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A premonoidal category is essentially a monoidal category except that thetensor need only be a functor in two variables separately, and not necessarily abifunctor: given maps f : A ! A0 and g : B ! B0, the evident two maps fromA 
B to A0 
 B0 may di�er. Such structures arise naturally in the presence ofcomputational e�ects, where the di�erence between these two maps is a result ofsensitivity to evaluation order. So that is the structure we need in order to modelenvironments in the presence of continuations or other such strong computationale�ects (for some examples for this, see Subsection 4.2 below). A program phrasein environment � is modelled by a morphism in the premonoidal category withdomain J� K.The second approach to modelling environments categorically, also used tomodel the simply typed �-calculus, is based on indexed categories with structure,and has been heavily advocated, although not introduced, by Bart Jacobs [8]: theslogan is that contexts, which we call environments, are indices for the categoriesin which the terms de�nable in that context are modelled. Here, a programphrase in environment � is modelled by an element 1 �! J�K in a categorythat implicitly depends on � , i.e., by an arrow from 1 to J�K in the �bre of theindexed category over J� K. We consider a weak version of indexed category withstructure, called a �-category, implicit in recent work by Masahito Hasegawa [7].In the setting of indexed categories, various binding constructs can be studied.A �-category has a weak �rst order notion of binding, given by the assertionthat reindexing along projections has a left adjoint. In programming terms, thatcorresponds to a special form that binds an identi�er but is not reifying in thesense that it does not produce a �rst class function. Hasegawa [7] compares itto lambda in early LISP.The �rst major result of this paper is to prove the above two models of envi-ronments equivalent. More precisely, we show that every symmetric premonoidalcategory with a little more of the structure cited above, gives rise to a �-category,and that this gives a bijection between the classes of symmetric premonoidal cat-egories with such structure and �-categories. The extra structure we need on asymmetric premonoidal category K is a category with �nite products C and anidentity on objects strict symmetric premonoidal functor J : C �! K. At �rstsight, that may seem a somewhat complex structure, but in fact, as made precisein [15], it is particularly natural category theoretic structure, more so than thatof premonoidal structure alone, as it is algebraic structure.In our semantics for environments, just as in the monads as notions of com-putations approach, a distinction is made between a category of e�ect-free mor-phisms, among them the (denotations of) values, and a category of e�ectfulcomputations. The former category admits �nite products, the latter does not:values can be copied and discarded, while computation cannot (in general). Themonads approach makes a very speci�c design decision of how the categoryof computations arises from the category with �nite products; namely, as theKleisli category of the monad under consideration. This places a somewhat un-fortunate emphasis on how the category of computations is constructed, ratherthan addressing its structure in its own right.As the category of computations



is what one is actually interested in and about which one has computationalintuition, it would be advantageous to put greater emphasis on it. Continua-tions are special among the computational e�ects one could consider, as theycan be described in terms of structure on the category of computations, thatis, in terms of self-adjointness. Moreover, the self-adjointness appears inherentlyindexed by environments. Hence the possibility to pass back and forth betweenour two ways of modelling environments may actually facilitate this study ofcontinuation semantics.Given the two models of environments we have outlined above, we can con-sider how to model continuations with environments modelled in either of thetwo ways, and we can consider how the models of continuations compare.In fact, we go a little beyond that by comparing three recent attempts toincorporate continuations into denotational semantics by means of category the-oretic structure. The �rst has been studied extensively by several people, forinstance in Andrzej Filinski's thesis (see [5]). It is based on a monad for continu-ations: one has a type Ans of answers, and the semantics of a program from � to� is given by a function from J�K to the double exponential (J�K ! Ans) ! Ans.The monads approach avoids, to some extent, the question of how to modelenvironments in as much as it reverts to the base category for modelling them.The second, by Hayo Thielecke [18�20], is based on a premonoidal category withself-adjoint structure. A functor : : Kop �! K is called self-adjoint on the leftif :op is right adjoint to :, with the same unit and co-unit. Dually, : is calledself-adjoint on the right if :op is self-adjoint on the left. Self-adjoint structurecorresponds to the idea that for each type � , there is a continuation type :� thatcan accept an input of type � . The third, which we introduce here, is also beingdeveloped by Hayo Thielecke [20]. It is based on a �-category with added struc-ture, and one again adds a self-adjoint construction. The �rst of these models isless general than the other two, which are essentially equivalent.While the �rst approach to modelling continuations relies on continuationsbeing explicitly given by a double exponentiation monad, the other two ap-proaches avoid any assumptions of how continuations are implemented, relyinginstead on axiomatising a property of continuations that one may take to befundamental: it axiomatises the existence of a �context switch�, more formally,the self adjointness :� �! �:� �! �of the continuation type constructor :. These two approaches are distinguishedby the way in which one models environments, as explained above.The second major goal of this paper is to introduce the third of these cate-gory theoretic models of continuations and extend our proof of the equivalencebetween the two ways of modelling environments to show that the second andthird models of continuations are essentially equivalent, and that they includethe �rst. We take the equivalence between the second and third models as evi-dence that modelling continuations by self-adjointness is a robust notion in thesense that it is not overly sensitive to the way one models environments, as one



could model them in two di�erent ways, in each case �tting the self-adjointnessinto the framework.The paper is organised as follows. In Section 2, we recall the de�nitionsrelating to premonoidal categories, and establish a construction we will needlater. In Section 3, we de�ne the notion of �-category, and give the relationshipbetween �-categories and symmetric premonoidal categories. Section 4 consistsof two parts: �rst, in Subsection 4.1, we recall a fragment of Standard ML of NewJersey, which we call �+callcc, that we use as our paradigmatic language withcontinuation primitives; we then argue brie�y for the kind of categorical structurewe need to model this language in Subsection 4.2. In Section 5, we recall the useof monads for modelling continuations. In Section 6, we de�ne the notion of 
:-category, and show how to model continuations in them. In Section 7, we recallthe notion of an indexed :-category and show how to model continuations withthis notion. Finally, in Section 8, we extend the relationship between symmetricpremonoidal categories and �-categories to give the relationship, essentially anequivalence, between 
:-categories and indexed :-categories.Related WorkThe relationship between symmetric premonoidal categories and �-categories isrelated to work by Blute, Cockett, and Seely [1]. Implicit in their work is theconstruction which, to a symmetric premonoidal category with a little addedstructure, assigns a �-category. The latter are closely related to their contextcategories. Identifying precisely which indexed categories thus arise did not ap-pear in their work.Filinski [5] pioneered the categorical semantics for continuations. He used anotion of �co-cartesian closure� whereas here we use self-adjointness. This is inline with our second approach to continuation semantics. Assuming �nite prod-ucts to exist in the centre of the semantic category (to be de�ned) overcomes thedi�culty that the subcategory of �total� maps in the sense of [5] is demonstrablytoo large [18,19] to admit products.Bart Jacobs' thesis [8] championed the view of contexts as �indices for theterms and types derivable in that context.� We believe this to be relevant not onlyto type theory but also to the modelling of environments in computer science,and we use it for that purpose in our third approach to continuation semantics.Ong [11] also uses a �bration to model environments for his categorical for-mulation of the ��-calculus [14]. As this calculus is an extension of the call-by-name �-calculus, Ong can assume every �bre to be Cartesian closed. However,for call-by-value programming languages likeML or Scheme, one cannot assumeCartesian closure. (And even if one were to assume call-by-name, the intendedmeaning of callcc would be less than clear.)2 Premonoidal categoriesIn this section, we recall the de�nitions of premonoidal category and strict pre-monoidal functor, and symmetries for them, as introduced in [16] and further



studied in [15]. We also develop a basic construction on a premonoidal categorythat we will need later. A premonoidal category is a generalisation of the conceptof monoidal category: it is essentially a monoidal category except that the tensorneed only be a functor of two variables and not necessarily be bifunctorial, i.e.,given maps f : A �! B and f 0 : A0 �! B0, the evident two maps from A 
A0to B 
B0 may di�er.Historically, for instance for the simply typed �-calculus, environments havebeen modelled by �nite products. More recently, monoidal structure has some-times been used, for instance when one wants to incorporate an account ofpartiality [17]. In the presence of stronger computational e�ects, an even weakernotion is required. If the computational e�ects are strong enough for the orderof evaluation of f : A �! B and f 0 : A0 �! B0 to be observable, as for instancein the case of continuations [18,19], then the monoidal laws cannot be satis�ed.The leading example for us of such stronger computational e�ects are those givenby continuations. However, for a simple example of a premonoidal category thatmay be used for a crude account of state [16], consider the following.Example 1. Given a symmetric monoidal category C together with a speci�edobject S, de�ne the category K to have the same objects as C, with K(A;B) =C(S 
 A;S 
 B), and with composition in K determined by that of C. For anyobject A of C, one has functors A
� : K �! K and �
A : K �! K, but theydo not satisfy the bifunctoriality condition above, hence do not yield a monoidalstructure on K. They do yield a premonoidal structure, as we de�ne below.In order to make precise the notion of a premonoidal category, we need someauxiliary de�nitions.De�nition 2. A binoidal category is a category K together with, for each objectA of K, functors hA : K �! K and kA : K �! K such that for each pair (A;B)of objects of K, hAB = kBA. The joint value is denoted A
B.De�nition 3. An arrow f : A �! A0 in a binoidal category is central if forevery arrow g : B �! B0, the following diagrams commute:A
B A
g //f
B �� A
B0f
B0��A0 
B A0
g // A0 
B0 B 
A g
A //B
f �� B0 
AB0
f��B 
A0 g
A0 // B0 
A0Moreover, given a binoidal category K, a natural transformation � : g =) h :B �! K is called central if every component of � is central.De�nition 4. A premonoidal category is a binoidal category K together withan object I of K, and central natural isomorphisms a with components (A
B)
C �! A 
 (B 
 C), l with components A �! A 
 I , and r with componentsA �! I 
A, subject to two equations: the pentagon expressing coherence of a,and the triangle expressing coherence of l and r with respect to a.



Now we have the de�nition of a premonoidal category, it is routine to verifythat Example 1 is an example of one. There is a general construction that yieldspremonoidal categories too: given a strong monad T on a symmetric monoidalcategory C, the Kleisli categoryKleisli(T ) for T is always a premoidal category,with the functor from C to Kleisli(T ) preserving premonoidal structure strictly:of course, a monoidal category such as C is trivially a premonoidal category.That construction is fundamental, albeit implicit, in Eugenio Moggi's work onmonads as notions of computation [10], as explained in [16].De�nition 5. Given a premonoidal category K, de�ne the centre of K, denotedZ(K), to be the subcategory of K consisting of all the objects of K and the centralmorphisms.For an example of the centre of a premonoidal category, consider Example 1for the case of C being the category Set of small sets, with symmetric monoidalstructure given by �nite products. Suppose S has at least two elements. Thenthe centre of K is precisely Set. In general, given a strong monad on a symmetricmonoidal category, the base category C need not be the centre ofKleisli(T ), but,modulo a faithfulness condition sometimes called the mono requirement [10,16],must be a subcategory of the centre.The functors hA and kA preserve central maps. So we haveProposition 6. The centre of a premonoidal category is a monoidal category.This proposition allows us to prove a coherence result for premonoidal cat-egories, directly generalising the usual coherence result for monoidal categories.Details appear in [16].De�nition 7. A symmetry for a premonoidal category is a central natural iso-morphism with components c : A
B �! B 
A, satisfying the two conditionsc2 = 1 and equality of the evident two maps from (A
B)
C to C 
 (A
B).A symmetric premonoidal category is a premonoidal category together with asymmetry.All of the examples of premonoidal categories we have discussed so far aresymmetric, and in fact, symmetric premonoidal categories are those of primaryinterest to us, and seem to be those of primary interest in denotational semanticsin general. For an example of a premonoidal category that is not symmetric,consider, given any category C, the category Endu(C) whose objects are functorsfrom C to itself, and for which an arrow from h to k is a C-indexed family ofarrows �(A) : h(A) �! k(A) in C, i.e., what would be a natural transformationfrom h to k but without assuming commutativity of the naturality squares. Then,this category, together with the usual composition of functors, has the structureof a strict premonoidal category, i.e., a premonoidal category in which all thestructural isomorphisms are identities, which is certainly not symmetric.De�nition 8. A strict premonoidal functor is a functor that preserves all thestructure and sends central maps to central maps.



One may similarly generalise the de�nition of strict symmetric monoidalfunctor to strict symmetric premonoidal functor.In order to compare the various models of environments in the next section,we need to study a construction that, to a premonoidal category, assigns a Cat-valued functor.De�nition 9. A comonoid in a premonoidal category K consists of an objectC of K, and central maps � : C �! C 
C and � : C �! I making the usualassociativity and unit diagrams commute.It follows from centrality of the two maps in the de�nition of comonoid that onehas the usual coherence for a comonoid, i.e., n-fold associativity is well de�ned,and comultiple products with counits are also well de�ned.De�nition 10. A comonoid map from C to D in a premonoidal category K is acentral map f : C �! D that commutes with the comultiplications and counitsof the comonoids.Again, it follows from centrality that a comonoid map preserves multiple applica-tion of comultiplication and counits. Given a premonoidal categoryK, comonoidsand comonoid maps in K form a category Comon(K) with composition givenby that of K. Moreover, any strict premonoidal functor sends a comonoid toa comonoid, so any strict premonoidal functor H : K �! L lifts to a functorComon(H) : Comon(K) �! (L).Trivially, any comonoid C in a premonoidal category K yields a comonadon K given by � 
 C, and any comonoid map f : C �! D yields a map ofcomonads from �
C to �
D, and hence a functor from Kleisli(�
D), theKleisli category of the comonad �
D, to Kleisli(�
C), that is the identityon objects. So we have a functor from Comon(C)op to Cat , which we denote bys(K). See [16] for this construction and another application of it.Now, given a category C with �nite products, every object A of C has a uniquecomonoid structure, given by the diagonal and the unique map to the terminalobject. So Comon(C) is isomorphic to C.Thus, given a category C with �nite products, a premonoidal category K, anda strict premonoidal functor J : C �! K, we have a functor �(J) : Cop �! Catgiven by s(K) composed with the functor induced by J from C �= Comon(C) toComon(K).3 �-categoriesIn this section, we introduce �-categories, and show that the construction atthe end of Section 2 yields an equivalence between premonoidal categories withadded structure as we shall make precise, and �-categories.Hasegawa has decomposed the �-calculus into two calculi, the �-calculus,and the �-calculus [7]. This analysis arose from study of Hagino's categoricalprogramming language. The idea of the �-calculus, also known as the contextual



calculus, is that it has product types on which its abstraction and reduction areconstructed, and it can be regarded as a reformulation of the �rst-order fragmentof simply-typed �-calculus, but does not require the exponent types. We do notexplicitly present the �-calculus here. However, we do describe the notion of �-category, which is a categorical analogue of the de�nition of �-calculus. Further,we compare the notion of �-category with that of symmetric premonoidal cate-gory with a extra structure. That relationship is one of the main theorems of thepaper, which we later extend to relate our two main models of continuations.Given a small category C, a functor from Cop to Cat is called an indexedcategory, a natural transformation between two indexed categories is called anindexed functor. The notion of indexed natural transformation is de�nable too,and this gives us a evident notion of adjunction between indexed categories. Inconcrete terms, it amounts to an Ob C-indexed family of adjunctions, such thatthe units and counits are preserved by reindexing along each f : A �! B. Andgiven an indexed category H : Cop �! Cat , we denote by Hop : Cop �! Cat theindexed functor for which HopA = (HA)op with Hopf de�ned by Hf .We will need the de�nitions of Hop and adjunctions between indexed cate-gories in later sections to extend the notion of a functor being self-adjoint on theleft, as in the semantics for continuations with premonoidal structure used tomodel environments in Section 6 to that of an indexed functor being self-adjointon the left as in the semantics for continutations using �-categories to modelenvironments in Section 7. But now for our de�nition of �-category.De�nition 11. A �-category consists of a small category C with �nite products,together with an indexed category H : Cop �! Cat such that� for each object A of C, ObHA = ObC, and for each arrow f : A �! B inC, the functor Hf : HB �! HA is the identity on objects� for each projection � : B � A �! B in C, the functor H� has a left adjointLB given on objects by ��A� (the Beck-Chevalley condition) for every arrow f : B �! B0 in C, the naturaltransformation from LB �Hf�idA to Hf �LB0 induced by the adjointness isan isomorphism. HB0�A LB0 //Hf�idA �� =) HB0Hf��HB�A LB // HBWe shall denote the isomorphism associated with the adjunctions given inthe de�nition by � : HB�A(C;C 0) �= HB(C �A;C 0):A �-category allows us to model the environments in the presence of con-tinuations or other computational e�ects. Of course, modelling computational



e�ects involves more structure than that of a �-category: for continuations, itrequires the assignment to each type � of a type :� that awaits an input of type� . We shall study such structure in Section 7, where we shall de�ne an indexed:-category. But here, we restrict out attention to modelling environments, andwe shall pursue our leading example, that of continuations, later.Proposition 12. Given a �-category H : Cop �! Cat, there is an indexedfunctor inc : s(C) �! H as follows: for each A in C, we have a functor froms(CA) to HA. On objects, it is the identity. To de�ne inc1 on arrows, givenf : A �! B in C, consider the arrow �B : 1 �! B in HB corresponding underthe adjunction to idB in H1. Applying Hf to it gives a map Hf (�B) : 1 �! Bin HA, or equivalently, under the adjunction, a map from A to B in H1. De�neinc1(f) to be that map.1 A f // B 1Ainc1(f) �� 1Hf (�B) �� 1�B�� BidB��B B B B�HfooThis plus naturality determines the rest of the structure.Proof. It is immediate that inc1 preserves identities, and one can prove that itpreserves composition: this follows by proving that for any map f : A �! B inC and any map g : 1 �! C in HB , the map Hf (g) corresponds to the compositein H1 of inc1(f) with the adjoint correspondent to g. Moreover, this yields afunctor incA for every A, with naturality as required. utUsing proposition 12, we can exhibit the relationship between symmetric pre-monoidal categories with speci�ed extra structure and �-categories. This formsthe basis for the �rst main result of the paper, Theorem 14. First, for the con-struction of a �-category from a symmetric premonoidal category, we haveProposition 13. Given a small category C with �nite products, a small sym-metric premonoidal category K and an identity on objects strict symmetric pre-monoidal functor J : C �! K, the functor �(J) : Cop �! Cat is a �-category.Proof. It follows immediately from the construction of �(J) in Section 2 thatfor each object A of C, we have Ob�(J)A = Ob C, and that for each arrowf : A �! B in C, the functor �(J)f is the identity on objects. Moreover, theexistence of the adjoints to each �(J)� follows directly from the construction andthe fact that C is symmetric. The Beck-Chevalley condition also follows directlyfrom the construction. utNow, for the converse, giving our �rst main result of the paper.



Theorem 14. Let C be a small category with �nite products. Given a �-categoryH : Cop �! Cat , there are a symmetric premonoidal category K and an identityon objects strict symmetric premonoidal functor J : C �! K, unique up toisomorphism, for which H is isomorphic to �(J).Proof. De�ne K to be H1. For each object A of K, equally A an object of Csince ObH1 = Ob C, de�ne � 
 A : K �! K by the composite L � H! where! : A �! 1 is the unique map in C from A to 1. Note that ! is of the form �,so the left adjoint exists. Moreover, for each map g : C �! C 0 in K, we haveg
A : C�A �! C 0�A. The rest of the data and axioms to make K a symmetricpremonoidal category arise by routine calculation, using the symmetric monoidalstructure of C determined by its �nite product structure, and by use of the Beck-Chevalley condition.De�ne J : C �! K by inc1 as in proposition 12. It follows from the Beck-Chevalley condition that for a map f : A �! B in C, and for a map g : C �! Din HB , we have that Hf (g) is given by the composite of J(idC � f) with theadjoint correspondent of g. The Beck-Chevalley condition further implies that(inc1�)
A agrees with inc1(��A). It follows from functoriality of the Hf 's thatevery map in C is sent into the centre of K. Functoriality plus the Beck-Chevalleycondition similarly imply that all the structural maps are preserved. So J is anidentity on objects strict symmetric premonoidal functor.It follows directly from our construction of J that �(J) is isomorphic to H .Moreover, J : C �! K is fully determined by H since C is �xed, K must beH1 up to isomorphism, with premonoidal structure as given, and J must agreeon maps with the construction as we have given it. Hence, J is unique up toisomorphism. ut4 ContinuationsWe recall �rst-class continuations, and argue informally why their semanticsleads us to the categorical notions of premonoidal and self-adjoint structure.4.1 First-class continuations in MLWe will de�ne a language �+callcc as our paradigmatic language. It is basedon an idealised version of ML and is given as follows.�; x : � ` x : � �; x : � `M : �� ` �x:M : � ! �� `M : :� ! �� ` callcc M : � � `M : :� � ` N : �� ` throw M N : �� `M : � ! � � ` N : �� `MN : �



Here : is the continuation type constructor, its ascii representation in actualML programs being cont. See [12] for a discussion of this language, includingan operational semantics.As an example of the use of expression continuations in programming, weconsider the function rember-upto-last from the recent programming textbookThe Seasoned Schemer [4]:The function rember-upto-last takes an atom a and a lat [list ofatoms] and removes all the atoms from the lat up to and including thelast occurrence of a. If there are no occurrences of a, rember-upto-lastreturns the list.We can compute rember-upto-last by recurring over the list and jump-ing every time the element a is encountered, thereby ignoring everything thatprecedes it in the list. Unlike the Seasoned Schemer's solution, the solutioinpresented here does not copy the list while recurring over it:fun remberuptolast a lat =callcc(fn skip =>let fun R [] = ()| R (b::l) =(R l;if b = a then throw skip l else ())in (R lat; lat) end);4.2 Motivation of premonoidal categories and self-adjointnessThe tuple (similarly, list) notation present in many programming languages may,at �rst sight, suggest that the appropriate semantic setting ought to be a Carte-sian or at least monoidal category.But in terms of evaluation in a call-by-value language, a tuple (M;N) meansthat each component has to be evaluated.This can be made explicit by naming the intermediate values. If the �rstcomponent is to be evaluated �rst, one would write:let x = M in let y = N in (x; y)Conversely, to evaluate the second component �rst, one writes:let y = N in let x = M in (x; y)The let-notation, then, has the advantage that the implicit sequencing is madeexplicit in the textual representation.For example, in a language with state, there are two possible meanings ofa tuple (M;N), depending which component is evaluated �rst. Consider thefollowing examples, where we make the evaluation order explict by using let.



let val s = ref 0 inlet val x = (s := !s + 1; !s) inlet val y = (s := !s + 1; !s)in #1(x,y) end end end ;let val s = ref 0 inlet val y = (s := !s + 1; !s) inlet val x = (s := !s + 1; !s)in #1(x,y) end end end;Just as for state, in the presence of continuations (�rst-class or otherwise) thereare two possible meanings of the tuple (throw k 1, throw k 2).callcc(fn k =>let val x = throw k 1 inlet val y = throw k 2in #1(x,y) end end);callcc(fn k =>let val y = throw k 2 inlet val x = throw k 1in #1(x,y) end end);In a monoidal category, there would be no way to distinguish between thetwo composites. This makes monoidal categories suitable for those cases whereboth composites are evaluated in parallel or where there can be no interferencebetween the two (which would the case, say, if both had access to disjoint piecesof state). But with control, as given by continuations, we have both a sequentialevaluation order and interference between the components, since a jump in onewill prevent the other from being evaluated at all.Put di�erently, the presence of computational e�ects, like state and control,�breaks� the bifunctoriality, so one is left with a binoidal category. (Partialityappears to be a separate case that should perhaps not be lumped together withgenuine e�ects like state and control.)Next, we illustrate the self-adjointness by some ML code. The reader may�nd it helpful to look at the types and see what categorical structure the typingscorrespond to. For the self-adjointness on the left, we de�ne (terms represent-ing) the unit of adjunction, the isomorphism of adjunction and the continuationfunctor as follows.fun force h = callcc(throw h);force : '1a cont cont -> '1a;fun phi f h = callcc((throw h) o f);phi : ('2a cont -> 'b) -> ('b cont -> '2a);fun negate f = phi(f o force);negate : ('1a -> 'b) -> ('b cont -> '1a cont);



Complementary (though not dually) to the double-negation map force, thereis a double negation-introduction map thunk.fun thunk a = callcc(fn k => throw (force k) a);thunk : '1a -> '1a cont cont;To explain the computational meaning of the self-adjoint structure, we recallthe notions of thunking and forcing [13].In the present setting, we consider a thunk to be something that expects acontinuation to which it is to pass its argument.force passes the current continuation to its argument; thus, inforce(thunka)the current continuation is passed to thunk a so that a is passed to the currentcontinuation. Hence force(thunk a)= a.Finally, we point out that in the presence of �rst-class continuations, func-tions can be identi�ed with (a special case of) continuations by virtue of thefollowing conversions.fun conttofun c a = callcc(fn k => throw c (a,k));conttofun : ('a * '2b cont) cont -> ('a -> '2b);fun funtocont f = callcc((fn (a,k) => throw k (f a)) o force);funtocont : ('1a -> '1b) -> ('1a * '1b cont) cont;5 Continuation semantics and monadsThe canonical way of giving continuation semantics is by a CPS transform. Werecall here a variant of the transform in [3]. [12]JxK = �k:kxJ�x:MK = �k:k��xh:JMKh�Jthrow M NK = �k:JMKJNKJcallcc MK = �k:JMK(�f:fkk)JMNK = �k:�JMK(�m:JNK(�n:mnk))�The CPS transform can be read as a semantics in the style of monads asnotions of computation [10]The denotation J� `M : �K : : : kof a program phrase of type � takes an argument k of type � ! Ans. Readingthis in an uncurried fashion gives rise to a semantics in the monads as notionsof computation styleJ� ` : �K : J� K �! (J�K ! Ans) ! Ans



The �monads as notions of computations�-style categorical continuation se-mantics is then an almost automatic byproduct of the CPS transform: one needonly interpret the �-terms in the �output� of the transform in a Cartesian closedcategory.However, this approach runs into conceptual and mathematical di�cultieswhen trying to address the question what the elusive answer type could be [9].In the light of work on CPS in the �-calculus, such as [2], the answer type seemsto be a red herring, in that one can have continuations without an answer type.The more recent approaches to modelling continuations in category theoreticterms do not have an answer type, so appear to be more general. They merelyhave, for each type � , an object :� that is to be seen as awaiting an inputof type � , but with no commitment to a particular type for the output. Thuscorrespondingly, the category theoretic structures for semantics are more generaltoo. Much is gained from that added generality in that it can be used to give amore subtle, natural notion of value (see [18,19]).6 Continuation semantics in 
:-categoriesIn this section, we use the notion of symmetric premonoidal category togetherwith that of self-adjointness on the left, which we shall de�ne, to give the no-tion of 
:-category, which we shall use to model continuations. It is routine toverify that, for the monad (� ! Ans) ! Ans of Section 5, the Kleisli categoryKleisli(� ! Ans) ! Ans has the structure of a 
:-category, and that the se-mantics we give here agrees with that there. Even if every 
:- category wouldbe so obtained, that would be a representation theorem which would not detractfrom the axiomatic view.First, for the de�nition of self-adjointness on the left,De�nition 15. A functor g : Kop �! K is called self-adjoint on the left if gopis right adjoint to g with the unit of the adjunction and the counit being thesame.To proceed, we need a piece of notation. In a premonoidal category witha subcategory containing the same objects, where the premonoidal structureagrees with �nite product structure, we extend the notation for the pairing mapto the whole category by convention as follows: given maps f : A �! B andg : A �! C, we write hf; gi : A �! B 
 C forA hid;idi // A
A A
g // A
 C f
C // B 
 CHere we have made the (essentially arbitrary) choice that the second componentof a tuple is to be evaluated �rst.De�nition 16. A 
:-category consists of a symmetric premonoidal category Kfor which, when restricted to Z(K) with inclusion inc, the premonoidal structureis given by �nite products, together with



� a functor : : Kop �! Z(K) such that for each object A of K, inc�(A
:( )) :Kop �! K is self-adjoint on the left, and� a coretract thunk : idZ(K) �! :: in Z(K) of apply1 � inc : ::inc �! idZ(K),where apply is the unit of the self-adjunction,such that� apply is dinatural in A and� putting applyA def= A
:(A
 apply1); applyA, we have:apply1 = thunk:thunk;::apply = apply; thunkthunkA
C = A
 thunkC ;A
:apply; applyapplyA
A0 = h�2; �1i 
 :(A
A0 
:B);A0 
 applyA; applyA0The thinking behind the de�nition of 
:-category is as follows. First, oneneeds the premonoidal structure to model �rst order constructs such as envi-ronments and tuple types. On top of this, the continuation type constructor isadded as a contravariant functor. The reason for the contravariance is that aprogram � ! � gives rise to a �continuation transformer� :� ! :� by precom-position. Intuitively, this is similar to building a function closure, and that iswhy :f lies in the centre of the premonoidal category. We take central maps ase�ect-free maps. (See [18,19] for a detailed analysis of this and its advantages.)As explained in the introduction, the self-adjointness on the left accounts forcontext switch. Its unit corresponds to forcing a thunk [13]. However, this by it-self is not su�cient as we also need to pass arguments along with a jump. That iswhy we require the self-adjointness even in the parameterized sense, i.e., for thefunctor A
:�. The unit of this self-adjointness is the call-by-value applicationmap, or jump with arguments. The self-adjointness on the left only ever allowsone to eliminate double negations; in order to construct �-abstractions, one alsoneeds a double negation introduction, or generic closure building operation thunksatisfying thunk; apply1 = id.Dinaturality of apply seems to be fundamental, and is used extensively. The�rst of the remaining axioms is a fact about continuations. The second is used tomake apply behave like a value in the sense that if thunk is natural with respectto some map, then that map is somehow value-like. It is like a form of an �law without arguments. The remaining two axioms allow us to relate apply andthunk for di�erent indices.Intuitively, dinaturality of the application map means that modifying theoperand of a function application by a map f : A �! A0 is the same as modifyingthe operator by a corresponding continuation transformer.A
:(A0 
:B) A
:(f
:B) //f
:(A0
:B) �� A
:(A
:B)apply��A0 
:(A0 
:B) apply // B



The universal property of the continuation functor can be expressed by thefollowing diagrams (naturality and triangular identity for force.)::A::f �� force // Af��::B force // B :A :force //id ##HHHHHHHHH :::Aforce��:AIn addition to the usual thunk; force = id, we have another axiom linking forcingand thunking. A consequence of this is the self-adjointness on the right of therestriction of : to the centre, with unit thunk.Ag �� thunk // ::A::g��B thunk // ::B :A thunk//id ##HHHHHHHHH :::A:thunk��:A(where g is central.)In a 
:-category, we have a (call-by-value) �-abstraction by de�ning�A def= thunk;:applyA;A
:fGiven a 
:-category K, we can give an interpretation J�K for �+callcc asfollows. Types and environments are interpreted as usual, except for the breakingdown of arrow types. J:�K def= :J�KJ� ! �K def= :�J�K 
:J�K�Jx1 : �1; : : : ; xn : �nK def= J�1K
 � � � 
 J�nKA judgement � `M : � denotes a morphism J� K �! J�K, de�ned by inductionon M .Jx1 : �1; : : : xn : �n ` xj : �jK def= �jJ� ` �x:M : � ! �K def= �J�K Jx : �; � `M : �KJ� ` throw M N : �K def= hJ� `M : :�K; J� ` N : �Ki; J�K 
:�1; applyJ� ` callcc M : �K def= J� `M : :� ! �K;:hid:J�K; id:J�Ki; (apply1)J�KJ� `MN : �K def= hJ� `M : � ! �K; J� ` N : �Ki; applyThis semantics validates the the call-by-value � law (�x:M)V = M [x 7! V ]where V is a value, i.e. a variable or an abstraction. It is worth noting, too,what does not hold. We have neither the unrestricted � law nor equivalences like(�x:�y:L)M N = (�y:�x:L)N M



because our semantic category is neither closed nor monoidal. Nonetheless, thecall-by-value � law could be stated as an adjunction: instaed of closure, we havethe weaker notion of central closure [15,18].A discussion and validation of this semantics as such is beyond the scope ofthe present paper. To some extent this is ongoing research, while some of it hasappeared in [18,19].In this paper, what matters about the semantics is that it is based upon of thecontinuation functor �tted into a framework for the semantics of environments.This aspect is what we attempt to analyse by varying this framework � at leastin terms of presentation.7 Continuation semantics in indexed :-categoriesIn this section, we use the de�nition of �-category as a basis, together with self-adjointness, for de�ning the notion of an indexed :-category. We then use thatlatter de�nition to give our third continuations semantics. In the �nal section,we shall prove that it is essentially equivalent to the second, i.e., that given by
:-categories.De�nition 17. An indexed :-category consists of a �-category H : Cop �! Cattogether with an indexed functor : : Hop �! s(C) such that inc�: is self-adjointon the left, together with a coretract thunk of force1 � inc, where force is the unitof the self-adjunction, such that� force is dinatural in A with respect to all maps in H1 and� letting (forceA)B be the correspondent under the adjunction to LAH�((force1)B),we have :force1 = thunk:thunk;::force = force; thunkthunkA�C = A� thunkC ;A�:force; force:��1(idC�A) = :C(LH!(force1)); forceCThe left adjoint to reindexing along projections gives rise to a comonad oneach �bre, which we will write as ( ) 
 A. Furthermore , using inc, we have adiagonal map �A : A �! A
A in each �bre.The thinking behind the de�nition is as follows. The category C with its �niteproduct structure allows us to model an environment as the product of the typesit contains. In the indexed category, program phrases de�ned in an environmentwill be modelled as elements in the �bre over the denotation of that environment.



J�1K� � � � � J�nK1Jx1:�1;:::;xn:�n`M :�K��J�KThe isomorphism of adjunction � is a �rst order binding construct that allowsus to make the dependency of a program phrase on certain variables explicit. Thenegation functor is much as before, except that it now acts on those variablesexplicitly singled out by a previous �.� � C �Af�� A� C�f ��B B� � // � �Af�� :BB :A:f OO� : //The motivation for the axioms is as for 
:-categories, except that here, we canavoid one of the axioms as it follows from the indexing of :. However, we needour last axiom here in order to make the indexing of : coherent: intuitively, itmeans that negating the retrieving of a value of type C from the environmentto cons a value of type C to a value of type A gives us an operation of partiallysatisfying demand for a value of type C while leaving the demand for a value oftype A untouched.This formalism, unlike that for a 
:-category, separates the data and thecontrol mechanisms. The indexed functor : is in some sense oblivious to theindexed structure with which �rst order data manipulation is described. We donot want control to interfere with any data with which it is not concerned. Sothe ability to model continuations with indexed categories as we do here is aclear indication that we have separated the two. In the �nal section, we showthat this modelling is essentially equivalent to that using premonoidal categoriesand self-adjointness. We take this as evidence that modelling continuations byself-adjointness is a robust notion in the sense that it is not overly sensitive tothe way we model environments, as we could model them in two di�erent ways,in each case �tting the self-adjointness into this framework.To model �+callcc, types are interpreted as objects in C. Environments areinterpreted using the product in C.J:�K def= :J�KJ� ! �K def= :�J�K 
:J�K�Jx1 : �1; : : : ; xn : �nK def= J�1K� � � � � J�nK



A judgement � `M : � denotes an element J� `M : �K : 1 �! J�K in the �breover J� K.Jx1 : �1; : : : xn : �n ` xj : �jK def= H�j��1(idJ�jK)J� ` �x:M : � ! �K def= thunk;:(�:J�; x : � `M : �K)J� ` throw M N : �K def= J� `M : :�K;:(�(H�1J� ` N : �K)); forceJ� ` callcc M : �K def= J� `M : :� ! �K;:�; forceJ� `MN : �K def= J� `M : � ! �K;:(J� ` N : �K
:J�K); forceAgain, the semantics as such is not the topic of the present paper. We only givesome hint at how it is intended to work.We write a morphism from X to Y in the �bre over C asX C // YThe most interesting clause is the one for �-abstraction in that abstracting overa variable implies moving from one �bre to another.In a more traditional (call-by-name) setting, � would be interpreted by meansof an adjoint to reindexing. Here, it is more elaborate, as it is decomposed intothe �rst-order abstraction given by the structure on the �bration on the one handand the �brewise �negation� given by the continuation functor on the other.A judgement �; x : � `M : � denotes a morphism1 J� K�J�K // J�KNegating this given an arrow:J�K J� K�J�K // :1which, by virtue of �, amounts toJ�K �:J�K J� K // :1Negating this yields a morphism::1 J� K // :(J�K �:J�K)All that remains to be done in order to get the meaning of �x:M is to precomposewith thunk : 1 �! ::1, taking care of the double negation:1 J� K // ::1 J� K // :(J�K �:J�K)



8 Relating 
:-categories and indexed :-categoriesIn this �nal section of the paper, we build upon the equivalence between �-categories and symmetric premonoidal categories with the extra structure spec-i�ed in Theorem 14 to relate 
:-categories and indexed :-categories. They arealmost but not quite equivalent. The only di�erence lies implicit in Theorem 14:for our de�nition of 
:-category, we assert that the centre of our category has�nite products, whereas Theorem 14 merely asserts that we have a categorywith �nite products mapping, as the identity on objects, into the centre of ourcategory. We regard this as a minor di�erence, as the latter merely extends theformer mildly without changing any other structure. In fact, the latter conceptseems category theoretically more natural, as explained in [15]. The concepts of
:-category and indexed :-category are otherwise equivalent.Let �A def= hidA; idAi : A �! A
ALet K be a 
:-category. Let �A be the Kleisli compositionf �A g def= h�1; idi;A
 f 
 gDe�ne :A : KleisliK(A
 ( ))op �! KleisliZ(K)(A � ( )) by :AB = B onobjects and by :Af def= A
:f ; applyAon morphisms. This is well-de�ned: A
:f is central, because :f is, andapply = apply; thunk;:thunk = thunk;::apply;:thunkis also central.De�ne forceA : :A:AB �! B in KleisliK(A
 ( )) by forceA def= �2; apply1.:A preserves identities �2 : A
B �! B because:A(�2)= :A(!
B)= A
:(!
B);A
:(A 
 apply1); applyA= A
:(A
 apply1; !
B); applyA= A
:(!
::B; 1
 apply1); applyA= A
:(1
 apply1);A
 :(!
::B); applyA= A
:(1
 apply1); !
:(1
::B); apply1= A
:(apply1); !
:::B; apply1= !
:B;1
:(apply1); apply1= !
:B= �2 : A
:B �! :B:A preserves composition: let f : A
B �! C and g : A
 C �! D. Then:A(f �A g)



= :A(�A 
B;A
 f ; g)= A
:(�A 
B;A
 f ; g);A
:(A
 apply1); applyA= A
:(A
 apply1; �A 
B;A
 f ; g); applyA= : : := �A 
A
A
:C;A
A
:g;A
A
:(A
 f); applyA
A:A(f) �A :A(g)= �A 
:B;A
A
:(A 
 apply1; f);A
 applyA;A
:(A
 apply1; g); applyA= : : := �A 
A
A
:C;A
A
:g;A
A
:(A 
 f);A
 applyA; applyASo the required identity follows from the axiomapplyA
A0 = h�2; �1i 
 :(A
A0 
:B);A0 
 applyA; applyA0and the facts that h�2; �1i is central and �; h�2; �1i = �.The triangular identity :AforceA �A forceA = id holds::AforceA �A forceA= :A(�2; apply1) �A forceA= (A
:apply1;:A(�2)) �A forceA= (A
:apply1;�2) �A forceA= �A 
:B;A
A
:apply1;A
 �2;�2; apply1= A
:apply1; �A 
:::B;A
 �2;�2; apply1= A
:apply1;�2; apply1= A
:apply1; !
:::B; apply1= !
:B; 1
:apply1; apply1= �2;:apply1; apply1= �2 : A
:B �! :Bforce is natural: :A:Af �A forceA= A
:(A 
:f ; applyA); applyA; apply1= A
:applyA;A
:(A 
:f); applyA= A
:applyA; applyA; f= A
 apply1; f= forceA �A fPutting this all together, it follows that we have



Proposition 18. Given a 
:-category, (K;:; apply; thunk), the construction(�(J);:A; forceA) as above, together with the given thunk, give an indexed :-category.Proof. Most of the proof is given above. For the rest, the axioms hold simplybecause the category H1 is given by K. utTheorem 19. Given a symmetric premonoidal category K for which the pre-monoidal structure restricts to �nite product structure on the centre, to extendthis to the structure of a 
:-category is equivalent to extending the structure ofthe �-category �(J) to that of an indexed :-category.Proof. We need to prove that the construction of the proposition is a bijectionup to isomorphism. Given an indexed :-category, one can obtain a 
:-categoryby considering H1. In order to show that the construction applied to that 
:-category yields the original indexed :-category, everything is routine providedone can show that for any indexed :-category, the behaviour of : on H1 deter-mines its behaviour on HA for all A. But this follows from the fact that : isindexed and from the �nal axiom. utThere is little di�erence between the notions of indexed :-category and 
:-category. The only di�erence between them lies in the choice of an explicitlygiven category with �nite products and an identity on objects strict monoidalfunctor into a symmetric premonoidal category rather than consideration of aproperty of the centre. The former is the structure given naturally by an indexednot-category. But also, that structure is a category theoretically more naturalstructure than that of 
:-category� as explained in [15]. Computationally, how-ever, it is natural to assume that in the presence of �rst-class continuationsthe whole of the centre admits �nite products. This is becasue the self-adjointstructure allows every central morphism to be rei�ed, as explained in [19].9 ConclusionsWe have shown how to account for environments in languages with a morecomputational �avour than the pure �-calculus by generalising two semanticsfor environments and showing them essentially equivalent.Modelling environments in some way is pervasive in semantics; however wehave put here particular emphasis on continuation semantics, for the followingreasons:� First-class continuations allow the full callcc to be added to the language,which is the most powerful version of control found in actual languages. Thiscontrasts with the situation for state, where only a rather weak notion ofglobal state is added by commonly used notions like the state monad.� The construct to be studied has universal properties on the category ofcomputations. That does not seem to be the case for constructs associatedwith state, such as assignment.
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