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ABSTRACT

This paper describes a customized database and a comprehensive set of queries that can be used for sys-

tematic benchmarking of relational database systems. Designing this database and a set of carefully tuned bench-

marks represents a first attempt in developing a scientific methodology for performance evaluation of database

management systems. We have used this database to perform a comparative evaluation of the database machine

DIRECT, the "university" and "commercial" versions of the INGRES database system, the relational database sys-

tem ORACLE, and the IDM 500 database machine. We present a subset of our measurements (for the single user

case only), that constitute a preliminary performance evaluation of these systems.



NOTE TO THE READER

It is important for the reader to recognize that the results presented in this paper represent the performance of
the various database systems at ONE point in time and that new releases of the various systems will undoubtably
perform differently. The objective of this research was not to make a definitive statement as to which is the best
relational database system on the market today. Rather, our goal was to develop a standard set of benchmarks that
could be used by database system designers for evaluating changes to their systems and by users for selecting the
system which best suits their needs.

It is also imperative that the reader understands that the results presented in no way measure the performance
of the various systems in a multiuser environment. We are currently developing a methodology for benchmarking
database systems in this environment.

David J. DeWitt
14 December 1983



1. Introduction

During the past decade a large number of database machines encompassing a wide variety of architectures

and possessing a range of different characteristics have been proposed to enhance the performance of database

management systems. Today, it is not clear that specialized architectures offer any significant performance advan-

tages over general purpose computers.1 This paper is a first attempt to provide an answer to this question by present-

ing the results of benchmarks run on three conventional database management systems and two database machines.

More specifically we have measured and compared the performance of the database machine DIRECT [DEWI79,

BORA82], the Britton-Lee IDM/500 database machine with and without a database accelerator (DAC) [IDM500,

EPST80, UBEL81], the "commercial" and "university" versions of the INGRES database system [STON76,

STON80], and the ORACLE database system.

Since database machines have already been an active field of research for an entire decade, and a few

machines have now been implemented, we feel that the time has come for measuring the actual performance

enhancement that can be expected from using special purpose hardware and software for database management.

When database machines designs such as CASSM [SU75], RAP [OZKA75, OZKA77], DBC [BANE78], DIRECT

[DEWI79] were proposed, the future of database machines looked bright. It seemed that both successful research

efforts and advances in hardware technology would lead to the widespread use of commercial database machines.

However, while most projects appeared promising initially, it is only very recently that the first of these special pur-

pose computers are becoming commercially available. The ICL CAFS machine [MCGR76, BABB79] has been

shipped in small quantities. The Britton-Lee IDM (Intelligent Database Machine) appears to be the first database

machine to reach the market place in large volumes.2 Despite these exceptions, the overwhelming evidence is that

the majority of the database machine designs proposed will never be more than laboratory toys and, in most cases,

will never even leave their promising paper status.

While the first database machines are being marketed, better database management systems are now being

offered that do not rely on special hardware for enhancing performance. For example, several years of experience

with the INGRES database management system has led to the development of a commercial version of this system
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 Especially in the face of limited I/O bandwidth. See [BORA83] for a discussion of the impact of trends in mass storage technology on the
future of highly parallel database machines.

2 As of April 1983, approximately two hundred IDM 500 and IDM 200 database machines had been shipped.
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on several general purpose computers. This development, added to the apparent slowdown of research on database

machines has provided a strong motivation for the experiments described in this paper.

Previous performance evaluation studies of database machines [HAWT82, DEWI81] have given us some

insight on the problems that various database machine architectures face. These studies were, however, based on

simplified analytical models. We feel that it is necessary to extend them by empirical measurements. These meas-

urements, in addition to providing a comparison of the different systems available, will provide a means of evaluat-

ing the accuracy of the performance evaluation tools that we have been using to compare alternative database

machine architectures [DEWI81], [HAWT82]. Our results also provide some insight into to the extent to which a

"conventional" operating system "gets in the way of" a database management system [STON81] as the IDM 500

without a database accelerator really represents the performance of a database management system running on a

conventional processor (a ZILOG Z8000) WITHOUT a general purpose operating system getting in the way.

In addition to looking at the relative performance of two database machines and three conventional database

management systems, this paper also describes a customized database and a comprehensive set of queries that can

be used for systematic benchmarking of relational database systems. Designing this database and a set of carefully

tuned benchmarks represents a first attempt in developing a scientific methodology for performance evaluation of

database management systems. In addition to providing a mechanism for comparing the performance of different

systems, we feel that such a benchmark will become a useful tool for database system implementors to use for

evaluating new algorithms and query optimizers.

The paper is organized as follows. In Section 2, we provide a brief description of the five systems evaluated.

The hardware configuration is described in some detail for each of the machines, and the basic software structure is

outlined. In Section 3, we explain how we designed our experiments, and motivate the framework of our bench-

marks. In Section 4 we present and analyze the results of our comparisons. Finally, in Section 5 we summarize our

conclusions and indicate how we plan to extend the present study.

2. Description of the Five Systems Evaluated

In this section, we describe the basic architecture and software structure of the five systems compared: the

INGRES database management system (in two different configurations: the "university" version on a VAX 11/750

running 4.1 Berkeley Unix and the "commercial" version on a VAX 11/750 running the VMS operating system) the
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ORACLE database management system on a VAX 11/750 running 4.2 Berkeley Unix, the IDM 500 connected to a

PDP 11/70 host, and a DIRECT prototype in which the same VAX 11/750 is used as the host and back-end-

controller [BORA82]. Detailed descriptions of the design and implementation stages for the research projects that

led to the current versions of INGRES and DIRECT can be found in several published papers referenced throughout

this section. On the other hand, there is less written documentation on the development of the IDM 500 and ORA-

CLE systems as each is a relatively recent system that from the start, was intended to be a commercial product.

Thus, we have tried to present a complete enough description of these two systems to provide the reader with

enough background for comparing these systems with the other three.

The hardware configurations that we have used to run our benchmarks have been made as fair as possible. In

particular, each system was evaluated using disk drives with similar characteristics, similar disk controller inter-

faces, and, where possible, equivalent amounts of buffer space for use by the database system.

2.1. The Two INGRES Systems

The INGRES project began in 1973, at the University of California at Berkeley. INGRES was first imple-

mented on the top of the Unix operating system, and since 1976 has been operational as a multiuser DBMS. Since

the original version, the system has been improved and enhanced in a number of ways to improve usability and per-

formance. Recently, a commercial version of INGRES has been completed, which is now reaching the market

place.

In this section, we will shortly summarize the main features of university-INGRES, and describe the system

configuration on which our benchmarks have been run. We will then describe the enhancements added to

commercial-INGRES.

2.1.1. University-INGRES

The version of university-INGRES tested was that delivered on the Berkeley 4.1 distribution tape. This ver-

sion of INGRES runs as two Unix processes: a monitor process for interacting with the user and a second process

which is responsible for performing all operations on the database. Query execution is done in an interpretative

fashion.

The VAX 11/750 on which university-INGRES was tested has 2 megabytes of memory and four disk drives

connected to the VAX with a System Industries 9900 controller using a CMI interface. The operating system run
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was Berkeley 4.1 Unix which utilizes 1,024 byte data pages. The database was stored on a Fujistu Eagle disk drive

(474 Megabytes). Immediately before the database was loaded, a new Unix file system was constructed on this

drive thus maximizing the probability that two logically adjacent blocks would be physically adjacent on the disk

(an atypical situation for a typically scrambled Unix file system).

University INGRES does no buffer management of its own relying instead on the Unix operating system to

buffer database pages. As discussed in [STON81], buffer management strategies that are good at managing virtual

memory pages are frequently very poor at choosing the "right" page to eject in a database environment. In particu-

lar for repeated access to the inner relation of a join, LRU is absolutely the worst algorithm to use for selecting

pages of the inner relation to eject. This is exactly the algorithm used by Berkeley 4.1 Unix.

2.1.2. Commercial-INGRES

Commercial-INGRES from Relational Technology Inc. also runs as two processes. The VMS version of

commercial-INGRES was evaluated using a VAX 11/750 with 6 megabytes of memory, a RM80 attached to the

processor with a mass-bus interface, and a Fujistu Eagle drive connected to the processor through the CMI bus with

an Emulex SC750 controller. The INGRES software was stored on the RM80 drive and the test database was stored

on the Fujistu drive. The operating system used was VMS release 3. VMS provides an extent based file system (i.e.

logically adjacent blocks are almost always physically adjacent on the disk). For our test 800K bytes of main

memory was allocated for buffer space and 200K bytes were allocated for sort space. Buffer management was done

using a random replacement policy.

Version 2.0 of the commercial version of INGRES under the VMS operating system includes a number of

performance enhancements not present in the university version. While a number of routines have been rewritten

for improved performance, the major changes have occurred in the following areas:

(1) new query optimizer - develops a complete query execution plan before execution of the query is initiated

(2) sort-merge join strategies

(3) 2K byte data pages (versus 1K byte pages in 4.1 Unix)

(4) caching of query trees - permits repetitive queries to be reexecuted without re-parsing

(5) buffer management under the control of the database system - permits implementation of replacement stra-
tegies that are tuned to enhance database operations and sharing of database pages by multiple transactions
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2.2. ORACLE

ORACLE is a relational database management system that presents an SQL [CHAM74] compatible interface

to the user. ORACLE runs as two processes for each user plus four background utility processes. The VAX 11/750

on which ORACLE was evaluated had 4 megabytes of memory, a RM80 attached to the processor with a mass-bus

interface, and a Fujistu Eagle drive connected to the processor through the CMI bus with an Emulex SC750 con-

troller. Both the database and the ORACLE software was stored on the Eagle drive. The operating system used

was 4.2 Berkeley Unix3. Like VMS, this version of Unix provides an extent based file system (i.e. logically adja-

cent blocks are almost always physically adjacent on the disk). Version 3.1 of Oracle was used for our tests.

While we attempted to allocate one megabyte of main memory for use as buffer space, the system would not

run reliably with this much buffer space. In fact to make the system work we were forced to limit the buffer space to

one hundred 512 byte buffers. While it is impossible to accurately predict ORACLE’s performance with a mega-

byte of buffer space, we did evaluate commercial-INGRES with twenty 2K byte buffers as well as 400 2K byte

buffers and found virtually no difference. We attribute this somewhat surprising result to the design of the bench-

mark (see Section 3.4).

2.3. The IDM/500 Database Machine

The Intelligent Database Machine appears to be the first widely used commercial database machine. It was

developed by Britton-Lee, Inc., and the first machines were marketed in 1981. The IDM hardware consists of a

very high-speed bus and 6 different board types [UBEL81]:

(1) The Database Processor, which is responsible for controlling the other boards and implements most of the
system functionality. It uses a standard 16-bit microprocessor chip (Zilog Z8000). The processor runs a
special-purpose operating system, that schedules disk accesses intelligently. Unlike most operating systems,
the IDM operating system tunes process and I/O management to the special needs of the database software.

(2) The Database Accelerator (DAC), is a specially designed ECL processor, that achieves very high speed by
having a few well defined tasks microcoded. The IDM may be configured with or without the Accelerator
(depending on the cost and performance desired). When the Accelerator is not physically available, it is
emulated by the Database Processor.

(3) A channel, consisting of a microprocessor, memory and hardware to implement 8 serial (rs232c) or one
parallel (IEEE-488) interface. This channel implements a communication protocol with the host. It buffers
commands coming from the host to the IDM, or result data returning from the IDM to the host.

(4) A memory timing and control board. The memory is accessed in two modes: a byte-mode for the Database
Processor and a faster word-mode for the Accelerator and the disk controller.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
3 Actually, the 4.1C beta-test release of 4.2 Berkeley Unix was used. There are no significant differences between the two versions.
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(5) A memory board, which provides for up to 6 megabytes of disk buffers and additional space for user
processes (As a consequence of the 16 bit address space limitation of the Z8000 a maximum of 3 megabytes
can be used for buffer space.)

(6) A disk controller, that can be expanded to interface with up to 32 gigabytes of disk storage.

The IDM 500 utilized for our benchmarks had two megabytes of memory, one disk controller, a 675 Mbyte CDC

drive, a parallel channel interface to the host processor (a PDP 11/70 running a variant of Unix 2.8), and a DAC that

could be switched off and on remotely. Release 25 of the IDM 500 software was used for the benchmarks. One

megabyte of memory was allocated for use as buffer space.

While the CDC disk drive has more tracks per cylinder than the Fujistu Eagle (40 vs. 20), its track-to-track

seek time and transfer rate are slower than that of the Eagle. We calculated that the time to read a 10,000 tuple rela-

tion (182 bytes/tuple) would be 9.3 seconds on the CDC drive and 8.0 seconds on the Fujistu drive. Thus, the

results presented in Section 4, may be slightly biased against the IDM 500. It is important to realize, however, that

the degree of this bias is highly dependent on the query type, the availability of suitable indices, and whether the

performance of the IDM is CPU limited or I/O limited.

2.4. The Database Machine DIRECT

DIRECT [DEWI79] is a multiprocessor database machine, that was designed and implemented at the Univer-

sity of Wisconsin, Madison. The initial design was proposed in 1977. A complete description of the architecture

and the software structure for the current implementation of DIRECT can be found in [BORA82]. The basic idea

that motivated the DIRECT project was that a multiprocessor back-end machine for INGRES (or any relational

database system) could dramatically enhance performance.

Queries entered on the host machine (a VAX 11/750, in the current prototype) are compiled into the machine

language of the query processors (PDP 11/23s) and sent as "packets" of relational operators to the back-end. The

back-end is responsible for executing the query and returning the result tuples to the host. The back-end includes

several processors (the query processors), that are controlled and synchronized by a back-end controller. The pro-

cessors share access to a 1/2 megabyte disk cache. A virtual memory manager on the back-end monitors the

transfer of data between the three-level memory hierarchy: the query processors’ memory, the disk cache, and the

disk. When initializing the execution of a new instruction, the back-end controller estimates an "optimal" number of

query processors (primarily as a function of the operand relations sizes), and assigns the processors to the instruc-

tion.
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The configuration on which the benchmarks were run consists of:

(1) A VAX 11/750 running Berkeley 4.1 Unix that doubles as a host processor and the back-end controller.

(2) 4 LSI 11/23 computers, each with 128 Kbytes of main memory. (while 8 processors were "available", we
were only able to get 4 to run reliably).

(3) A multiport 1/2 Mbyte memory addressable on 4096 byte boundaries that is used as a disk cache. The unit
of transfer is a 4096 byte page. This memory was also used for the transmission of control information
between the query processors and the back-end controller.

(4) A Fujitsu Eagle disk on which the database resides.

3. Benchmark Description

The starting point for our experiments was the design of a database. This database had to be customized for

extensive benchmarking. Previous efforts in this area have generally been relatively unscientific. In particular, the

benchmarks that we are aware of involve using an existing database system and run a rather restricted set of queries.

In some cases, the database (e.g. the supplier-parts database that INGRES users are familiar with) would be so small

that the results of the benchmarks would not provide any insight about "real world" database management systems.

In other cases, although the size of the database was large enough, the data values would not provide the flexibility

required for systematic benchmarking. To be more specific, there would be no way to generate a wide range of

retrieval or update queries, and control the result of these queries. For example, the existing data would not allow

one to specify a selection query that selects 10% or 50% of the source relation tuples, or a query that retrieves pre-

cisely 1,000 tuples. For queries involving joins, it is even harder to model selectivity factors and build queries that

produce a result relation of a certain size.

An additional shortcoming of empirical data (versus "synthetic" data) is that one has to deal with very large

amounts of data before it can be safely assumed that the data values are randomly distributed. By building our own

database, we were able to use random number generators to obtain uniformly distributed attribute values, and yet

keep the relation sizes tractable.

In this section, we describe the guidelines along which we have designed our benchmark. Our design effort

has resulted into a simple but carefully tuned database and a comprehensive set of queries. In Section 3.1, we

describe the structure of the relations in our database. Section 3.2 contains a description of the queries that were run

in our benchmarks. In both sections, we have made our descriptions as explicit as possible, while explaining the

design principles that motivated the choice of a particular attribute value or a specific query. In Section 3.3, we

describe the experiment itself: the environment in which the queries were run and the performance parameters that
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were measured.

3.1. The Wisconsin Database

The database is designed so that a naive user can quickly understand the structure of the relations and the dis-

tribution of each attribute value. As a consequence, the results of the queries that are run in the benchmark are easy

to understand and additional queries are simple to design. The attributes of each relation have distributions of

values that can be used for partitioning aggregates, controlling selectivity factors in selections and joins, and varying

the number of duplicate tuples created by a projection. It is also straightforward to build an index (primary or secon-

dary) on some of the attributes, and to reorganize a relation so that it is clustered with respect to an index.

There are four "basic" relations in the database. We refer to them by the names of "thoustup", "twothoustup",

"fivethoustup", and "tenthoustup" as they respectively contain 1000, 2000, 5000, and 10000 tuples. (Appendix I

contains the schema for our benchmark). A fragment of the thoustup relation is shown in Figure 1 below. All the

tuples are 182 bytes long, so that the four relations occupy approximately 4 megabytes of disk storage. However, in

order to build queries that operate on more than one operand relation, we often generate two or more relations of the

same size. For example, the join queries described in Section 4 operate on two 10,000 tuple relations: "tenthous-

tupA" and "tenthoustupB". The attributes are either integer numbers (between 0 and 9999), or character strings (of

length 52 characters). The first attribute ("unique1") is always an integer number that assumes unique values

throughout the relation. We have made the simplest possible choice for the values of "unique1". For example, for

A Fragment of the Thoustup Relation
(some attributes have also been omitted)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
unique1 unique2 two ten hundred thousandiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

378 0 1 3 13 615iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
816 1 0 4 4 695iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
673 2 0 6 26 962iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
910 3 0 2 52 313iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
180 4 0 0 20 74iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
879 5 1 9 29 447iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
557 6 1 7 47 847iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
916 7 0 4 54 249iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
73 8 0 6 26 455iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

101 9 0 2 62 657iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
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c
c
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c
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the 1000 tuples relation "thoustup" unique1 assumes the values 0, 1, ... 999. For the relations with 10,000 tuples, the

values of "unique1" are 0,1, ..., 9999. The second attribute "unique2" has the same range of values as "unique1".

Thus both "unique1" and "unique2" are key attributes. However, while we have used a random number generator to

scramble the values of "unique1" and "unique2", the attribute "unique2" is often used as a sort key. When relations

are sorted, they are sorted with respect to this attribute. When we need to build a clustered index, again it is an

index on "unique2". For instance, we may execute the following INGRES query to observe the effect of a primary

index on a selection that retrieves 10% of the "twothoustup" relation:

range of t is twothoustup
retrieve (t.all) where t.unique2 < 200

After the "unique1" and "unique2" attributes come a set of integer-valued attributes that assume non-unique values.

The main purpose of these attributes is to provide a systematic way of modeling a wide range of selectivity factors.

Each attribute is named after the range of values the attribute assumes. That is, the "two", "ten", "twenty", "hun-

dred",..., "tenthous" attributes assume, respectively, values in the ranges (0,1), (0,1,...,9), (0,1,...,19), (0,1,...,99), ...

,(0,1,...,9999). For instance, each relation has a "hundred" attribute which has a uniform distribution of the values 0

through 99. Depending on the number of tuples in a relation, the attribute can be used to control the percentage of

tuples that will be duplicates in a projection or the percentage of tuples that will be selected in a selection or join

query. For example, in the "twothoustup" relation, the "hundred" attribute can be used for projecting into a single

attribute relation where 95% of the tuples are duplicates (since only 100 values are distinct among the 2000 attribute

values). The INGRES statement for this query would be:

range of t is twothoustup
retrieve (t.hundred)

The same "hundred" attribute can be used for creating 100 partitions in aggregate function queries. For example,

we may query for the minimum of an attribute that assumes values randomly distributed between 0 and 4999

("fivethous"), with the relation partitioned into 100 partitions:

range of t is twothoustup
retrieve (minvalue = min(t.fivethous by t.hundred ))

Finally, each of our relations has 3 string attributes. Each string is 52 letters long, with three letters (the first,

the middle and the last) being varied, and two separating substrings that contain only the letter x. The three

significant letters are chosen in the range (A,B,...,V), to allow up to 10,648 ( 22 * 22 * 22 ) unique string values.
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Thus all string attributes follow the pattern:

$ x x x x . . . x x x $ x x x . . . x x x $
{ 2 5 x ’ s } { 2 4 x ’ s }

where "$" stands for one of the letters (A,B,...,V). Clearly, this basic pattern can be modified to provide for a wider

range of string values (by replacing some of the x’s by significant letters). On the other hand, by varying the posi-

tion of the significant letters, the database designer can also control the cpu time required for string comparisons.

The first two attributes in this category are string versions of the "unique1" and "unique2" integer valued attri-

butes. That is, "stringu1" and "stringu2" may be used as key attributes, and a primary index may be built on

"stringu2". For example, in the thousand tuple relation, "thoustup", the stringu2 attribute values are:

"Axxxx . . . xxxAxxx . . . xxxA"
"Bxxxx . . . xxxAxxx . . . xxxA"
"Cxxxx . . . xxxAxxx . . . xxxA"

.

.
"Vxxxx . . . xxxAxxx . . . xxxA"
"Axxxx . . . xxxBxxx . . . xxxA"

.

.
"Vxxxx . . . xxxBxxx . . . xxxA"
"Axxxx . . . xxxCxxx . . . xxxA"

.

.
"Vxxxx . . . xxxVxxx . . . xxxA"
"Axxxx . . . xxxAxxx . . . xxxB"

.

.
" I xxxx . . . xxxBxxx . . . xxxC"
" Jxxxx . . . xxxBxxx . . . xxxC"

The following two queries illustrate how these string attributes can be utilized. Each query has a selectivity factor

of 1%.

range of t is tenKtup1
retrieve (t.all) where t.stringu2D < "Axxxx ... xxxExxx ... xxxQ"

range of t is tenKtup2
retrieve (t.all) where (t.stringu2E > "Bxxxx ... xxxGxxx ... xxxE")
and (t.stringu2E < "Bxxxx ... xxxLxxx ... xxxA")

The "stringu2" variables are initially loaded in the database in the same order in which they were generated,

shown above, which is not sort order. The attribute "stringu1" assumes exactly the same string values as "stringu2"

except that their position in the relation is randomly determined. As can be seen in the outline above, the leftmost
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significant letter varies most frequently (from A to V) and the rightmost significant letter varies least frequently

(from A to C) in the thoustup relation. Thus, these strings give any special hardware or algorithms that can do short

circuit comparison of strings ample opportunity to demonstrate their efficacy.

A third string attribute, "string4", assumes only four unique values:

"Axxxx ... xxxAxxx ... xxxA"
"Hxxxx ... xxxHxxx ... xxxH"
"Oxxxx ... xxxOxxx ... xxxO"
"Vxxxx ... xxxVxxx ... xxxV"

"String4" can be used to select with different selectivity factors and for partitioning (like the integer attribute

"four").

3.2. The Wisconsin Benchmark

We have developed a standard set of queries which measure the cost of different relational operations:

(1) Selection with different selectivity factors.

(2) Projection with different percentages of duplicate attributes.

(3) Single and multiple joins.

(4) Simple aggregates and aggregate functions.

(5) Updates: append, delete, modify.

In addition, for most queries, we have designed two variations: one that can take advantage of a primary index, and

one that can only use a secondary index. Typically, these two variations were obtained by using the "unique2" attri-

bute in one case, and the "unique1" attribute in the other. When no indices are available the queries are the same.

3.3. Measurements

After the database and the queries had been built, we had to decide how to actually measure the time and

resources consumed by each run. Our first decision was to start with an extensive sequence of stand-alone runs. We

made sure that, when our benchmarks were run, our systems were in single user mode. Then, we built a mechanism

to set up runs where the queries were run one at a time, in a strictly sequential pattern. This way, all the measure-

ments that we obtained indicated the performance of each query, as a separate, stand-alone program. The impact of

system overhead (e.g. the "open database" command) was diminished by running several similar queries in

sequence and taking the average time.
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While each system evaluated provided facilities for gathering detailed statistics on the resources (ie. CPU,

disk transfers) consumed by a query, after thorough consideration, we decided to use elapsed time as the main per-

formance measure. For the backend machines (IDM and DIRECT), this time was taken as the elapsed time on the

host machine4.

3.4. Effects of Database and Buffer Size

In our first benchmark tests, the queries primarily referenced one 2000 tuple relation. Since this relation is

approximately 320,000 bytes long, when a million bytes of buffer space are available, the active portion of the data-

base fits into memory. While the results of these tests were interesting, they did not fit most users’ view of reality.

Therefore, we modified the queries to reference the 10,000 tuple relations (each of which is approximately. 1.8

megabytes in size). In addition, in order to minimize the effect of the buffer size when running repeated queries,

each query was run ten times alternating between the two 10,000 tuple relations. When this strategy is combined

with 1 megabyte of buffer space (the most allocated to any of the systems tested), query i will leave almost nothing

in the buffer pool that is of use to query i+1.

4. The Benchmark: Measurement and Analysis

In this section, we present a subset of our benchmark measurements, and analyze the results. We have

divided this section into five subsections. There is one subsection for each of the relational operations (selection,

projection, join), one for aggregates, and one for updates (delete, append, modify). For each type of query, we first

describe the main criteria that were used to compare the different systems and the effects that we were attempting to

measure. Determining some of these criteria, however, was not always straightforward. Over the period of time that

we were running the benchmarks, preliminary results forced us to change certain queries in order to gain more

insight into the impact of a particular parameter.

For example, it was only after a long series of benchmarks that we first realized that the cost of duplicate

record elimination was a factor that made many of our comparisons meaningless. There are two alternative ways of

measuring the time required for a query. One is to retrieve the selected tuples into a relation (that is writing them to

disk). The other was to display them on a user’s terminal. Unfortunately, both alternatives have drawbacks.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

4 The command "time" was used on Unix. On VMS, "date" was used.
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Producing a result relation (by an INGRES "retrieve into" statement), has the side effect of checking for and remov-

ing duplicate tuples from the result relation. Thus, the time obtained for a retrieval query includes the time to per-

form duplicate elimination. The other alternative was to retrieve result tuples to the screen. In this case, however,

times for queries that retrieve a large number of tuples would have mainly measured the time to transfer a large

amount of data to a terminal (rather than the time required by the database management to execute the query).

The principal solution we choose was to place the result tuples in a relation but to do so without eliminating

duplicate tuples (by using the "-rheap" option of INGRES, we discovered that duplicate elimination can be turned

off). However, we also wanted to examine the impact of the communications channel between the IDM 500 and the

host. Thus, for some selected queries, we also "retrieved" the results to the screen.5

Another problem that we faced was filtering the meaningful results from the vast quantities of raw data pro-

duced by the original benchmark runs (which contained over 100 queries). Rather than showing an impressive but

overwhelming collection of numbers, we decided to choose a representative sample of results for each query type.

The sample had to be small enough to be presented in this paper, without omitting the information necessary to sup-

port our conclusions. These choices resulted in a number of tables that show the elapsed time in seconds for the

representative queries in the 5 classes. Our analysis in each of the 5 subsections then concentrates on the numbers

shown in these tables. A complete listing of the queries evaluated is contained in Appendix III.

4.1. Selection Queries

The speed at which a database system or machine can process a selection operation depends on a number of

different factors including:

(1) storage organization of the relation

(2) impact of the selectivity factor (how many result tuples are produced by the query)

(3) impact of specialized hardware

(4) cost of sending the result tuples to the screen (compared to the cost of storing them in a new relation)6

Our benchmark investigated the impact of each of these factors. In determining the impact of the storage

organization on the performance of the query, we evaluated four different storage organizations:
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

5 Actually, the result tuples were sent to "/dev/null" (the Unix equivalent of a black hole) to avoid measuring the print speed of the terminal
used.

6 Although the cost of formatting tuples for screen display could also have been measured in the context of queries other than selection
queries, we found it easier to isolate it from other cost factors in this context.
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(1) heap organization - this is an unstructured storage organization in which the tuple order corresponds to the
order in which the tuples were loaded into the relation. This organization has no suitable secondary storage
structures for enhancing performance. We evaluated this organization for two reasons. First, it provides
information as to how fast a system can process an arbitrary ad-hoc query. While we understand that in
most real systems, there will generally be an appropriate index, one of the "nice" features of a relational
system is that users can pose arbitrary (and unanticipated) queries to the database system. In addition, by
measuring the response time for the heap organization, when the same query is run in the presence of a suit-
able index, we are better able to understand the performance improvement that can be obtained by having
the appropriate index available. The heap organization is the only storage organization supported by
DIRECT. DIRECT was designed with notion of using massive parallelism as a substitute for indexing and
efficient algorithms. While the results presented below do not necessarily reflect the performance of a
DIRECT configuration with a 100 processors, the results clearly illustrate the limitations of the DIRECT
design.

(2) index on key attribute - in this case the relation is sorted (clustered) on the same attribute on which an index
has been constructed. Both the university and commercial versions of INGRES use an ISAM organization
for this case. ORACLE and the IDM 500 use a B-tree mechanism for this case.

(3) hash on key attribute - in this case tuple placement is randomized by applying a hashing function to the key
attribute. This access mechanism was available only with INGRES. It was used only for those queries that
returned a single tuple (see Table 3).

(4) index on non-key attribute - in this case the relation is sorted on a different attribute from the one on which
the index has been constructed. For both versions of INGRES, we used a dense, secondary index to obtain
this storage structure (the index was stored as an ISAM structure). ORACLE and the IDM 500 use a B-tree
mechanism to support this type of index.

To determine how the selectivity factor of a query influences performance, for each storage structure (and

each system) we varied the selection criteria to produce result relations with a range of different sizes. The selec-

tivity factors considered were 1%, 10%, 20%, 50%, and 100%. In addition, we also measured the time to retrieve a

unique tuple (Table 3). Examination of the results of these tests revealed that the queries with selectivity factors of

1 tuple, 1%, and 10% were representative of the relative performance of the various systems. The impact of special-

ized hardware was evaluated by running the same queries both with and without indices on the same IDM 500 with

and without the database accelerator (DAC) turned on. The results of our experiments are shown in Tables 1, 2 and

3 below. The response times presented represent an average time based on a test set of ten different queries (each,

however, with the same selectivity factor).

One can draw a number of conclusions from the results presented in these three tables. First, it is clear from

Tables 2 and 3, that with conventional disk drives, the use of parallelism is not a reasonable substitute for an index-

ing mechanism. While one might be tempted to conclude that the results would be different with 100 processors,

we repeated our experiments on DIRECT using 1, 2, and 3 processors. The results are presented in Table 4. These

results clearly indicate that additional processors would not improve the situation unless a parallel-readout disk

drive were available (see [DEWI81] for an analysis of the impact of a parallel readout disk drive on selection times
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Table 1
Selection Queries without Indices

Integer Attributes
Result Tuples Inserted into Relation

Total Elapsed Time in Seconds

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Number of Tuples Selected
from 10,000 Tuple Relation

System 100 1000
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

U-INGRES 53.2 64.4
C-INGRES 38.4 53.9
ORACLE 194.2 230.6
IDMnodac 31.7 33.4
IDMdac 21.6 23.6
DIRECT 43.0 46.0
SQL/DS 15.1 37.1
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2
Selection Queries with Indices

Result Tuples Inserted into Relation
Integer Attributes

Total Elapsed Time in Seconds

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Number of Tuples Selected
from 10,000 Tuple Relation

Clustered Index Non-Clustered Index

System 100 1000 100 1000
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

U-INGRES 7.7 27.8 59.2 78.9
C-INGRES 3.9 18.9 11.4 54.3
ORACLE 16.3 130.0 17.3 129.2
IDMnodac 2.0 9.9 3.8 27.6
IDMdac 1.5 8.7 3.3 23.7
DIRECT 43.0 46.0 43.0 46.0
SQL/DS 3.2 27.5 12.3 39.2
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
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Table 3
Selection Queries with Clustered Indices

Integer Attributes
Result Tuples Displayed on Screen

Total Elapsed Time in Seconds

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Number of Tuples Selected
from 10,000 Tuple Relation

System 1 100
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

U-INGRES 3.8 6.9
C-INGRES 0.9 5.0
ORACLE 2.5 27.5
IDMnodac 0.8 2.9
IDMdac 0.7 2.7
DIRECT 46.0 49.0
SQL/DS 0.8 4.0
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

without indices). While presentation of a detailed analysis of the performance of DIRECT is beyond the scope of

this paper (preparation of such a paper is in progress), the results of this analysis indicate that, for selection queries,

the limiting factor is the disk drive and not the back-end controller software or the multiport memory. These results

reinforce the conclusions made in [BORA83], that one needs only 2-3 conventional processors (and not hundreds of

processors or custom VLSI components) to process selection queries at the rate of conventional disk drives.

Table 1 provides another interesting result about the cost of coordinating processors working in parallel. We

were interested in why DIRECT is slower than the IDM and commercial INGRES for selecting 100 tuples when no

suitable index was available. Examination of where DIRECT spends its time revealed that of the 43 seconds

required to execute the query 20 seconds7 was spent passing messages between the query processors and the

Table 4
Time for DIRECT to Select 100 Tuples

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Number of Processors Execution Time
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 62.5 secs.
2 43.5 secs.
3 41.0 secs.
4 43.0 secs.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
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processes that form the back-end controller.

We were very puzzled by ORACLE’s poor performance while executing a trivial query. Consider Table 1.

The queries evaluated contain a single relational operator. Thus the access planner is almost certainly not the

culprit. Second, the size of the buffer pool cannot be a factor as each page of the relation is accessed only once and

thus more than 3 pages of buffer space is of minimal value (1 page to hold the page being processed, 1 page to read

the next page into, and 1 page for writing the previous result page). Thus, the problem area lies either with the

access method or the query execution code. While it was not possible for us to determine where the problem lies, it

is quite obvious that the system has serious performance problems.

When estimating the speedup obtained by the database accelerator (by comparing the IDMdac and IDMnodac

numbers), we were somehow surprised to find out that it was at most 1.47 (in Table 1), and as low as 1.07 for selec-

tion on an indexed attribute (in Table 3).

One interesting result illustrated by Tables 1 and 2 is that for both versions of INGRES, selecting 1000 tuples

out of 10,000 using a non-key index is actually slower than with the heap organization. The most plausible explana-

tion is that when the non-key (and hence non-clustered) index is used, a number of pages are accessed multiple

times. With 2,048 byte pages the source relation occupies approximately 909 data pages. Scanning the relation in a

heap fashion requires 909 page accesses. On the other hand selecting 1000 tuples (10% selectivity factor), through

a non-key index may require more than 1000 page accesses. The main conclusion to be drawn is that the query

optimizer failed to recognize that the index should not be used to process the query.

In Table 3, we have included selected measurements that illustrate the extra cost incurred in actually display-

ing the results of a query on the user’s screen. For DIRECT and the IDM 500, this includes first moving8 the tuples

from the database machine to the host and then formatting them for display.8 For the conventional systems the

measurements reflect only the cost of formatting the tuples for display. Only the index case is shown, as the differ-

ences for the non-index case would be hidden by the long retrieval time. Also, we only show very low selectivity

factors (a single tuple, or 1%), since it is unlikely that a user would look at a table of a 1000 tuples on the screen. In
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

7 These times were obtained only after the DIRECT hardware was modified to pass messages through the multiport memory. Messages in
an earlier version of DIRECT that used a 1 Mbit/second local network and messages were 4 times as slow. It is important, however, to realize
that in almost all cases what makes message passing slow is not the speed of hardware but rather the layers of software you have to put around the
hardware for purposes of reliability.

8 On DIRECT, the tuples are moved through the memory On the IDM 500, the tuples have to be moved across a communication interface.
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terms of absolute time, to process 100 tuples approximately one additional second is required by commercial

INGRES and the IDM 500. Since the two systems display tuples in basically an identical fashion, one can conclude

that the performance of a backend database machine is only marginally affected by the cost of transferring the result

tuples to the host computer. In terms of relative time, this one second is relatively significant: commercial INGRES

is 28% slower, the IDM without a DAC is 45% slower, and the IDM with a DAC is 80% slower.

Note that when retrieving into a relation, our measurements account for the cost of writing the result relation

to the disk, without eliminating duplicate records. Thus when comparing Tables 2 and 3, we are truly comparing the

cost of writing results to the disk, to the cost of formatting and displaying tuples on the screen. While measuring the

cost of duplicate elimination is also important, it was not possible to isolate it from other cost components in the

selection queries. For this reason, we chose to do this measurement in the context of projection queries (Section 4.3,

below).

4.2. Join Queries

In looking at join queries we were interested in investigating a number of different issues. First, we were

interested in how query complexity affected the relative performance of the different systems. Thus, we considered

a range of queries, with different degrees of complexity. Second, we were curious about the different join algo-

rithms the systems used. Running join queries on a stand-alone basis would make it possible to verify how

efficiently the buffer management strategy of each system supported these algorithms (since the join algorithm

determines the page reference string). We knew, a priori, that:

(1) Without indices, university INGRES uses a nested loops join in which the storage structure of a copy of the
inner relation is converted to a hashed organization before the join is initiated

(2) Commercial INGRES uses primarily sort-merge join techniques.

(3) The IDM 500, with and without the DAC, and ORACLE use a simple nested loops join (O(n2)) algorithm.

(4) DIRECT uses a parallel version [DEWI79] of the simple nested loops join algorithm.

Third, we were interested in how the different systems took advantage of secondary indices on joining attributes,

when these were available. Finally, we wanted to see how the database accelerator impacted join times.

With the above criteria in mind, we built a set of ten representative join queries. The source relations were

always the ten thousand tuple relations. However, when a selection was performed before the join, the size of the

operand relation was reduced by a factor of ten. Ten thousand tuples of length 182 bytes in each source relation

were enough to cause substantial I/O activity, and make visible the effect of varying input parameters (such as query
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complexity and join selectivity factors).

Query complexity was modeled by performing before the join zero, one, or two selection operations (e.g.

joinAselB selects on relation B, and joins the selected relation with A, while joinselAselB selects on both A and B

before the join). A more complex join query involves two selections, followed by two joins (see "joinCselAselB",

below).

After a preliminary analysis, we have again decided to filter the results of our measurements, and to present

timings for a smaller set of join queries. These appear in Tables 5, 6, and 7. The names of the queries describe their

contents. However, the reader may wish to refer to Appendix I, where the join queries have been explicitly listed.

Our first observation is that, for joins, more than for any other type of queries, each system’s performance

varies widely with the kind of assumptions that are made (e.g. indices versus no indices, special hardware versus no

special hardware, complex versus simple join, etc). However, our measurements clearly show that for joins without

indices commercial INGRES is the only system to always provide acceptable performance. The dramatic improve-

ment over university INGRES is due to the use of a sort-merge algorithm. University INGRES and DIRECT do just

"all right". In previous experiments (whose results are not presented here), we found out that the IDM 500 with a

DAC could achieve a reasonable level of performance for joins without indices when the relations were smaller, and

thus mostly fit in memory. On the other hand, with the 10,000 tuple relations and no suitable indices, the perfor-

mance of ORACLE and the IDM 500 (with or without the DAC) is unacceptable. However, by building an index

Table 5
Join Queries Without Indices

Integer Attributes
Total Elapsed Time in Minutes

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Query

System joinAselB joinABprime joinCselAselB
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

U-INGRES 10.2 9.6 9.4
C-INGRES 1.8 2.6 2.1
ORACLE > 300 > 300 > 300
IDMnodac > 300 > 300 > 300
IDMdac > 300 > 300 > 300
DIRECT 10.2 9.5 5.6
SQL/DS 2.2 2.2 2.1
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c



20

Table 6
Join Queries with Indices

Integer Attributes
Total Elapsed Time in Minutes

Primary (clustered) Index on Join Attribute

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Query

System joinAselB joinABprime joinCselAselB
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

U-INGRES 2.11 1.66 9.07
C-INGRES 0.90 1.71 1.07
ORACLE 7.94 7.22 13.78
IDMnodac 0.52 0.59 0.74
IDMdac 0.39 0.46 0.58
DIRECT 10.21 9.47 5.62
SQL/DS 0.92 1.08 1.33
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 7
Join Queries with Indices

Total Elapsed Time in Minutes
Secondary (nonclustered) Index on Join Attribute

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Query

System sjoinAselB sjoinABprime sjoinCselAselB
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

U-INGRES 4.49 3.24 10.55
C-INGRES 1.97 1.80 2.41
ORACLE 8.52 9.39 18.85
IDMnodac 1.41 0.81 1.81
IDMdac 1.19 0.59 1.47
DIRECT 10.21 9.47 5.62
SQL/DS 1.62 1.4 2.66
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

"on-the-fly", the IDM user (or a smarter query optimizer), can obtain excellent performance. For example, consider

the query joinAselB in which B is first restricted to form B’ and then B’ is joined with A to produce the result rela-

tion. If instead of writing this query as one IDL command, the user first forms B’ (without the help of any per-

manent indices), then constructs an index on the join attribute of B’, and final performs the join, we observed that

the execution time for the query could be reduced from over 5 hours to 108 seconds!

While the use of parallelism in DIRECT provided very limited improvement in the performance of selection

operations, the use of parallelism had a more significant impact on join operations. The execution times for the
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query joinAselB using 1 to 4 processors is presented in Table 8.

Table 8
DIRECT JoinAselB Execution Times

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Number of Processors Execution Time Speedup Factor
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 1579.0 secs. 1
2 809.5 secs. 1.95
3 641.0 secs. 2.46
4 613.0 secs. 2.58

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

Based on our preliminary analysis of the experiment, it appears that the back-end controller becomes a bottleneck

when 3-4 processors are used. It is also clear that limited parallelism and a "dumb" algorithm cannot provide the

same level of performance as a "smart" algorithm and no parallelism.

When the appropriate indices exist, the performance of the IDM on join operations is excellent. However, the

DAC only improves the IDM’s performance by a factor of 1.3. Another interesting result is that the performance of

commercial INGRES is closer to the IDMdac for complex joins than for simple joins (joinABprime is 3.7 faster on

the IDMdac while joinCselAselB is only 1.8 times faster). The query optimizer in commercial INGRES appears to

be very efficient in the case of complex join queries. Note that the query joinCselAselB performs two selections on

10,000 tuple relations, followed by two joins on 1,000 tuple relations (see Figure 2). However, the cost of this

query is only slightly higher than the cost of the two selections (127 secs compared to 107.8 secs when there are no

indices).

One curious anomaly is the fact that joinAselB (a selection followed by a join) ran faster than joinABprime

(the same join without selection) on commercial INGRES. One possible explanation could be that the query optim-

izer allocated more memory for executing joinAselB than for joinABprime because the operand relation B is larger

sc 0.38
1 9
2 9
3 12
4 12
file figure2

Figure 2: joinCselAselB
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than Bprime.

4.3. Projection Queries

Implementation of the projection operation is normally done in two phases. First a pass is made through the

source relation to discard unwanted attributes. A second phase is necessary in order to eliminate any duplicate

tuples that may have been introduced as a side effect of the first phase (i.e. elimination of an attribute which is the

key or some part of the key). The first phase requires a complete scan of the relation. The second phase is normally

performed in two steps. First, the relation is sorted to bring duplicate tuples together. Next, a sequential pass is

made through the sorted relation, comparing neighboring tuples to see if they are identical. Secondary storage struc-

tures such as indices are not useful in performing this operation.

While our initial benchmark contained other queries which projected on different attributes and thus produced

result relations of a variety of sizes, the following two queries are indicative of the results observed. The first query

reduces the 10,000 tuple relation to 100 tuples. The second query is a projection of the 1,000 tuple relation in

which, although no duplicate tuples are eliminated, the result relation must still be sorted and then scanned for dupli-

cates. This particular query provides an estimate for the cost of checking a 1,000 tuple result relation of an arbitrary

query for duplicates (see Section 4.1). In order to make this estimate as accurate as possible, we wanted to minim-

ize the effects of I/O. This was accomplished by actually running in sequence 10 copies of the same query, and

dividing the total run time by 10.

Our first observation from this table is the relatively high cost of projection when compared with selection.

For example, using an index the IDM with an accelerator requires 1.5 seconds to select 100 tuples from 10,000 and

almost 15 times as long to produce 100 distinct tuples through projection and duplicate elimination. Another

interesting result is the speedup provided by the DAC. For the query which results in 100 tuples, the speedup factor

is 1.3. However, in the second test the speedup factor is 1.8. Since the 1000 tuple relation will fit in main memory

this difference reflects the additional CPU power provide by the DAC. Finally, the algorithm that DIRECT employs

has very poor performance when the relation does not fit in the disk cache.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
9 Due to technical difficulties only 2 processors were utilized
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Table 9
Projection Queries

(Duplicate Tuples are Removed)
Total Elapsed Time in Seconds

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

System 100/10,000 1000/1000
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

U-INGRES 64.6 236.8
C-INGRES 26.4 132.0
ORACLE 828.5 199.8
IDMnodac 29.3 122.2
IDMdac 22.3 68.1
DIRECT9 2068.0 58.0
SQL/DS 28.8 28.0
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

4.4. Aggregate Queries

We have considered both simple aggregate operations (e.g. minimum value of an attribute) and complex

aggregate functions in which the tuples of a relation are first partitioned into non-overlapping subsets. After parti-

tioning, an aggregate operation such as MIN is computed for each partition. For the complex aggregate functions,

we have repeated our experiments for a wide range of partition sizes (by selecting, as the partitioning attribute,

attributes with different selectivity factors).

In the following tables, we have retained only the results for three of the most representative queries: a

minimum on a key attribute and two aggregate functions; each with 100 partitions. One objective of these three

queries was to examine whether any of the query optimizers would attempt to use the indices available to reduce the

execution time of the queries. For the min.key query, a very smart query optimizer would recognize that the query

could be executed by using the index alone. For the two aggregate function queries, we had anticipated that any

attempt to use the secondary, non-clustered index on the partitioning attribute would actually slow the query down

as a scan of the complete relation through such an index will generally result in each data page being accessed

several times. One alternative algorithm is to ignore the index, sort on the partitioning attribute, and then make a

final pass collecting the results. Another algorithm which works very well if the number of partitions is not too

large is to make a single pass through the relation hashing on the partitioning attribute.
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Table 10
Aggregate Queries Without Indices

Total elapsed time in seconds

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Query Type

System MIN Scalar MIN Aggregate SUM Aggregate
Aggregate Function Function

100 Partitions 100 Partitions
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

U-INGRES 40.2 176.7 174.2
C-INGRES 34.0 495.0 484.8
ORACLE 145.8 1449.2 1487.5
IDMnodac 32.0 65.0 67.5
IDMdac 21.2 38.2 38.2
DIRECT 41.0 227.0 229.5
SQL/DS 19.8 22.5 23.5
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 11
Aggregate Queries With Indices

Total elapsed time in seconds

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Query Type

System MIN Scalar MIN Aggregate SUM Aggregate
Aggregate Function Function

100 Partitions 100 Partitions
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

U-INGRES 41.2 186.5 182.2
C-INGRES 37.2 242.2 254.0
ORACLE 160.5 1470.2 1446.5
IDMnodac 27.0 65.0 66.8
IDMdac 21.2 38.0 38.0
DIRECT 41.0 227.0 229.5
SQL/DS 8.5 22.8 23.8
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

We got very mixed results from these tests. First, we were puzzled by the relative performance of university

INGRES and commercial INGRES (especially considering that the page size used by commercial INGRES is twice

that of university INGRES). Discussion of these results with the staff of Relational Technology Inc. revealed that

the aggregate function code has not been changed. Rather, they speculate that the difference in performance is a

consequence of the fact Unix provides "read-ahead" and "write-behind" for sequential access to a file while VMS

does not. As for the use of indices, it appears that for both university INGRES and IDM the query optimizer chose

to ignore the index in all cases. While this decision leaves both systems with a slow scalar aggregate operation, it is
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a better alternative for the execution of aggregate functions.

Finally, while the DAC reduces the time for the scalar aggregate in a proportion similar to the selection

queries (the speedup observed is 1.27), it improves more significantly the performance on aggregate functions

(speedup of 1.7).

4.5. Update Queries

The numbers presented in the tables below were obtained for stand-alone updates (delete, append, and

modify).10 The principal objective of these queries was to look at the impact of the presence of both clustered and

non clustered indices on the cost of updating, appending or deleting a tuple. A more realistic evaluation of update

queries would require running these benchmarks in a multiprogramming environment, so that the effects of con-

currency control and deadlocks could be measured.

These results are what we expected to see. First, for all systems, the advantage of having an index to help

locate the tuple to be modified overshadows the cost of updating the index: compare the times for "delete 1 tuple"

and "modify 1 tuple" in Tables 12 and 13. It should be noted, however, that not enough updates were performed to

cause a significant reorganization of the index pages. Also the reader should be aware that three indices had been

Table 12
Update Queries Without Indices

Total elapsed time in seconds

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Query Type

System Append Delete Modify
1 Tuple 1 Tuple 1 Tuple

(Key Attr)
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

U-INGRES 5.9 37.6 37.7
C-INGRES 1.4 32.3 32.8
ORACLE 1.2 173.6 133.2
IDMnodac 0.9 22.8 29.5
IDMdac 0.7 20.8 20.9
SQL/DS 0.6 12.3 12.4
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
10 Updates were "broken" in DIRECT when these benchmarks were run. We predict appending a tuple in DIRECT would take about 2

seconds and that deleting or modifying a tuple would take approximately 43 seconds - the time to scan the relation (see Table 1).
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Table 13
Update Queries With Indices
Total elapsed time in seconds

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Query Type

System Append Delete Modify Modify
1 Tuple 1 Tuple 1 Tuple 1 Tuple

(Key Attr) (Non-Key Attr)
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

U-INGRES 9.4 6.8 7.2 9.1
C-INGRES 2.1 0.5 1.6 1.6
ORACLE 2.9 2.8 1.3 1.4
IDMnodac 0.9 0.4 0.6 0.5
IDMdac 0.8 0.4 0.5 0.5
SQL/DS 0.7 0.6 12.6 13.4
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

constructed on the updated relation (one clustered index and two secondary indices).

Another observation, that surprised us at first, is the low cost of the append compared to the cost of the delete,

in the no-index case. The explanation for this discrepancy is that all the systems append new tuples without check-

ing if they were not already present in the relation. Thus, appending a tuple only involves writing a new tuple, while

deleting a tuple requires scanning the entire relation first. On the other hand, when a clustered index is available,

deleting is faster than appending a tuple, apparently because the index is modified but the tuple is not physically

deleted. The performance of all systems on the "modify non-key" (that is modify a tuple identified by a qualification

on a non-key attribute) demonstrates a very efficient use of a secondary index to locate the tuple. However, one

could again argue that the right algorithm for this query would require verifying that the modified tuple does not

introduce an inconsistency by duplicating an existing tuple.

5. Conclusions and Future Research

In this paper we have presented the design of a customized database and a comprehensive set of queries that

can be used for systematic benchmarking of relational database systems. Designing this database and a set of care-

fully tuned benchmarks represents a first attempt in developing a scientific methodology for performance evaluation

of database management systems. In this paper, we have also presented and interpreted the results of applying these

tests to three conventional database management systems and two database machines. The main limitation of the

present study is that it addresses only the single user case. At this point, we must therefore admit that our bench-
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mark is neither an exhaustive comparison of the different systems, nor a realistic approximation of what measure-

ments in a multiuser environment will be like. However, we have found that limiting our experiments to stand-

alone queries was the only systematic way to isolate the effects of specific hardware configurations, operating sys-

tem features, or query execution algorithms. For this reason, the single user case constitutes a necessary baseline

measure which we will use in the interpretation of multiuser benchmark results.

Recently we have begun to benchmark the various systems in a multiuser environment. We have identified

three main parameters that we intend to explore: the multiprogramming level, the degree to which concurrently

executing transactions reference the same relations, and the query mix.
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Appendix I
Schema Specification for INGRES Benchmark

create onektup(unique1A=i2, unique2A=i2, twoA=i2, fourA=i2, tenA=i2,
twentyA=i2, hundredA=i2, thousandA=i2, twothousA=i2, fivethousA=i2,
tenthousA=i2, odd100A=i2, even100A=i2, stringu1A=c52, stringu2A=c52, string4A=c52)

create twoktup(unique1B=i2, unique2B=i2, twoB=i2, fourB=i2, tenB=i2,
twentyB=i2, hundredB=i2, thousandB=i2, twothousB=i2, fivethousB=i2,
tenthousB=i2, odd100B=i2, even100B=i2, stringu1B=c52, stringu2B=c52, string4B=c52)

create fivektup(unique1C=i2, unique2C=i2, twoC=i2, fourC=i2, tenC=i2,
twentyC=i2, hundredC=i2, thousandC=i2, twothousC=i2, fivethousC=i2,
tenthousC=i2, odd100C=i2, even100C=i2, stringu1C=c52, stringu2C=c52, string4C=c52)

create tenktup1(unique1D=i2, unique2D=i2, twoD=i2, fourD=i2, tenD=i2,
twentyD=i2, hundredD=i2, thousandD=i2, twothousD=i2, fivethousD=i2,
tenthousD=i2, odd100D=i2, even100D=i2, stringu1D=c52, stringu2D=c52, string4D=c52)

create tenktup2(unique1E=i2, unique2E=i2, twoE=i2, fourE=i2, tenE=i2,
twentyE=i2, hundredE=i2, thousandE=i2, twothousE=i2, fivethousE=i2,
tenthousE=i2, odd100E=i2, even100E=i2, stringu1E=c52, stringu2E=c52, string4E=c52)

Queries Used to Construct Bprime1 and Bprime2

range of t is tenKtup2
retrieve into Bprime1(t.all) where (t.unique2E < 1000)

range of w is tenKtup1
retrieve into Bprime2(w.all) where (w.unique2D < 1000)
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Appendix II
Specification of Storage Structures for INGRES Benchmark

Used for Query in Table 3, Column 1

modify tenKtup1 to hash on unique2D
modify tenKtup2 to hash on unique2E

Used for All Queries with Indices

modify tenKtup1 to isam on unique2D
index on tenKtup1 is wz(unique1D)
index on tenKtup1 is a1(hundredD)
modify wz to isam on unique1D
modify a1 to isam on hundredD

modify tenKtup2 to isam on unique2E
index on tenKtup2 is wq(unique1E)
index on tenKtup2 is a2(hundredE)
modify wq to isam on unique1E
modify a2 to isam on hundredE
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Appendix III
Benchmark Queries in INGRES Format

range of t is tenKtup1
range of x is tenKtup2

Selection with 1% selectivity factor
Table 1, Column 1 and Table 2, Column 1

retrieve into skr101 (t.all) where t.unique2D < 100
retrieve into skr102 (x.all) where x.unique2E > 9899
retrieve into skr103 (t.all) where (t.unique2D > 301) and (t.unique2D < 402)
retrieve into skr104 (x.all) where (x.unique2E > 675) and (x.unique2E < 776)
retrieve into skr105 (t.all) where (t.unique2D > 964) and (t.unique2D < 1065)
retrieve into skr106 (x.all) where (x.unique2E > 451) and (x.unique2E < 552)
retrieve into skr107 (t.all) where (t.unique2D > 171) and (t.unique2D < 272)
retrieve into skr108 (x.all) where (x.unique2E > 458) and (x.unique2E < 559)
retrieve into skr109 (t.all) where (t.unique2D > 617) and (t.unique2D < 718)
retrieve into skr1010 (x.all) where (x.unique2E > 838) and (x.unique2E < 939)

Selection with 10% selectivity factor
Table 1, Column 2 and Table 2, Column 2

retrieve into skr101 (t.all) where t.unique2D < 1000
retrieve into skr102 (x.all) where x.unique2E > 8999
retrieve into skr103 (t.all) where (t.unique2D > 791) and (t.unique2D < 1792)
retrieve into skr104 (x.all) where (x.unique2E > 311) and (x.unique2E < 1312)
retrieve into skr105 (t.all) where (t.unique2D > 902) and (t.unique2D < 1903)
retrieve into skr106 (x.all) where (x.unique2E > 467) and (x.unique2E < 1468)
retrieve into skr107 (t.all) where (t.unique2D > 887) and (t.unique2D < 1888)
retrieve into skr108 (x.all) where (x.unique2E > 985) and (x.unique2E < 1986)
retrieve into skr109 (t.all) where (t.unique2D > 534) and (t.unique2D < 1535)
retrieve into skr1010 (x.all) where (x.unique2E > 647) and (x.unique2E < 1648)
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Selection with 1% selectivity factor using non-clustered index
Table 2, Column 3

retrieve into skr101 (t.all) where t.unique1D < 100
retrieve into skr102 (x.all) where x.unique1E > 9899
retrieve into skr103 (t.all) where (t.unique1D > 301) and (t.unique1D < 402)
retrieve into skr104 (x.all) where (x.unique1E > 675) and (x.unique1E < 776)
retrieve into skr105 (t.all) where (t.unique1D > 964) and (t.unique1D < 1065)
retrieve into skr106 (x.all) where (x.unique1E > 451) and (x.unique1E < 552)
retrieve into skr107 (t.all) where (t.unique1D > 171) and (t.unique1D < 272)
retrieve into skr108 (x.all) where (x.unique1E > 458) and (x.unique1E < 559)
retrieve into skr109 (t.all) where (t.unique1D > 617) and (t.unique1D < 718)
retrieve into skr1010 (x.all) where (x.unique1E > 838) and (x.unique1E < 939)

Selection with 10% selectivity factor using non-clustered index
Table 2, Column 4

retrieve into skr101 (t.all) where t.unique1D < 1000
retrieve into skr102 (x.all) where x.unique1E > 8999
retrieve into skr103 (t.all) where (t.unique1D > 791) and (t.unique1D < 1792)
retrieve into skr104 (x.all) where (x.unique1E > 311) and (x.unique1E < 1312)
retrieve into skr105 (t.all) where (t.unique1D > 902) and (t.unique1D < 1903)
retrieve into skr106 (x.all) where (x.unique1E > 467) and (x.unique1E < 1468)
retrieve into skr107 (t.all) where (t.unique1D > 887) and (t.unique1D < 1888)
retrieve into skr108 (x.all) where (x.unique1E > 985) and (x.unique1E < 1986)
retrieve into skr109 (t.all) where (t.unique1D > 534) and (t.unique1D < 1535)
retrieve into skr1010 (x.all) where (x.unique1E > 647) and (x.unique1E < 1648)

Select 1 Tuple to Screen
Table 3, Column 1

retrieve (t.all) where t.unique2D = 2001
retrieve (x.all) where x.unique2E = 2452
retrieve (t.all) where t.unique2D = 3014
retrieve (x.all) where x.unique2E = 3613
retrieve (t.all) where t.unique2D = 3275
retrieve (x.all) where x.unique2E = 4799
retrieve (t.all) where t.unique2D = 3745
retrieve (x.all) where x.unique2E = 3950
retrieve (t.all) where t.unique2D = 2217
retrieve (x.all) where x.unique2E = 2418
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Selection with 1% selectivity factor. Retrieve to Screen
Table 3, Column 2

retrieve (t.all) where t.unique2D < 100
retrieve (x.all) where x.unique2E > 9899
retrieve (t.all) where (t.unique2D > 301) and (t.unique2D < 402)
retrieve (x.all) where (x.unique2E > 675) and (x.unique2E < 776)
retrieve (t.all) where (t.unique2D > 964) and (t.unique2D < 1065)
retrieve (x.all) where (x.unique2E > 451) and (x.unique2E < 552)
retrieve (t.all) where (t.unique2D > 171) and (t.unique2D < 272)
retrieve (x.all) where (x.unique2E > 458) and (x.unique2E < 559)
retrieve (t.all) where (t.unique2D > 617) and (t.unique2D < 718)
retrieve (x.all) where (x.unique2E > 838) and (x.unique2E < 939)

JoinAselB
Table 5, Column 1 and Table 6, Column 1

range of t is tenKtup1
range of w is tenKtup2
retrieve into tmpj1 (t.all,w.all)
where (t.unique2D = w.unique2E) and (w.unique2E < 1000)

range of t is tenKtup2
range of w is tenKtup1
retrieve into tmpj2 (t.all,w.all)
where (t.unique2E = w.unique2D) and (w.unique2D < 1000)

JoinABprime
Table 5, Column 2 and Table 6, Column 2

range of t is tenKtup1
range of w is Bprime1
retrieve into tmpj3 (t.all,w.all) where (t.unique2D = w.unique2E)

range of t is tenKtup2
range of w is Bprime2
retrieve into tmpj4 (t.all,w.all) where (t.unique2E = w.unique2D)
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JoinCselAselB
Table 5, Column 3 and Table 6, Column 3

range of o is oneKtup
range of t is tenKtup1
range of w is tenKtup2
retrieve into tmpj5 (o.all,t.all) where (o.unique2A = t.unique2D)
and (t.unique2D = w.unique2E) and (w.unique2E < 1000) and (t.unique2D < 1000)

range of o is oneKtup
range of t is tenKtup2
range of w is tenKtup1
retrieve into tmpj6 (o.all,t.all) where (o.unique2A = t.unique2E)
and (t.unique2E = w.unique2D) and (w.unique2D < 1000) and (t.unique2E < 1000)

sJoinAselB
Table 7, Column 1

range of t is tenKtup1
range of w is tenKtup2
retrieve into tmpj1 (t.all,w.all)
where (t.unique1D = w.unique1E) and (w.unique1E < 1000)

range of t is tenKtup2
range of w is tenKtup1
retrieve into tmpj2 (t.all,w.all) where (t.unique1E = w.unique1D) and
(w.unique1D < 1000)

sJoinABprime
Table 7, Column 2

range of t is tenKtup1
range of w is Bprime1
retrieve into tmpj3 (t.all,w.all) where (t.unique1D = w.unique1E)

range of t is tenKtup2
range of w is Bprime2
retrieve into tmpj4 (t.all,w.all) where (t.unique1E = w.unique1D)
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JoinCselAselB
Table 7, Column 3

range of o is oneKtup
range of t is tenKtup1
range of w is tenKtup2
retrieve into tmpj5 (o.all,t.all) where (o.unique1A = t.unique1D)
and (t.unique1D = w.unique1E) and (w.unique1E < 1000) and (t.unique1D < 1000)

range of o is oneKtup
range of t is tenKtup2
range of w is tenKtup1
retrieve into tmpj6 (o.all,t.all) where (o.unique1A = t.unique1E)
and (t.unique1E = w.unique1D) and (w.unique1D < 1000) and (t.unique1E < 1000)

Projection Query with 1% Selectivity Factor
Table 9, Column 1

range of x is tenKtup1
range of y is tenKtup2

retrieve into pro1 (x.twoD, x.fourD, x.tenD, x.twentyD, x.hundredD, x.string4D)
retrieve into pro2 (y.twoE, y.fourE, y.tenE, y.twentyE, y.hundredE, y.string4E)

Projection Query 1000/1000
Table 9, Column 2

range of x is oneKtup
retrieve unique into pro1 (x.all)

Scalar Aggregate
Table 10, Column 1 and Table 11, Column 1

range of t is tenKtup1
range of x is tenKtup2

retrieve into min1 (x = min(t.unique2D))
retrieve into min2 (x = min(x.unique2E))
retrieve into min3 (x = min(t.unique2D))
retrieve into min4 (x = min(x.unique2E))
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Aggregate Function Min
Table 10, Column 2 and Table 11, Column 2

range of t is tenKtup1
range of x is tenKtup2

retrieve into min1 (x = min(t.twothousD by t.hundredD))
retrieve into min2 (x = min(x.twothousE by x.hundredE))
retrieve into min3 (x = min(t.twothousD by t.hundredD))
retrieve into min4 (x = min(x.twothousE by x.hundredE))

Aggregate Function Sum
Table 10, Column 3 and Table 11, Column 3

retrieve into sum1 (x = sum(t.twothousD by t.hundredD))
retrieve into sum2 (x = sum(x.twothousE by x.hundredE))
retrieve into sum3 (x = sum(t.twothousD by t.hundredD))
retrieve into sum4 (x = sum(x.twothousE by x.hundredE))

Deletion Queries
Table 12, Column 2 and Table 13, Column 2

range of x is tenKtup1
range of y is tenKtup2

delete x where x.unique2D=10001
delete y where y.unique2E=10001
delete x where x.unique2D=10002
delete y where y.unique2E=10002
delete x where x.unique2D=10003
delete y where y.unique2E=10003
delete x where x.unique2D=10004
delete y where y.unique2E=10004
delete x where x.unique2D=10005
delete y where y.unique2E=10005
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Modify Key Attribute
Table 12, Column 3 and Table 13, Column 3

range of t is tenKtup1
range of x is tenKtup2

replace t(unique2D = 10001) where t.unique2D = 1491
replace x(unique2E = 10001) where x.unique2E = 1491
replace t(unique2D = 1491) where t.unique2D = 8075
replace x(unique2E = 1491) where x.unique2E = 8075
replace t(unique2D = 8075) where t.unique2D = 74
replace x(unique2E = 8075) where x.unique2E = 74
replace t(unique2D = 74) where t.unique2D = 7023
replace x(unique2E = 74) where x.unique2E = 7023
replace t(unique2D = 7023) where t.unique2D = 10001
replace x(unique2E = 7023) where x.unique2E = 10001

Modify Non-Key Attribute
Table 13, Column 4

replace t(unique1D = 10001) where t.unique1D = 1491
replace x(unique1E = 10001) where x.unique1E = 1491
replace t(unique1D = 1491) where t.unique1D = 8075
replace x(unique1E = 1491) where x.unique1E = 8075
replace t(unique1D = 8075) where t.unique1D = 74
replace x(unique1E = 8075) where x.unique1E = 74
replace t(unique1D = 74) where t.unique1D = 7023
replace x(unique1E = 74) where x.unique1E = 7023
replace t(unique1D = 7023) where t.unique1D = 10001
replace x(unique1E = 7023) where x.unique1E = 10001

Append Queries
Table 12, Column 1 and Table 13, Column 1

append to tenKtup1(unique2D=10001,unique1D=74,twoD=0,fourD=2,tenD=0,twentyD=10,hundredD=50,
thousandD=688,twothousD=1950,fivethousD=4950,tenthousD=9950,odd100D=1,even100D=100,
stringu1D="MxxxxxxxxxxxxxxxxxxxxxxxxxGxxxxxxxxxxxxxxxxxxxxxxxxC",
stringu2D="GxxxxxxxxxxxxxxxxxxxxxxxxxCxxxxxxxxxxxxxxxxxxxxxxxxA",
string4D="OxxxxxxxxxxxxxxxxxxxxxxxxxOxxxxxxxxxxxxxxxxxxxxxxxxO")

append to tenKtup2(unique2E=10001,unique1E=74,twoE=0,fourE=2,tenE=0, twentyE=10,hundredE=50,
thousandE=688,twothousE=1950,fivethousE=4950,tenthousE=9950,odd100E=1,even100E=100,
stringu1E="MxxxxxxxxxxxxxxxxxxxxxxxxxGxxxxxxxxxxxxxxxxxxxxxxxxC",
stringu2E="GxxxxxxxxxxxxxxxxxxxxxxxxxCxxxxxxxxxxxxxxxxxxxxxxxxA",
string4E="OxxxxxxxxxxxxxxxxxxxxxxxxxOxxxxxxxxxxxxxxxxxxxxxxxxO")

append to tenKtup1(unique2D=10002,unique1D=74,twoD=0,fourD=2,tenD=0, twentyD=10,hundredD=50,
thousandD=688,twothousD=1950,fivethousD=4950,tenthousD=9950,odd100D=1,even100D=100,
stringu1D="MxxxxxxxxxxxxxxxxxxxxxxxxxGxxxxxxxxxxxxxxxxxxxxxxxxC",
stringu2D="GxxxxxxxxxxxxxxxxxxxxxxxxxCxxxxxxxxxxxxxxxxxxxxxxxxA",
string4D="OxxxxxxxxxxxxxxxxxxxxxxxxxOxxxxxxxxxxxxxxxxxxxxxxxxO")

append to tenKtup2(unique2E=10002,unique1E=74,twoE=0,fourE=2,tenE=0, twentyE=10,hundredE=50,
thousandE=688,twothousE=1950,fivethousE=4950,tenthousE=9950,odd100E=1,even100E=100,
stringu1E="MxxxxxxxxxxxxxxxxxxxxxxxxxGxxxxxxxxxxxxxxxxxxxxxxxxC",
stringu2E="GxxxxxxxxxxxxxxxxxxxxxxxxxCxxxxxxxxxxxxxxxxxxxxxxxxA",
string4E="OxxxxxxxxxxxxxxxxxxxxxxxxxOxxxxxxxxxxxxxxxxxxxxxxxxO")

append to tenKtup1(unique2D=10003,unique1D=74,twoD=0,fourD=2,tenD=0,twentyD=10,hundredD=50,
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thousandD=688,twothousD=1950,fivethousD=4950,tenthousD=9950,odd100D=1,even100D=100,
stringu1D="MxxxxxxxxxxxxxxxxxxxxxxxxxGxxxxxxxxxxxxxxxxxxxxxxxxC",
stringu2D="GxxxxxxxxxxxxxxxxxxxxxxxxxCxxxxxxxxxxxxxxxxxxxxxxxxA",
string4D="OxxxxxxxxxxxxxxxxxxxxxxxxxOxxxxxxxxxxxxxxxxxxxxxxxxO")

append to tenKtup2(unique2E=10003,unique1E=74,twoE=0,fourE=2,tenE=0, twentyE=10,hundredE=50,
thousandE=688,twothousE=1950,fivethousE=4950,tenthousE=9950,odd100E=1,even100E=100,
stringu1E="MxxxxxxxxxxxxxxxxxxxxxxxxxGxxxxxxxxxxxxxxxxxxxxxxxxC",
stringu2E="GxxxxxxxxxxxxxxxxxxxxxxxxxCxxxxxxxxxxxxxxxxxxxxxxxxA",
string4E="OxxxxxxxxxxxxxxxxxxxxxxxxxOxxxxxxxxxxxxxxxxxxxxxxxxO")

append to tenKtup1(unique2D=10004,unique1D=74,twoD=0,fourD=2,tenD=0,twentyD=10,hundredD=50,
thousandD=688,twothousD=1950,fivethousD=4950,tenthousD=9950,odd100D=1,even100D=100,
stringu1D="MxxxxxxxxxxxxxxxxxxxxxxxxxGxxxxxxxxxxxxxxxxxxxxxxxxC",
stringu2D="GxxxxxxxxxxxxxxxxxxxxxxxxxCxxxxxxxxxxxxxxxxxxxxxxxxA",
string4D="OxxxxxxxxxxxxxxxxxxxxxxxxxOxxxxxxxxxxxxxxxxxxxxxxxxO")

append to tenKtup2(unique2E=10004,unique1E=74,twoE=0,fourE=2,tenE=0,twentyE=10,hundredE=50,
thousandE=688,twothousE=1950,fivethousE=4950,tenthousE=9950,odd100E=1,even100E=100,
stringu1E="MxxxxxxxxxxxxxxxxxxxxxxxxxGxxxxxxxxxxxxxxxxxxxxxxxxC",
stringu2E="GxxxxxxxxxxxxxxxxxxxxxxxxxCxxxxxxxxxxxxxxxxxxxxxxxxA",
string4E="OxxxxxxxxxxxxxxxxxxxxxxxxxOxxxxxxxxxxxxxxxxxxxxxxxxO")

append to tenKtup1(unique2D=10005,unique1D=74,twoD=0,fourD=2,tenD=0,twentyD=10,hundredD=50,
thousandD=688,twothousD=1950,fivethousD=4950,tenthousD=9950,odd100D=1,even100D=100,
stringu1D="MxxxxxxxxxxxxxxxxxxxxxxxxxGxxxxxxxxxxxxxxxxxxxxxxxxC",
stringu2D="GxxxxxxxxxxxxxxxxxxxxxxxxxCxxxxxxxxxxxxxxxxxxxxxxxxA",
string4D="OxxxxxxxxxxxxxxxxxxxxxxxxxOxxxxxxxxxxxxxxxxxxxxxxxxO")

append to tenKtup2(unique2E=10005,unique1E=74,twoE=0,fourE=2,tenE=0,twentyE=10,hundredE=50,
thousandE=688,twothousE=1950,fivethousE=4950,tenthousE=9950,odd100E=1,even100E=100,
stringu1E="MxxxxxxxxxxxxxxxxxxxxxxxxxGxxxxxxxxxxxxxxxxxxxxxxxxC",
stringu2E="GxxxxxxxxxxxxxxxxxxxxxxxxxCxxxxxxxxxxxxxxxxxxxxxxxxA",
string4E="OxxxxxxxxxxxxxxxxxxxxxxxxxOxxxxxxxxxxxxxxxxxxxxxxxxO")


