�ers fromhigh deadlock rates, message overhead andpoor response times. In this paper, we showthat these limitations can be circumventedby using a combination of known and noveltechniques. Moreover, we show how the pro-posed solution can be incorporated into a realdatabase system. The paper discusses the newprotocols and their implementation in Post-greSQL. It also provides experimental resultsproving that many of the dangers and limita-tions of replication can be avoided by usingthe appropriate techniques.1 IntroductionExisting replication protocols can be divided into eagerand lazy schemes [GHOS96]. Eager protocols ensurethat changes to copies happen within the transactionboundaries. That is, when a transaction commits, allcopies have the same value. Lazy replication protocolspropagate changes only after the transaction commits,thereby allowing copies to have di�erent values. Whileeager replication emphasizes consistency, lazy replica-tion pays more attention to e�ciency.Among database designers, there is the widespread be-lief that eager replication is not practical. The \dan-gers" of eager replication have been analyzed by Gray�*Part of this work has been funded by ETH Z�urich withinthe DRAGON Research Project (Reg-Nr. 41-2642.5)Permission to copy without fee all or part of this material isgranted provided that the copies are not made or distributed fordirect commercial advantage, the VLDB copyright notice andthe title of the publication and its date appear, and notice isgiven that copying is by permission of the Very Large Data BaseEndowment. To copy otherwise, or to republish, requires a feeand/or special permission from the Endowment.Proceedings of the 26th VLDB Conference,Cairo, Egypt, 2000.

et al. [GHOS96] and, since the publication of those re-sults, the research focus has shifted towards lazy repli-cation [CRR96, PMS99, ABKW98, BKR+99]. Thedrawback of lazy replication is that, if consistency isnecessary, many non trivial problems arise. Namely, inthe case of update everywhere (each copy can be up-dated), maintaining consistency is usually left to theuser. If only a primary copy can be updated, consis-tency is achieved at the price of introducing a bottle-neck and a single point of failure. In addition, recentresults prove that consistency can only be guaranteedwhen the system con�guration is severely restricted.We see these as serious limitations. The thesis de-fended in this paper is that if the goal is to achieveconsistency and the computing environment allows it,then eager replication should be used. In spite ofwhat is commonly assumed, eager replication is per-fectly feasible in many environments. A good exampleare the computer clusters which can be found behindmany Internet sites. However, in order to circumventthe limitations of traditional solutions, it is necessaryto rethink the way transaction and replica manage-ment is done. In this paper, we demonstrate how ea-ger replication can be implemented in practice. Someof the techniques we use include executing the trans-action �rst locally on shadow copies and postponingthe propagation of updates to the end of the trans-action, using group communication primitives for pre-ordering transactions, and acquiring all locks a trans-action needs in an atomic step. To prove the feasi-bility of these ideas, we have implemented them inPostgres-R, an extension of PostgreSQL [Pos98] andtested them extensively. The results prove that eagerreplication is feasible in clusters of computers and canscale to a relatively large number of nodes.The paper is organized as follows. Section 2 discussesrelated work. Section 3 explains the principle tech-niques of our approach and presents a basic protocol.Section 4 discusses the architecture and implementa-tion of Postgres-R. Section 5 presents performance re-sults. Section 6 discusses con�guration managementand partial replication. Section 7 concludes the paper.



2 Related Work2.1 The dangers of replication ...Text book eager replication protocols use update ev-erywhere (e.g., read-one/write-all-available) and quo-rums to minimize overhead [BHG87]. With very fewexceptions, these protocols have never been used inpractice and Gray et al. [GHOS96] have pointed outwhy. These protocols coordinate each operation indi-vidually, using distributed locking and 2-phase com-mit. As a result, when the number of nodes increases,transaction response times, conict probability anddeadlock rates grow signi�cantly. From these results,Gray et al. concluded that eager replication was notpractical and suggested to use lazy approaches instead.Indeed, only few commercial systems implement ea-ger replication. Oracle Advanced Replication providesan eager protocol which �rst executes an update lo-cally and then \after row" triggers are used to syn-chronously propagate the changes and to lock the cor-responding remote copies. Most other solutions mainlyfocus on availability and represent highly specializedsolutions (e.g., Tandem's RDF or Informix's HDR).In general, commercial systems clearly favor lazy ap-proaches [Sta94]. For instance, Sybase provides anextended publish-and-subscribe scheme which tries tominimize the time copies are inconsistent. As anotherexample, IBM Data Replicator uses a pull strategywhereby a client will not see its own updates unless itrequests them.2.2 ... lazy solutions ...On the research side, lazy replication has beenstudied using very di�erent approaches like weakconsistency models [PL91, KB91, GN95], economicparadigms [SAS+96] or epidemic strategies [AES97].More recent work has explored lazy strategies thatstill provide consistency. Thus, Chundi et al. [CRR96]have shown that in lazy primary copy schemes, ser-ializability cannot be guaranteed without restrictingthe placement of primary and secondary copies in thesystem. Recent work by Pacitti et al. [PMS99] andBreitbart et al. [BKR+99] has attempted to minimizethis limitation. As a major drawback, all these ap-proaches are primary copy. Furthermore, transactionscannot update data items whose primary copies resideon di�erent sites and, in real applications (specially inclusters), the complexities and limitations on replicaplacement are likely to be a signi�cant liability.Another way to provide consistency has been to com-bine eager and lazy approaches. Anderson et al.[ABKW98] have proposed a system that is eager in thesense that the serialization order is determined withinthe transactional boundaries but updates are propa-gated only after the commit of the transaction. This

approach does not restrict replica placement but is stillprimary copy and forbids transactions to access dataitems with primary copies on di�erent sites.2.3 ... and eager solutionsParallel to this work, several suggestions [AAES97,PGS97] have been made to implement eager replica-tion using group communication systems such as Tran-sis, Totem or Horus [ea96] and initial e�orts have beenmade to optimize the integration of transaction pro-cessing and communication management [KPAS99].In some cases [AAES97, HAA99], the protocols arequite simplistic and su�er from high abort rates. Inother cases, the protocols can be quite di�cult to im-plement in a real database [PGS97]. In all cases, thework is simulation based and little e�ort has beenmade to tackle the practical aspects of a real im-plementation. To address these limitations, we haveproposed a suite of replication protocols [KA98, KA]where di�erent degrees of isolation are combined withdi�erent message delivery guarantees in order to pro-vide a more complete solution that takes into accountabort rates, failures and how databases relax consis-tency. The results presented in this paper are basedon this work. In what follows, we discuss how theseideas can be implemented in a database managementsystem and show that the performance reached favor-ably compares with that of traditional protocols.3 Replication ModelOur approach is based on a number of techniques andoptimizations which we briey present in this section.For more details see [KA].3.1 Reducing message and synchronizationoverheadTraditional eager replication protocols [BHG87] coor-dinate copies one operation at a time. In a systemwith n nodes and where each transaction consists ofm operations, a throughput of k transactions per sec-ond requires k � m � n messages per second. Such anapproach can never scale. One way to avoid this prob-lem is to bundle writes into a single write set mes-sage [AAES97, ABKW98]. In lazy replication this issomewhat easier since updates are propagated afterthe transaction commits. One novel aspect of our ap-proach is to apply this technique in eager replication.We use shadow copies [BHG87] to perform updates:write operations are executed on private copies in or-der to check consistency constraints, capture write-read dependencies and �re triggers. These changes tothe shadow copies are propagated to the other sitesat commit time, thereby greatly reducing the messageoverhead and the conict pro�le of transactions.



3.2 Localizing read operationsEarly replication protocols like read-one/write-all [BHG87] already recognized the importance ofkeeping read operations local. This implies that readoperations are executed only at one site and thatno information about them is exchanged among thesites. As a result, read operations have no messagecosts and no overhead at remote sites, and queries canbe kept completely local. This is very desirable butit introduces some complexity regarding read/writeconicts since reads are only seen at the local site.3.3 Pre-ordering transactionsWe use a group communication primitive providing to-tal order semantics to multicast the write set and todetermine the serialization order of the transactions.The total order guarantees that all sites receive thewrite sets in exactly the same order. Note that a sitesends a message also to itself in order to be able todetermine the �nal total order of a transaction. Eachtransaction manager uses this order to acquire locks.It requests all write locks for a transaction in a singleatomic operation, and then proceeds with the execu-tion of the transaction. By granting the locks in theorder in which the transactions arrive, it is guaran-teed that all sites perform conicting updates in thesame order. Additionally, transactions never get intoa deadlock. Note that this does not imply serial exe-cution since non-conicting transactions are executedin parallel. Only the access to the lock table is serial.With this approach, we also avoid that transactionresponse time is determined by the slowest machine.The local site can commit a transaction whenever theglobal serialization order has been determined anddoes not wait for the other sites to have executed thetransaction. Instead it relies on the fact that the othersites will serialize the transaction in the same way.Group communication primitives provide a variety ofexecution semantics. These semantics can be used tooptimize the protocols as long as the recovery mecha-nisms are properly adjusted. In this paper we assumereliable delivery, which guarantees consistency on allnon-faulty sites [KA].3.4 An eager replication protocolThe replication protocol we use in this paper executesa transaction in four phases:I. Local Read Phase: Perform all read operations locally.Execute write operations on shadow copies. Acquirethe appropriate lock before executing the operation.II. Send Phase: If Ti is read-only, then commit. Elsebundle all writes into write set WSi and multicast itto all sites including the sending site (same deliveryorder at all sites).

III. Lock Phase: Upon delivery of WSi, request all locksfor WSi in an atomic step:1. For each operation wi(X) on item X in WSi:a. Perform a conict test: if a local transactionTj has a granted lock on X and Tj is still inits read or send phase, abort Tj . If Tj is in itssend phase, then multicast the decision messageabort (decision messages are not ordered).b. If there is no lock on X, grant the lock to Ti.Otherwise enqueue the lock request directly af-ter all locks from transactions that are beyondtheir lock phase.2. If Ti is a local transaction, multicast the decisionmessage commit (no order requirement).IV. Write Phase: Whenever a write lock is granted ap-ply the corresponding update. A local transaction cancommit and release all locks once all updates havebeen applied to the database. A remote transactionmust wait until the decision message arrives and ter-minates accordingly.In this protocol, the total order is used to serializewrite/write conicts at all sites. The scheduler has toguarantee that waiting locks are granted in the order inwhich they appear in the lock queue. Read/write con-icts are also detected during the lock phase (III.1.a).Since read operations are only seen at the local site, weuse a straightforward solution and abort local readerswhen a conicting writer arrives. This avoids dead-locks and inconsistent executions. The abort is onlynecessary when the reading transaction is in its reador send phase. In later phases the transaction cannotbe involved in a deadlock (see [KA] for details). Whena transaction is aborted during the read phase, it isstill completely local and no message needs to be sent.When a transaction is aborted during its send phase,the local site must inform the other sites via an abortmessage. Thus, this protocol requires that the localsite sends two messages per transaction, one with thewrite set and another to con�rm that the transactionwill commit or abort (this is not a 2PC). The decisionmessages do not require any ordering semantics. Theymay be delivered in any order at the di�erent sites andmight even arrive before the corresponding write set.Obviously, to abort readers when a writer arrives isproblematic. There exist several alternatives [KA],specially using di�erent degrees of isolation like cur-sor stability or snapshot isolation. For simplicity, weonly analyze the presented protocol in this paper.4 Postgres-R ArchitecturePostgres-R has been implemented as an extensionto PostgreSQL [Pos98], version 6.4.2, a single nodedatabase that supports an extended subset of SQL anduses 2-phase-locking for concurrency control with re-
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Remote Remote Figure 1: Architecture of Postgres-Rlation level locking. With respect to group communi-cation, we use Ensemble [Hay98], the follow up systemto Horus [ea96]. The functionality available in Post-greSQL is still available in Postgres-R but now withreplication as an additional feature. All the interfacesprovided by PostgreSQL are also available in Postgres-R: embedded SQL, ODBC, etc. The replication fea-tures of Postgres-R are usable through SQL, both fordata manipulation and data de�nition. For simplicity,in what follows we assume full replication. In section6, we discuss how to implement partial replication.4.1 Basic modulesAs shown in Figure 1, a replicated database comprisesseveral nodes (servers), each one of them running aninstance of Postgres-R. In the �gure, all clear shapesrepresent original PostgreSQL modules, the shadowedshapes are Postgres-R speci�c. PostgreSQL is process-based. When clients want to access the database theysend a request to a listener process, called postmas-ter. For each client, the postmaster creates a backendprocess and from then on communication takes placebetween backend and client. Clients can submit anarbitrary number of transactions (one at a time) un-til they disconnect. PostgreSQL allows to limit themaximumnumber of parallel backends. When a giventhreshold is reached no new clients are admitted.To implement replication, additional modules areneeded to take care of the communication and to dealwith remote transactions. In Postgres-R, clients mayconnect to any server. The transactions of a client arecalled local at the server where the client connects. Foreach client, the postmaster creates a local backend pro-cess. To handle remote transactions, each Postgres-Rserver keeps a pool of remote backend processes. This

pool is created at system startup (with an adjustablestartup pool size). When a message of a remote trans-action arrives, it is handed over to one of these remotebackends. When all existing remote backends are busyand their number has not reached a given threshold(maximumpool size), a new remote backend is started,otherwise the transaction must wait.Control of the replication protocol takes place at thereplication manager. The replication manager is amessage handling process. It receives messages fromthe backends (local and remote) and forwards them tothe other sites. It also receives the messages deliveredby the communication system and forwards them tothe corresponding backends.4.2 Execution of transactionsFor local transactions, as long as they are in their readphase, they remain within their corresponding localbackend. Once the local backend �nishes the execu-tion (over shadow copies), it sends the write set tothe replication manager and the transaction enters itssend phase. The replication manager then broadcaststhe write set to all sites. When a write set arrives at asite, its replication manager checks whether the writeset corresponds to a local or to a remote transaction.This is done using the host name and a transactionidenti�er included in the write set message. For writesets of local transactions, the replication manager no-ti�es the corresponding local backend and the transac-tion enters its lock phase. In order to perform the lockphase atomically, the local backend acquires a latchon the lock table and keeps it until all locks are en-queued in the lock table. Additionally, the replicationmanager stops accepting write sets from the commu-nication system until the backend sends a con�rma-tion that all necessary locks have been requested. Thisguarantees that the lock phases of concurrent transac-tions are executed in the same order in which the writesets have been delivered. When the replication man-ager receives the con�rmation from the backend thatthe locks have been requested, it broadcast a commitmessage. The transaction then enters its write phaseand whenever a lock is granted the shadow copies be-come the valid versions of the items.Up to the time point at which a local transaction T hasacquired the latch on the lock table to start the lockphase, it can be aborted due to a read/write conict.This happens when another transaction T 0 tries to seta write lock (during its lock phase) and �nds a readlock from T . In this case, T 0 sets an abort ag forT . Local transactions check their abort ags regularlyduring their read and send phases and abort if theyare set. If a transaction is in its send phase, it sendsan abort message to the replication manager whichbroadcasts it to the other sites.



For remote transactions, write and decision messagesmight arrive in any order. If the write set arrives �rst,the replication manager passes it to an idle remotebackend and proceeds like with local write sets. Theremote backend will acquire the locks, con�rm this tothe replication manager, and apply the updates. How-ever, it will wait to terminate the transaction until thereplication manager receives the decision message fromthe local site and forwards it to the remote backend.Once a remote backend �nishes executing a transac-tion, it sends a ready-noti�cation to the replicationmanager, which will add it to the pool of available re-mote backends. If the decision message arrives �rst,the replication manager registers this fact and simplyproceeds accordingly when the write set arrives.To implement these procedures, the PostgreSQL locktable had to be modi�ed. Usually, a transaction re-quests a lock and performs an operation before it re-quests the next lock. In between the two lock requests,other transactions can also acquire locks. In Postgres-R, it is possible to request all write locks in a singlestep. As a consequence a transaction can have morethan one lock waiting and more than one lock grantedwithout the corresponding operation being executed.Additionally, the backend coordination of PostgreSQLneeded to be adjusted, but the actual data manipula-tion and commit actions could be reused.4.3 Shadow copiesIn Postgres-R, updates are executed on a shadow copyduring the read phase. This is crucial for several rea-sons. First, a transaction is able to read what it haspreviously written by reading the shadow copies. Sec-ond, constraints can be checked to assure that thewrite operation is indeed possible. And �nally, trig-gers can be �red that possibly generate further up-dates (which are then also performed on shadow copieswithin the scope of the transaction).PostgreSQL supports shadow copies quite well since itis a tuple-based multiversion system. In PostgreSQLeach update invalidates the current physical versionof a tuple and creates a new version. To determinethe valid version, each tuple has two additional �eldswhich contain the identi�ers of the creating and the in-validating transaction. A version is visible to a trans-action Ti if Ti itself has created it or the creating trans-action Tj has already committed. Furthermore, for thetuple to be visible, the �eld for the invalidating trans-action must be empty or the invalidating transactionis either still running or aborted. Thus, a transactionsees its own updates but not the updates of concur-rent transactions. Updates trigger the creation of newentries in all relevant indices. To control the tablesize, PostgreSQL provides a special garbage collectorto physically delete all invisible tuples. Thus, the inte-

gration of the shadow copy approach into PostgreSQLhas been rather straightforward. It should be equallyfeasible in any multiversion database (e.g., Oracle).4.4 LockingPostgreSQL uses logical locking at the relation level.For e�ciency reasons, however, it is desirable to havetuple level locking. Thus, we have implemented a sim-ple tuple level locking scheme based on key values.Using shadow copies greatly helps to accomplish this.During the read phase, a local site actually executesthe transaction and, therefore, can determine the pri-mary key values of all items that have been modi�ed.Including these key values in the write set allows forlogical tuple level locking during the lock phase.Although shadow copies are not visible until com-mit time, they require a sophisticated handling oflocks to avoid update/update, delete/update andinsert/insert conicts. Assume write operations onshadow copies would not acquire locks and there aretwo transactions T1 and T2:T1:update ATABLE set A1=A1+1 where A-ID=5T2:update ATABLE set A1=A1+2 where A-ID=5Both might be on the same site or on di�erent sitesand they perform the updates concurrently on shadowcopies. Now assume, both send their write sets andT1's write set is delivered before T2's write set. Sinceneither T1 nor T2 have locks set on the data during theread phase, �rst T1's and then T2's updates will be ap-plied. This results in a non-serializable execution. Theproblem here is that both operations contain implicitreads. For delete/update conicts, the problem is in-compatible writes. Assume T1 deleting a tuple and T2concurrently updating the tuple and T1's write set isdelivered before T2's write set. While T2 could locallyupdate the tuple during the read phase the write phasewill fail because T1 has deleted the tuple. A similarproblem arises with two concurrent inserts.To avoid these problems, we use a similar approachas the multiversion 2-phase-locking scheme proposedin [BHG87]. The approach is also related to updatemode locks [GR93]. The idea is to obtain a read-intention-write (RIW) for all write operations duringthe read phase. A RIW lock conicts with other RIWlocks and with write locks but not with read locks. Asa result, a transaction can perform a write operationon a shadow copy while concurrent transactions canstill read the (old) version of the tuple. By using thismechanism, the problems described above are eitheravoided or are made visible. Conicts between two lo-cal transactions are handled by allowing at most oneRIW lock on a data item. Conicts between local andremote transactions are detected during the lock phaseof the remote transactions. In this case RIW locks be-have like read locks. If a transaction in its lock phase



wants to set a write lock on a data item, it will abortall local transactions in their read or send phases withconicting read or RIW locks.The only problem with RIW locks is that they rein-troduce deadlocks. Assume transaction T1 updatesdata item x and T2 updates data item y both hold-ing RIW. If now T1 wants to set a RIW lock on y andT2 wants to set a RIW lock on x, a deadlock will en-sue. However, such a deadlock only occurs among localtransactions in their read phases and therefore can behandled locally. Note that, once a transaction is inits send phase, it will not be involved in a deadlockanymore because write locks have precedence over anyother type of locks and conicting transactions will beaborted.4.5 Index lockingLocks on index structures need further consideration.Most of these locks are usually short locks not follow-ing 2-phase-locking and hence, they can be acquired atany time even during the write phase of a transaction.In B-trees, for instance, while searching for an entry tobe updated, PostgreSQL searches along a path in theB-tree, locking and unlocking (short read locks) indi-vidual pages until the entry is found. When the entryis found, the short read lock is upgraded to a writelock. Two transactions can follow this procedure atthe same time and deadlock when they try to upgradethe lock. In PostgreSQL, such deadlocks occur fre-quently because each update operation creates a newentry in the primary key index. These deadlocks wouldnot be a problem if they involved only local transac-tions in their read phase. However, since indices arealso used during the write phase, remote transactionscould also be involved in such deadlocks. To avoid it,Postgres-R immediately acquires write locks on indexpages in the case of update operations.4.6 The write setCreating, sending and processing the write set playsa crucial role in our protocols and can have a severeimpact on performance. In Postgres-R, we have im-plemented two alternatives to send a write operation.Either the SQL statement is sent or the primary keyvalues of the updated tuples along with the new physi-cal values of those attributes that have been modi�ed.In the former case, messages are small but remote siteshave more work to do since they need to parse theSQL statement and execute the entire operation. Inthe latter case, remote sites can be very fast installingupdates (speci�c tuples are accessed via the primarykey index), but messages can become quite large.We have evaluated the performance di�erences be-tween the two alternatives in terms of message size

1 tuple 50 tuplesSQL phys. SQL phys.Message Size (Byte) 123 105 125 3634Execution Time (ms)Not Replicated 7 125Local 7 7 125 140Remote 7 1 125 40Table 1: The Write Setand execution time by running two tests. The resultsare shown in Table 1. For comparison reasons the ta-ble also shows the execution time in a non-replicatedsystem. We have run two tests. In the �rst test, awrite set contains a single operation updating one tu-ple. The index on the primary key can be used to �ndthe tuple. In the second test, there is one operationupdating 50 tuples. This statement performs a tablescan. In both cases, two tuple attributes are modi�ed.Regarding message size, in the 1-tuple case, there areno signi�cant di�erences between sending statementsor the physical updates. However, with 50 tuples, themessage with physical updates is quite big and mightlead to severe latency and bu�er problems in the com-munication system. Regarding execution time, if theSQL statement is sent or if only one tuple is updatedthe overhead at the local site is not visible and execu-tion takes as long as in the non-replicated case. Buteven if the local site must include the physical updatesof 50 tuples, the overhead is not very high. The mostvisible di�erence, however, is howmuch faster a remotesite can apply the physical updates in comparison toexecuting the SQL statement. Since the overhead atthe local site occurs only once while there are manyremote sites, we prefer sending the physical updatesas long as message size is not the limiting factor.5 Performance Analysis5.1 General con�gurationPostgreSQL uses a force strategy to avoid redo recov-ery, ushing all dirty bu�er pages at the end of eachtransaction. With this strategy, response times arevery poor. This makes it di�cult to compare withcommercial systems which only ush redo logs to disk.To allow us to use a more \realistic" setting we usedthe no-ush option o�ered by PostgreSQL. With thisoption nothing is forced to disk, not even a log record.This, of course, violates the ACID properties, how-ever the measured response time was better compara-ble to standard database systems. In future versionsof Postgres-R we will correct this limitation.We have performed 4 experiments. Except for the �rstexperiment, we used a cluster of 15 Unix workstations(SUN Ultra 10, 333 MHz UltraSPARC-IIi CPU, 2MBcache, 256 MB main memory, 9GB IDE disk, switched



Parameters Ex. 1 Ex. 2 Ex. 3 Ex. 4Database Size 10 tables of 10000 tuples eachTuple Size appr. 100 Bytes# of Servers 1-5 1-15 1-15 1-15% of Upd. Txn. 100% 100% 100% varying# Op. inUpd. Txn. 5 10 1 10# Op. in Query - - - 1 scan# of Clients 5 20 20 3 p. serv.Submission ratein tps in theentire system 10 20-50 40-200 15-225Table 2: Parameters settingsfull-duplex Fast Ethernet). We did not have exclusiveaccess to the cluster. For all our experiments, we usethe physical copy approach in which servers only applythe physical updates of remote transactions.In all our experiments, the database consists of 10 ta-bles each containing 1000 tuples. We did not considerlarger databases since this will only reduce the conictpro�le. Each table has the same schema: two integers(one being the primary key t-id, the other denotedbelow as attr1), one 50-character string (attr2), oneoat (attr3) and one date (attr4) attribute. For eachtable there exists one index for the primary key.Update transactions have operations of the typeupdate t-name set attr1='x', attr2=attr2+4where t-id=ywhere x is randomly chosen text and y is a randomlychosen number between 1 and 1000. The relevant tupleis found by searching the index on the primary key.Transactions are submitted by clients which are evenlydistributed among the servers. The interarrival timebetween two submissions is exponentially distributed.The submission rate (also referred to as workload) isdetermined by the number of clients and the mean in-terarrival rate for each client. The system throughputis equal to the submission rate unless the system is sat-urated. Whenever a transaction is aborted, the clientresubmits it immediately.Table 2 summarizes the parameters of all experiments.As performance indicator, we analyze the responsetime of local transactions, i.e., the time from whichthe client starts a transaction until the client receivesthe commit. For comparison: in a single user, singlenode system, an update transaction with 10 operationstakes around 75 ms, with 1 operation 9 ms.5.2 Experiment 1: distributed 2 phase lockingIn a �rst experiment we compared standard dis-tributed locking with Postgres-R. To do so we use acommercially available implementation of eager repli-cation based on standard distributed locking. Theexperiment was conducted with 5 instances of a
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sFigure 4: Response time and communication delay forsmall transactionsthan 15 replicated nodes is conditional to proving thatthe communication system used actually scales up. Inthis third experiment, we analyze how the communi-cation system handles high message rates. The goalis to test whether high transaction loads can collapsethe communication system and whether message de-lays can severely a�ect response times.In the previous experiments, the number of messagesnever exceeded 100 messages per second. Up to then,the communication system was not the bottleneck. Inorder to stress test the system, we performed an exper-iment with very many, very short transactions. Thesetransactions consist of only one operation, thus, thewrite set is small but the communication overhead hasa bigger impact on the overall response time. Again,we use 20 concurrent clients generating a throughputbetween 40 and 200 transactions per second.Response times and message delay are shown in Fig-ure 4. Clearly, as the number of messages in thesystem increases, the communication system becomesslower. Transaction response times vary proportion-ally to the message delay as the similarity betweenthe slopes in the �gures indicate. A resource analysishas shown that the communication process requiresthe most CPU at high transaction loads. This means,that the message delay is due to increased messageprocessing requirements (for message bu�ering, deter-mining the total order etc.) and not to a shortageof network bandwidth. Observe, however, that thenumber of nodes plays no role on the communicationcongestion. It is only the submission rate that has ane�ect. Thus, replication can still be used to improveperformance. A 1-node system, while slightly faster at40 tps, cannot cope with 20 clients and a workload of
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sFigure 5: Response time for update transactions andqueries100 tps due to process management and log and datacontention while the replicated systems do.As a summary of this experiment, communicationoverhead is a factor to take into consideration but itonly started to play a limiting role under high up-date transaction loads (over 150 tps). Then, an ef-�cient communication module is crucial. We believe,however, that when read transactions are considered(which do not require communication), the mecha-nisms of Postgres-R can provide good performanceover an even wider range of loads.5.5 Experiment 4: scalabilityThis last experiment tests the scalability of Postgres-R using a more realistic workload of update and read-only transactions (queries). Update transactions have10 update operations and queries are of the formselect avg(attr3), sum(attr3) from t-namescanning an entire table. There are three clients persite, one submitting an update transaction each 1 sec-ond, the two other submitting queries each 150 ms.Thus, the load per node is around 15 tps with a 14 to1 rate between read and update transactions.The response times for both read and write transac-tions are shown in Figure 5. As pointed out above,by considering queries, we are able to achieve higherthroughput (up to 225 tps in a 15-node system). Theresponse times increase with the number of nodes butare reasonable if we take into account that the absolutenumber of update transactions (that must be appliedeverywhere and create conicts), increases constantly.In fact, conicts start to become a problem at higherloads. The way to address this limitation is to use al-ternative isolation levels. In our speci�c setting, sincethe queries only set a single relation level lock theycannot be involved in any deadlock, and hence, we donot abort them. Still, queries and update transactionsdelay each other. As an alternative, a hybrid protocolcould combine serializability for update transactionsand provide a snapshot for queries [KA]. In that way,updating transactions never conict with queries and

are not delayed by them. Such a hybrid protocol prac-tically eliminates conicts at most loads and will allowto scale Postgres-R even further.6 Crash Recovery, Administration andPartial ReplicationPostgres-R has been designed as a system able to copewith issues like failures and partial replication whichare often ignored in research. We have also imple-mented the administrative tools necessary to set upand maintain the system.6.1 System con�gurationOne of the main problems of replication is how to dy-namically change the system without having to stopprocessing. We have designed Postgres-R to work incluster environments where failures and con�gurationchanges can occur quite frequently. We support thisby using the group communication services. As nodesleave (because of failures or shutdowns) or join (newor recovering nodes), the group communication mod-ule creates di�erent views in the computation. Everytime there is a change in the number of nodes, the com-munication system switches to a new view and informsthe replication managers via a view change message.In the case of failures, when a working sites receivesthe corresponding view change message, it can iden-tify the active transactions originating at the failedsite. In [KA] we show that active transactions fromfailed nodes can be safely aborted without compro-mising consistency at the non-faulty nodes.Upon recovery, or when a new node is added to thesystem (also triggering a new view), a peer node hasto provide a copy of the current database. The trans-fered data must contain the updates of all write setsthat were delivered in the old view (without the join-ing node). PostgreSQL provides a feature which ex-tracts the database schema and all tuples from a givendatabase to transfer it to another database. We usethis feature to install the database in the new node.While the data transfer takes place other nodes in thesystem can continue processing transactions. The newnode will receive these messages (since they execute inthe new view) but delay their execution until all datais installed and only then apply the updates. Once allthis is done, the new node will allow clients to connectand proceed from then on like a normal node.6.2 Partial replicationFor simplicity in the exposition, we have assumed fullreplication (all data is replicated at all nodes). Partialreplication, however, is an important issue that needsto be addressed. Partial replication means each dataitem can have one or more copies residing on arbitrary



sites. With this, data propagation and enforcing ser-ializability can become quite complex. To tackle thisproblem Postgres-R implements a client makes it rightapproach where the local node sends all updates of atransaction to all sites, regardless of who has a copy.The nodes receiving this information have to identifywhich updates need to be done locally and which onescan be ignored. With this strategy, we still can sendall updates in a single message and the total order canbe used to determine the serialization order followinga protocol identical to the one discussed in the paper.The overhead involved is not as high as it may seem.If changes are propagated as physical updates, check-ing whether a tuple is local or not can be done veryquickly. The advantage is that a site does not need toknow where the particular copies of a data item residein order to send the write set. Furthermore, subscrib-ing or unsubscribing to a a data item can be handledwith little administrative overhead.7 ConclusionDatabase replication is an increasingly importanttopic. New computing environments will demand in-novative solutions and exible mechanisms that cansupport di�erent forms of replication. In particular,eager replication is extremely useful in cluster basedsystems. Unfortunately, existing commercial productstend to support mainly lazy replication. Similarly, theresearch focus has shifted towards lazy approaches andthis is likely to prevent that future products supporteager replication.In this paper, we prove that eager replication is feasi-ble using the adequate techniques. We have proposeda simple replication protocol, showed how it can beincorporated into a real database management systemand analyzed its performance. That is, we have workedout the engineering issues that a protocol needs to ad-dress to actually work in practice, issues that havebeen largely ignored in the literature.As part of future work, we are developing more sophis-ticated management tools for Postgres-R and extend-ing the range of replication possibilities by implement-ing a wide range of eager and lazy protocols.References[AAES97] D. Agrawal, G. Alonso, A. El Abbadi, andI. Stanoi. Exploiting atomic broadcast in replicateddatabases. In Proc. of Euro-Par, 1997.[ABKW98] T. A. Anderson, Y. Breitbart, H. F. Korth, andA. Wool. Replication, consistency, and practical-ity: Are these mutually exclusive? In Proc. of theSIGMOD Conf., 1998.[AES97] D. Agrawal, A. El Abbadi, and R. C. Steinke. Epi-demic algorithms in replicated databases. In Proc.of PODS, 1997.
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