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Abstract. There have traditionally been two approaches to modelling
environments, one by use of finite products in Cartesian closed cate-
gories, the other by use of the base categories of indexed categories
with structure. Recently, there have been more general definitions along
both of these lines: the first generalising from Cartesian to symmetric
premonoidal categories, the second generalising from indexed categories
with specified structure to x-categories. The added generality is not of
the purely mathematical kind; in fact it is necessary to extend semantics
from the logical calculi studied in, say, Type Theory to more realistic
programming language fragments. In this paper, we establish an equiva-
lence between these two recent notions. We then use that equivalence to
study semantics for continuations. We give three category theoretic se-
mantics for modelling continuations and show the relationships between
them. The first is given by a continuations monad. The second is based
on a symmetric premonoidal category with a self-adjoint structure. The
third is based on a k-category with indexed self-adjoint structure. We
extend our result about environments to show that the second and third
semantics are essentially equivalent, and that they include the first.

1 Introduction

Traditionally in denotational semantics, there have been two categorical ways
of modelling contexts and environments. The first is given by finite products
in a Cartesian closed category, as for instance in modelling the simply typed \-
calculus. Over the years, that has gradually been extended. For instance, in order
to model partiality, one must generalise from finite product structure to sym-
metric monoidal structure; and more recently, that has been further generalised
to the notion of symmetric premonoidal structure [16].
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A premonoidal category is essentially a monoidal category except that the
tensor need only be a functor in two variables separately, and not necessarily a
bifunctor: given maps f : A — A’ and g : B — B’, the evident two maps from
A® B to A’ ® B’ may differ. Such structures arise naturally in the presence of
computational effects, where the difference between these two maps is a result of
sensitivity to evaluation order. So that is the structure we need in order to model
environments in the presence of continuations or other such strong computational
effects (for some examples for this, see Subsection 4.2 below). A program phrase
in environment I is modelled by a morphism in the premonoidal category with
domain [I.

The second approach to modelling environments categorically, also used to
model the simply typed A-calculus, is based on indexed categories with structure,
and has been heavily advocated, although not introduced, by Bart Jacobs [8]: the
slogan is that contexts, which we call environments, are indices for the categories
in which the terms definable in that context are modelled. Here, a program
phrase in environment I" is modelled by an element 1 — [r] in a category
that implicitly depends on I', i.e., by an arrow from 1 to [7] in the fibre of the
indexed category over [I']. We consider a weak version of indexed category with
structure, called a x-category, implicit in recent work by Masahito Hasegawa [7].
In the setting of indexed categories, various binding constructs can be studied.
A k-category has a weak first order notion of binding, given by the assertion
that reindexing along projections has a left adjoint. In programming terms, that
corresponds to a special form that binds an identifier but is not reifying in the
sense that it does not produce a first class function. Hasegawa [7] compares it
to lambda in early LISP.

The first major result of this paper is to prove the above two models of envi-
ronments equivalent. More precisely, we show that every symmetric premonoidal
category with a little more of the structure cited above, gives rise to a k-category,
and that this gives a bijection between the classes of symmetric premonoidal cat-
egories with such structure and k-categories. The extra structure we need on a
symmetric premonoidal category K is a category with finite products C and an
identity on objects strict symmetric premonoidal functor .J : C — K. At first
sight, that may seem a somewhat complex structure, but in fact, as made precise
in [15], it is particularly natural category theoretic structure, more so than that
of premonoidal structure alone, as it is algebraic structure.

In our semantics for environments, just as in the monads as notions of com-
putations approach, a distinction is made between a category of effect-free mor-
phisms, among them the (denotations of) values, and a category of effectful
computations. The former category admits finite products, the latter does not:
values can be copied and discarded, while computation cannot (in general). The
monads approach makes a very specific design decision of how the category
of computations arises from the category with finite products; namely, as the
Kleisli category of the monad under consideration. This places a somewhat un-
fortunate emphasis on how the category of computations is constructed, rather
than addressing its structure in its own right.As the category of computations



is what one is actually interested in and about which one has computational
intuition, it would be advantageous to put greater emphasis on it. Continua-
tions are special among the computational effects one could consider, as they
can be described in terms of structure on the category of computations, that
is, in terms of self-adjointness. Moreover, the self-adjointness appears inherently
indexed by environments. Hence the possibility to pass back and forth between
our two ways of modelling environments may actually facilitate this study of
continuation semantics.

Given the two models of environments we have outlined above, we can con-
sider how to model continuations with environments modelled in either of the
two ways, and we can consider how the models of continuations compare.

In fact, we go a little beyond that by comparing three recent attempts to
incorporate continuations into denotational semantics by means of category the-
oretic structure. The first has been studied extensively by several people, for
instance in Andrzej Filinski’s thesis (see [5]). It is based on a monad for continu-
ations: one has a type Ans of answers, and the semantics of a program from 7 to
o is given by a function from [7] to the double exponential ([o] — Ans) — Ans.
The monads approach avoids, to some extent, the question of how to model
environments in as much as it reverts to the base category for modelling them.
The second, by Hayo Thielecke [18 20], is based on a premonoidal category with
self-adjoint structure. A functor — : K°P — K is called self-adjoint on the left
if =°P is right adjoint to —, with the same unit and co-unit. Dually, — is called
self-adjoint on the right if —°P is self-adjoint on the left. Self-adjoint structure
corresponds to the idea that for each type 7, there is a continuation type —7 that
can accept an input of type 7. The third, which we introduce here, is also being
developed by Hayo Thielecke [20]. It is based on a k-category with added struc-
ture, and one again adds a self-adjoint construction. The first of these models is
less general than the other two, which are essentially equivalent.

While the first approach to modelling continuations relies on continuations
being explicitly given by a double exponentiation monad, the other two ap-
proaches avoid any assumptions of how continuations are implemented, relying
instead on axiomatising a property of continuations that one may take to be
fundamental: it axiomatises the existence of a “context switch”, more formally,
the self adjointness

g — T

-T — 0

of the continuation type constructor —. These two approaches are distinguished
by the way in which one models environments, as explained above.

The second major goal of this paper is to introduce the third of these cate-
gory theoretic models of continuations and extend our proof of the equivalence
between the two ways of modelling environments to show that the second and
third models of continuations are essentially equivalent, and that they include
the first. We take the equivalence between the second and third models as evi-
dence that modelling continuations by self-adjointness is a robust notion in the
sense that it is not overly sensitive to the way one models environments, as one



could model them in two different ways, in each case fitting the self-adjointness
into the framework.

The paper is organised as follows. In Section 2, we recall the definitions
relating to premonoidal categories, and establish a construction we will need
later. In Section 3, we define the notion of k-category, and give the relationship
between s-categories and symmetric premonoidal categories. Section 4 consists
of two parts: first, in Subsection 4.1, we recall a fragment of Standard ML of New
Jersey, which we call A+callcc, that we use as our paradigmatic language with
continuation primitives; we then argue briefly for the kind of categorical structure
we need to model this language in Subsection 4.2. In Section 5, we recall the use
of monads for modelling continuations. In Section 6, we define the notion of ®--
category, and show how to model continuations in them. In Section 7, we recall
the notion of an indexed —-category and show how to model continuations with
this notion. Finally, in Section 8, we extend the relationship between symmetric
premonoidal categories and k-categories to give the relationship, essentially an
equivalence, between ®--categories and indexed —-categories.

Related Work

The relationship between symmetric premonoidal categories and k-categories is
related to work by Blute, Cockett, and Seely [1]. Implicit in their work is the
construction which, to a symmetric premonoidal category with a little added
structure, assigns a k-category. The latter are closely related to their context
categories. Identifying precisely which indexed categories thus arise did not ap-
pear in their work.

Filinski [5] pioneered the categorical semantics for continuations. He used a
notion of “co-cartesian closure” whereas here we use self-adjointness. This is in
line with our second approach to continuation semantics. Assuming finite prod-
ucts to exist in the centre of the semantic category (to be defined) overcomes the
difficulty that the subcategory of “total” maps in the sense of [5] is demonstrably
too large [18,19] to admit products.

Bart Jacobs’ thesis [8] championed the view of contexts as “indices for the
terms and types derivable in that context.” We believe this to be relevant not only
to type theory but also to the modelling of environments in computer science,
and we use it for that purpose in our third approach to continuation semantics.

Ong [11] also uses a fibration to model environments for his categorical for-
mulation of the Au-calculus [14]. As this calculus is an extension of the call-by-
name A-calculus, Ong can assume every fibre to be Cartesian closed. However,
for call-by-value programming languages like ML or Scheme, one cannot assume
Cartesian closure. (And even if one were to assume call-by-name, the intended
meaning of callcc would be less than clear.)

2 Premonoidal categories

In this section, we recall the definitions of premonoidal category and strict pre-
monoidal functor, and symmetries for them, as introduced in [16] and further



studied in [15]. We also develop a basic construction on a premonoidal category
that we will need later. A premonoidal category is a generalisation of the concept
of monoidal category: it is essentially a monoidal category except that the tensor
need only be a functor of two variables and not necessarily be bifunctorial, i.e.,
given maps f : A — B and f': A’ — B’, the evident two maps from A @ A’
to B ® B’ may differ.

Historically, for instance for the simply typed A-calculus, environments have
been modelled by finite products. More recently, monoidal structure has some-
times been used, for instance when one wants to incorporate an account of
partiality [17]. In the presence of stronger computational effects, an even weaker
notion is required. If the computational effects are strong enough for the order
of evaluation of f : A — B and f' : A’ — B’ to be observable, as for instance
in the case of continuations [18,19], then the monoidal laws cannot be satisfied.
The leading example for us of such stronger computational effects are those given
by continuations. However, for a simple example of a premonoidal category that
may be used for a crude account of state [16], consider the following.

Ezample 1. Given a symmetric monoidal category C together with a specified
object S, define the category K to have the same objects as C, with IC(A4, B) =
C(S® A, S ® B), and with composition in I determined by that of C. For any
object A of C, one has functors A@ —: K — K and —® A : K — K, but they
do not satisfy the bifunctoriality condition above, hence do not yield a monoidal

structure on K. They do yield a premonoidal structure, as we define below.

In order to make precise the notion of a premonoidal category, we need some
auxiliary definitions.

Definition 2. A binoidal category is a category K together with, for each object
A of K, functors hs : K — K and k4 : K — K such that for each pair (4, B)
of objects of I, haB = kg A. The joint value is denoted A ® B.

Definition 3. An arrow f : A — A’ in a binoidal category is central if for
every arrow g : B — B’| the following diagrams commute:

ARg gRA
A®B—— A® B’ B A——B ® A
f®Bl Lf@B' B®ft lB’@f

AI®> ®AI
A’®B—Q>A’®B’ B®A’Q—>B’®A’

Moreover, given a binoidal category K, a natural transformation a : ¢ = h :
B — K is called central if every component of « is central.

Definition 4. A premonoidal category is a binoidal category K together with
an object I of K, and central natural isomorphisms a with components (A® B)®
C — A® (B ®C), | with components A — A ® I, and r with components
A — I ® A, subject to two equations: the pentagon expressing coherence of a,
and the triangle expressing coherence of | and r with respect to a.



Now we have the definition of a premonoidal category, it is routine to verify
that Example 1 is an example of one. There is a general construction that yields
premonoidal categories too: given a strong monad 7' on a symmetric monoidal
category C, the Kleisli category Kleisli(T') for T' is always a premoidal category,
with the functor from C to Kleisli(T') preserving premonoidal structure strictly:
of course, a monoidal category such as C is trivially a premonoidal category.
That construction is fundamental, albeit implicit, in Eugenio Moggi’s work on
monads as notions of computation [10], as explained in [16].

Definition 5. Given a premonoidal category K, define the centre of IC, denoted
Z(K), to be the subcategory of K consisting of all the objects of K and the central
morphisms.

For an example of the centre of a premonoidal category, consider Example 1
for the case of C being the category Set of small sets, with symmetric monoidal
structure given by finite products. Suppose S has at least two elements. Then
the centre of K is precisely Set. In general, given a strong monad on a symmetric
monoidal category, the base category C need not be the centre of Kleisli(T"), but,
modulo a faithfulness condition sometimes called the mono requirement [10,16],
must, be a subcategory of the centre.

The functors h4 and k4 preserve central maps. So we have

Proposition 6. The centre of a premonoidal category is a monoidal category.

This proposition allows us to prove a coherence result for premonoidal cat-
egories, directly generalising the usual coherence result for monoidal categories.
Details appear in [16].

Definition 7. A symmetry for a premonoidal category is a central natural iso-
morphism with components ¢: A @ B — B ® A, satisfying the two conditions
c? =1 and equality of the evident two maps from (4@ B) @ C to C @ (A @ B).
A symmetric premonoidal category is a premonoidal category together with a
symmetry.

All of the examples of premonoidal categories we have discussed so far are
symmetric, and in fact, symmetric premonoidal categories are those of primary
interest to us, and seem to be those of primary interest in denotational semantics
in general. For an example of a premonoidal category that is not symmetric,
consider, given any category C, the category End,,(C) whose objects are functors
from C to itself, and for which an arrow from h to k is a C-indexed family of
arrows «(A) : h(A) — k(A) in C, i.e., what would be a natural transformation
from h to k but without assuming commutativity of the naturality squares. Then,
this category, together with the usual composition of functors, has the structure
of a strict premonoidal category, i.e., a premonoidal category in which all the
structural isomorphisms are identities, which is certainly not symmetric.

Definition 8. A strict premonoidal functor is a functor that preserves all the
structure and sends central maps to central maps.



One may similarly generalise the definition of strict symmetric monoidal
functor to strict symmetric premonoidal functor.

In order to compare the various models of environments in the next section,
we need to study a construction that, to a premonoidal category, assigns a C at-
valued functor.

Definition 9. A comonoid in a premonoidal category K consists of an object
C of £, and central maps § : C — C ® C and v : C — I making the usual
associativity and unit diagrams commute.

It follows from centrality of the two maps in the definition of comonoid that one
has the usual coherence for a comonoid, i.e., n-fold associativity is well defined,
and comultiple products with counits are also well defined.

Definition 10. A comonoid map from C to D in a premonoidal category K is a
central map f : C — D that commutes with the comultiplications and counits
of the comonoids.

Again, it follows from centrality that a comonoid map preserves multiple applica-
tion of comultiplication and counits. Given a premonoidal category K, comonoids
and comonoid maps in K form a category Comon(K) with composition given
by that of /L. Moreover, any strict premonoidal functor sends a comonoid to
a comonoid, so any strict premonoidal functor H :  — L lifts to a functor
Comon(H) : Comon(K) — (L£).

Trivially, any comonoid C in a premonoidal category K yields a comonad
on K given by — ® C, and any comonoid map f : C — D yields a map of
comonads from —® C to — ® D, and hence a functor from Kleisli(— ® D), the
Kleisli category of the comonad — @ D, to Kleisli(— ® C), that is the identity
on objects. So we have a functor from Comon(C)°P to Cat, which we denote by
s(K). See [16] for this construction and another application of it.

Now, given a category C with finite products, every object A of C has a unique
comonoid structure, given by the diagonal and the unique map to the terminal
object. So Comon(C) is isomorphic to C.

Thus, given a category C with finite products, a premonoidal category IC, and
a strict premonoidal functor J : C — K, we have a functor k(J) : C°°? — Cat
given by s(K) composed with the functor induced by J from C = Comon(C) to
Comon(K).

3 k-categories

In this section, we introduce k-categories, and show that the construction at
the end of Section 2 yields an equivalence between premonoidal categories with
added structure as we shall make precise, and k-categories.

Hasegawa has decomposed the A-calculus into two calculi, the x-calculus,
and the (-calculus [7]. This analysis arose from study of Hagino’s categorical
programming language. The idea of the k-calculus, also known as the contextual



calculus, is that it has product types on which its abstraction and reduction are
constructed, and it can be regarded as a reformulation of the first-order fragment
of simply-typed A-calculus, but does not require the exponent types. We do not
explicitly present the k-calculus here. However, we do describe the notion of k-
category, which is a categorical analogue of the definition of k-calculus. Further,
we compare the notion of k-category with that of symmetric premonoidal cate-
gory with a extra structure. That relationship is one of the main theorems of the
paper, which we later extend to relate our two main models of continuations.

Given a small category C, a functor from C°P to Cat is called an indexed
category, a natural transformation between two indexed categories is called an
indezed functor. The notion of indexed natural transformation is definable too,
and this gives us a evident notion of adjunction between indexed categories. In
concrete terms, it amounts to an Ob C-indexed family of adjunctions, such that
the units and counits are preserved by reindexing along each f: A — B. And
given an indexed category H : C°? — Cat, we denote by HP : C°? — Cat the
indexed functor for which H" = (H4)°® with H;" defined by H;.

We will need the definitions of H°P? and adjunctions between indexed cate-
gories in later sections to extend the notion of a functor being self-adjoint on the
left, as in the semantics for continuations with premonoidal structure used to
model environments in Section 6 to that of an indered functor being self-adjoint
on the left as in the semantics for continutations using k-categories to model
environments in Section 7. But now for our definition of x-category.

Definition 11. A k-category consists of a small category C with finite products,
together with an indexed category H : C°P — Cat such that

— for each object A of C, Ob H4 = ObC(, and for each arrow f : A — B in
C, the functor Hy : Hp — H 4 is the identity on objects

— for each projection 7 : B x A — B in C, the functor H, has a left adjoint
Lp given on objects by — x A

— (the Beck-Chevalley condition) for every arrow f : B — B’ in C, the natural
transformation from Lg o Hfy;q4, to Hy o L induced by the adjointness is
an isomorphism.

LBI
HHIXA %HB’

Hyxidy = Hy

L
Hpxa —— Hp
We shall denote the isomorphism associated with the adjunctions given in
the definition by
K HBxA(C-, C’) = HB(C X A., C’)

A k-category allows us to model the environments in the presence of con-
tinuations or other computational effects. Of course, modelling computational



effects involves more structure than that of a k-category: for continuations, it
requires the assignment to each type 7 of a type =7 that awaits an input of type
7. We shall study such structure in Section 7, where we shall define an indexed
—-category. But here, we restrict out attention to modelling environments, and
we shall pursue our leading example, that of continuations, later.

Proposition 12. Given a k-category H : C°? — Cat, there is an indexed
functor inc : s(C) — H as follows: for each A in C, we have a functor from
s(Ca) to Ha. On objects, it is the identity. To define inc; on arrows, given
f:A— B in C, consider the arrow 1g : 1 — B in Hpg corresponding under
the adjunction to idg in Hi. Applying Hy to it gives a map Hf(1p) : 1 — B
in Ha, or equivalently, under the adjunction, a map from A to B in Hy. Define
inc1(f) to be that map.

1 A B 1
A 1 1 B
Hy
inc1(f) Hf(tp) | <———| B idp
B B B B

This plus naturality determines the rest of the structure.

Proof. It is immediate that inc; preserves identities, and one can prove that it
preserves composition: this follows by proving that for any map f: A — B in
C and any map g : 1 — C in Hp, the map Hy(g) corresponds to the composite
in Hy of incy(f) with the adjoint correspondent to g. Moreover, this yields a
functor inc 4 for every A, with naturality as required. O

Using proposition 12, we can exhibit the relationship between symmetric pre-
monoidal categories with specified extra structure and k-categories. This forms
the basis for the first main result of the paper, Theorem 14. First, for the con-
struction of a k-category from a symmetric premonoidal category, we have

Proposition 13. Given a small category C with finite products, a small sym-
metric premonoidal category K and an identity on objects strict symmetric pre-
monoidal functor J:C — K, the functor k(J) : C°°? — Cat is a k-category.

Proof. Tt follows immediately from the construction of x(.J) in Section 2 that
for each object A of C, we have Obk(J)a = ObC(, and that for each arrow
f: A — B in C, the functor x(.J); is the identity on objects. Moreover, the
existence of the adjoints to each k(J), follows directly from the construction and
the fact that C is symmetric. The Beck-Chevalley condition also follows directly
from the construction. O

Now, for the converse, giving our first main result of the paper.



Theorem 14. Let C be a small category with finite products. Given a k-category
H : C°° — Cat, there are a symmetric premonoidal category KC and an identity
on objects strict symmetric premonoidal functor J : C — K, unique up to
isomorphism, for which H is isomorphic to k(J).

Proof. Define K to be Hy. For each object A of K, equally A an object of C
since Ob H; = Ob(, define — ® A : K — K by the composite L o H, where
'+ A — 1 is the unique map in C from A to 1. Note that ! is of the form ,
so the left adjoint exists. Moreover, for each map ¢g : C — C’ in K, we have
gRA:CxA— C'xA. The rest of the data and axioms to make K a symmetric
premonoidal category arise by routine calculation, using the symmetric monoidal
structure of C determined by its finite product structure, and by use of the Beck-
Chevalley condition.

Define J : C — K by incy as in proposition 12. It follows from the Beck-
Chevalley condition that for amap f : A — B in C, and foramap g: C — D
in Hp, we have that H(g) is given by the composite of J(idc x f) with the
adjoint correspondent of g. The Beck-Chevalley condition further implies that
(inc;—)® A agrees with incy (— x A). It follows from functoriality of the H’s that
every map in C is sent into the centre of L. Functoriality plus the Beck-Chevalley
condition similarly imply that all the structural maps are preserved. So J is an
identity on objects strict symmetric premonoidal functor.

It follows directly from our construction of J that x(J) is isomorphic to H.
Moreover, J : C — K is fully determined by H since C is fixed, K must be
H; up to isomorphism, with premonoidal structure as given, and J must agree
on maps with the construction as we have given it. Hence, J is unique up to
isomorphism. O

4 Continuations

We recall first-class continuations, and argue informally why their semantics
leads us to the categorical notions of premonoidal and self-adjoint structure.

4.1 First-class continuations in ML

We will define a language A+callcc as our paradigmatic language. It is based
on an idealised version of ML and is given as follows.

x:okFM:71
x:tkx:T 't XeM:o—T

I'tEM:-1t—rT1 I'-M:-r I'EN:T
't callcc M : 1 I'+throw M N : o

I'-M:0—7 I'EN:o
I'MN 1




Here — is the continuation type constructor, its ASCII representation in actual
ML programs being cont. See [12]| for a discussion of this language, including
an operational semantics.

As an example of the use of expression continuations in programming, we
consider the function rember-upto-1last from the recent programming textbook
The Seasoned Schemer [4]:

The function rember-upto-last takes an atom a and a lat [list of
atoms| and removes all the atoms from the lat up to and including the
last occurrence of a. If there are no occurrences of a, rember-upto-last
returns the list.

We can compute rember-upto-last by recurring over the list and jump-
ing every time the element a is encountered, thereby ignoring everything that
precedes it in the list. Unlike the Seasoned Schemer’s solution, the solutioin
presented here does not copy the list while recurring over it:

fun remberuptolast a lat =
callcc(fn skip =>
let fun R [1 = ()
| R (b::1) =

(R 1;
if b = a then throw skip 1 else ())

in

(R lat; lat) end);

4.2 Motivation of premonoidal categories and self-adjointness

The tuple (similarly, list) notation present in many programming languages may,
at first sight, suggest that the appropriate semantic setting ought to be a Carte-
sian or at least monoidal category.

But in terms of evaluation in a call-by-value language, a tuple (M, N) means
that each component has to be evaluated.

This can be made explicit by naming the intermediate values. If the first
component is to be evaluated first, one would write:

let =M in let y = N in (z,y)
Conversely, to evaluate the second component first, one writes:
let y = N in let x = M in (z,y)

The let-notation, then, has the advantage that the implicit sequencing is made
explicit in the textual representation.

For example, in a language with state, there are two possible meanings of
a tuple (M, N), depending which component is evaluated first. Consider the

following examples, where we make the evaluation order explict by using let.



ref 0 in

let val x (s :=!'s+1; !'s) in
let val y = (s := !s + 1; !s)

in #1(x,y) end end end ;

let val s

let val s = ref 0 in
let val y = (s := !s + 1; !s) in
let val x = (s := !'s + 1; !s)

in #1(x,y) end end end;

Just as for state, in the presence of continuations (first-class or otherwise) there
are two possible meanings of the tuple (throw k 1, throw k 2).

callcc(fn k =>
let val x throw k 1 in
let val y = throw k 2
in #1(x,y) end end);

callcc(fn k =>
let val y = throw k 2 in
let val x = throw k 1
in #1(x,y) end end);

In a monoidal category, there would be no way to distinguish between the
two composites. This makes monoidal categories suitable for those cases where
both composites are evaluated in parallel or where there can be no interference
between the two (which would the case, say, if both had access to disjoint pieces
of state). But with control, as given by continuations, we have both a sequential
evaluation order and interference between the components, since a jump in one
will prevent the other from being evaluated at all.

Put differently, the presence of computational effects, like state and control,
“breaks” the bifunctoriality, so one is left with a binoidal category. (Partiality
appears to be a separate case that should perhaps not be lumped together with
genuine effects like state and control.)

Next, we illustrate the self-adjointness by some ML code. The reader may
find it helpful to look at the types and see what categorical structure the typings
correspond to. For the self-adjointness on the left, we define (terms represent-
ing) the unit of adjunction, the isomorphism of adjunction and the continuation
functor as follows.

fun force h = callcc(throw h);
force : ’1a cont cont -> ’la;

fun phi f h = callcc((throw h) o f);
phi : (°2a cont -> ’b) -> (°b cont -> ’2a);

fun negate f = phi(f o force);
negate : (’la -> ’b) -> (b cont -> ’la cont);



Complementary (though not dually) to the double-negation map force, there
is a double negation-introduction map thunk.

fun thunk a = callcc(fn k => throw (force k) a);
thunk : ’la -> ’la cont cont;

To explain the computational meaning of the self-adjoint structure, we recall
the notions of thunking and forcing [13].

In the present setting, we consider a thunk to be something that expects a
continuation to which it is to pass its argument.

force passes the current continuation to its argument; thus, in

force(thunka)

the current continuation is passed to thunk a so that a is passed to the current
continuation. Hence force(thunk a)= a.

Finally, we point out that in the presence of first-class continuations, func-
tions can be identified with (a special case of) continuations by virtue of the
following conversions.

fun conttofun c a = callcc(fn k => throw c (a,k));
conttofun : (’a * ’2b cont) cont -> (’a -> ’2b);

fun funtocont f = callcc((fn (a,k) => throw k (f a)) o force);
funtocont : (’la -> ’1b) -> (’1a * ’1b cont) cont;

5 Continuation semantics and monads

The canonical way of giving continuation semantics is by a CPS transform. We
recall here a variant of the transform in [3]. [12]

[x] = A\k.kx
[Az.M] = Xk.k(Azh.[M]h)
[throw M N] = Ak.[M][N]
[callec M| = Ak.[M](Af.fkk)
[MN] = Xe.([M](Am.[N](An.mnk)))

The CPS transform can be read as a semantics in the style of monads as
notions of computation [10]
The denotation
[TFM:7]...k

of a program phrase of type 7 takes an argument k of type 7 — Ans. Reading
this in an uncurried fashion gives rise to a semantics in the monads as notions
of computation style

[L'F_-:7]:[] — ([r] — Ans) — Ans



The “monads as notions of computations”style categorical continuation se-
mantics is then an almost automatic byproduct of the CPS transform: one need
only interpret the A-terms in the “output” of the transform in a Cartesian closed
category.

However, this approach runs into conceptual and mathematical difficulties
when trying to address the question what the elusive answer type could be [9].
In the light of work on CPS in the w-calculus, such as [2], the answer type seems
to be a red herring, in that one can have continuations without an answer type.

The more recent approaches to modelling continuations in category theoretic
terms do not have an answer type, so appear to be more general. They merely
have, for each type 7, an object —7 that is to be seen as awaiting an input
of type 7, but with no commitment to a particular type for the output. Thus
correspondingly, the category theoretic structures for semantics are more general
too. Much is gained from that added generality in that it can be used to give a
more subtle, natural notion of value (see [18,19]).

6 Continuation semantics in @—-categories

In this section, we use the notion of symmetric premonoidal category together
with that of self-adjointness on the left, which we shall define, to give the no-
tion of ®--category, which we shall use to model continuations. It is routine to
verify that, for the monad (— — Ans) — Ans of Section 5, the Kleisli category
Kleisli(— — Ans) — Ans has the structure of a ®@—-category, and that the se-
mantics we give here agrees with that there. Even if every @—- category would
be so obtained, that would be a representation theorem which would not detract
from the axiomatic view.
First, for the definition of self-adjointness on the left,

Definition 15. A functor g : K°? — K is called self-adjoint on the left if g°P
is right adjoint to g with the unit of the adjunction and the counit being the
same.

To proceed, we need a piece of notation. In a premonoidal category with
a subcategory containing the same objects, where the premonoidal structure
agrees with finite product structure, we extend the notation for the pairing map
to the whole category by convention as follows: given maps f : A — B and
g: A— C, we write (f,g) : A— B®C for

id id :
W39 404 4o l®Lpec

Here we have made the (essentially arbitrary) choice that the second component
of a tuple is to be evaluated first.

Definition 16. A ®--category consists of a symmetric premonoidal category K
for which, when restricted to Z(K) with inclusion inc, the premonoidal structure
is given by finite products, together with



— a functor - : K°P — Z(K) such that for each object A of K, inco(A®—(.)) :
K°P — K is self-adjoint on the left, and

— a coretract thunk : idzx) — —= in Z(K) of apply, oinc : ==inc — idz(x),
where apply is the unit of the self-adjunction,

such that

— apply is dinatural in A and
— putting appIyA e —(A @ apply;);apply 4, we have

—apply; = thunk.
thunk; —=—apply = apply; thunk

thunkago = A @ thunke; A @ —apply; apply

apply g = (m2,m) @ 2(A® A'@ -B); A’ ® apply ;apply 4/

The thinking behind the definition of ®—-category is as follows. First, one
needs the premonoidal structure to model first order constructs such as envi-
ronments and tuple types. On top of this, the continuation type constructor is
added as a contravariant functor. The reason for the contravariance is that a
program o — T gives rise to a “continuation transformer” =7 — - by precom-
position. Intuitively, this is similar to building a function closure, and that is
why —f lies in the centre of the premonoidal category. We take central maps as
effect-free maps. (See [18,19] for a detailed analysis of this and its advantages.)
As explained in the introduction, the self-adjointness on the left accounts for
context switch. Its unit corresponds to forcing a thunk [13]. However, this by it-
self is not sufficient as we also need to pass arguments along with a jump. That is
why we require the self-adjointness even in the parameterized sense, i.e., for the
functor A ® =—. The unit of this self-adjointness is the call-by-value application
map, or jump with arguments. The self-adjointness on the left only ever allows
one to eliminate double negations; in order to construct A-abstractions, one also
needs a double negation introduction, or generic closure building operation thunk
satisfying thunk;apply; = id.

Dinaturality of apply seems to be fundamental, and is used extensively. The
first of the remaining axioms is a fact about continuations. The second is used to
make apply behave like a value in the sense that if thunk is natural with respect
to some map, then that map is somehow value-like. It is like a form of an 7
law without arguments. The remaining two axioms allow us to relate apply and
thunk for different indices.

Intuitively, dinaturality of the application map means that modifying the
operand of a function application by amap f : A — A’ is the same as modifying
the operator by a corresponding continuation transformer.

A© (A ©-B) 22UenD)

A® _‘(A ® _‘B)
f®ﬁ(A'®ﬁB)L lapply

apply

A'@-(A"®@-B) B




The universal property of the continuation functor can be expressed by the
following diagrams (naturality and triangular identity for force.)

“mA force A A —force A
—'ﬁfl lf R lforce
--B force B —A

In addition to the usual thunk; force = id, we have another axiom linking forcing
and thunking. A consequence of this is the self-adjointness on the right of the
restriction of = to the centre, with unit thunk.

thunk thunk
A E— —|—|A —|A —_— —|—|—|A
gl l—.ﬁg \ lﬁthunk
id
thunk
B B -A

(where g is central.)
In a ®=—-category, we have a (call-by-value) A-abstraction by defining

N, thunk; ~apply ;A4 ® ~f

Given a ®—-category K, we can give an interpretation [—] for A+callcc as
follows. Types and environments are interpreted as usual, except for the breaking
down of arrow types.

[-r] = -]
[o — 7] = ~(lo] @ -[r])
[z1:71,. . 2 T Lef [m]® - @[r]

A judgement I' F M : 7 denotes a morphism [I'] — [r], defined by induction
on M.

[x1 71, o s T oy 7] def ;
[[F e M:o— 1] wof Aoplz o, F M : 7]
[I" F throw M N : o] def (IF'E M :=7], [ F N :7]);[7] ® —m1;apply
def . .
[MFcallecc M : 7] = [I't M : =7 — 7];~(id-[,],id-[-7); (@apPlyq) -]
def

[’FMN:7] = ([’'FM:0—r7],[['F N :o]);apply

This semantics validates the the call-by-value  law (Ax. M)V = M|z +— V]
where V is a value, i.e. a variable or an abstraction. It is worth noting, too,
what does not hold. We have neither the unrestricted g law nor equivalences like

(A Ay.LYM N = (Ay \x.L) N M



because our semantic category is neither closed nor monoidal. Nonetheless, the
call-by-value 3 law could be stated as an adjunction: instaed of closure, we have
the weaker notion of central closure [15,18].

A discussion and validation of this semantics as such is beyond the scope of
the present paper. To some extent this is ongoing research, while some of it has
appeared in [18,19].

In this paper, what matters about the semantics is that it is based upon of the
continuation functor fitted into a framework for the semantics of environments.
This aspect is what we attempt to analyse by varying this framework — at least
in terms of presentation.

7 Continuation semantics in indexed —-categories

In this section, we use the definition of k-category as a basis, together with self-
adjointness, for defining the notion of an indexed —-category. We then use that
latter definition to give our third continuations semantics. In the final section,
we shall prove that it is essentially equivalent to the second, i.e., that given by
®~--categories.

Definition 17. An indexed —-category consists of a k-category H : C°P — Cat
together with an indexed functor - : H°? — s(C) such that inco— is self-adjoint
on the left, together with a coretract thunk of force; oinc, where force is the unit
of the self-adjunction, such that

— force is dinatural in A with respect to all maps in H; and

— letting (force , ) s be the correspondent under the adjunction to L 4 Hx((force1)s),
we have

—force; = thunk-,

thunk; =—force = force; thunk

thunkaxc = A X thunkg; A x —force; force

k! (idoxa) = ~¢(LH(forceq)); forcec

The left adjoint to reindexing along projections gives rise to a comonad on
each fibre, which we will write as () ® A. Furthermore , using inc, we have a
diagonal map 64 : A — A ® A in each fibre.

The thinking behind the definition is as follows. The category C with its finite
product structure allows us to model an environment as the product of the types
it contains. In the indexed category, program phrases defined in an environment
will be modelled as elements in the fibre over the denotation of that environment.



[o1] x - x [on]

1
lﬂzl:al,...,z":anl—M:T]]

[7]

The isomorphism of adjunction & is a first order binding construct that allows
us to make the dependency of a program phrase on certain variables explicit. The
negation functor is much as before, except that it now acts on those variables
explicitly singled out by a previous «.

I'x C r r r
A AxC A -B
Lf}—m>nft Lf»—lﬁfT
B B B -A

The motivation for the axioms is as for ®@—-categories, except that here, we can
avoid one of the axioms as it follows from the indexing of —. However, we need
our last axiom here in order to make the indexing of = coherent: intuitively, it
means that negating the retrieving of a value of type C from the environment
to cons a value of type C to a value of type A gives us an operation of partially
satisfying demand for a value of type C while leaving the demand for a value of
type A untouched.

This formalism, unlike that for a ®--category, separates the data and the
control mechanisms. The indexed functor — is in some sense oblivious to the
indexed structure with which first order data manipulation is described. We do
not want control to interfere with any data with which it is not concerned. So
the ability to model continuations with indexed categories as we do here is a
clear indication that we have separated the two. In the final section, we show
that this modelling is essentially equivalent to that using premonoidal categories
and self-adjointness. We take this as evidence that modelling continuations by
self-adjointness is a robust notion in the sense that it is not overly sensitive to
the way we model environments, as we could model them in two different ways,
in each case fitting the self-adjointness into this framework.

To model A+callcc, types are interpreted as objects in C. Environments are
interpreted using the product in C.

[l % -]
[r =1 ~(lde-Ir)

def
[e1 1,z ] =[] x oo x [7a]



A judgement I' - M : 7 denotes an element [I'F M : 7] : 1 — [r] in the fibre
over [I'].

[1:7,. . xn T by 7] = Hﬁjlffl(id[[m])

def thunk; (k=[x :0 b M : 7])

]
[['FXeM:0— 7]
] def [T+ M:=7];=(k(Hg, [T+ N :7])); force
]
I

J

[['F throw M N : o
[["F callcc M : 7 def [['F M : =7 — 7]; =6; force

def [I'FM:o0—r7];~([[F N :o]@-[r]);force

Again, the semantics as such is not the topic of the present paper. We only give

some hint at how it is intended to work.
We write a morphism from X to Y in the fibre over C as

X——Y

The most interesting clause is the one for A-abstraction in that abstracting over
a variable implies moving from one fibre to another.

In a more traditional (call-by-name) setting, A would be interpreted by means
of an adjoint to reindexing. Here, it is more elaborate, as it is decomposed into
the first-order abstraction given by the structure on the fibration on the one hand
and the fibrewise “negation” given by the continuation functor on the other.

A judgement Iz : 0 = M : 7 denotes a morphism

1oy 1

Negating this given an arrow

M

which, by virtue of x, amounts to

[o] x =[7] ———=—1

[x1
Negating this yields a morphism

=21 —————~([o] x =[])

[x1]

All that remains to be done in order to get the meaning of Az.M is to precompose
with thunk : 1 — =1, taking care of the double negation:

1l (o] x ~[])



8 Relating ®-—-categories and indexed —-categories

In this final section of the paper, we build upon the equivalence between k-
categories and symmetric premonoidal categories with the extra structure spec-
ified in Theorem 14 to relate ®—-categories and indexed —-categories. They are
almost but not quite equivalent. The only difference lies implicit in Theorem 14:
for our definition of ®—-category, we assert that the centre of our category has
finite products, whereas Theorem 14 merely asserts that we have a category
with finite products mapping, as the identity on objects, into the centre of our
category. We regard this as a minor difference, as the latter merely extends the
former mildly without changing any other structure. In fact, the latter concept
seems category theoretically more natural, as explained in [15]. The concepts of
®--category and indexed —-category are otherwise equivalent.

Let 64 < (ida,ida):A— A® A

Let K be a ®—-category. Let x4 be the Kleisli composition

frag E (m,idAefog

Define =4 : Kleislix(A @ (-))°" — Kleislizx)(A x (-)) by =aB = B on
objects and by

def
—af = A@-f; applyA

on morphisms. This is well-defined: A ® —f is central, because —f is, and

apply = apply; thunk; =thunk = thunk; =—apply; =thunk

is also central. ot
Define forces : 7 4—4B — B in Kleislix (4 ® (_)) by forcea = m2;apply;.
— 4 preserves identities 75 : A @ B — B because

—a(ma)
=-4('® B)
=A®-(!®@B); A® (A @apply,); apply 4

=A@ (A @apply;;! @ B);apply 4
=A®-('®--B;1®apply,);apply 4
=A®(1@apply;); A@ (! @ —=B);apply 4
=A@ ~(1@apply;);! @ =(1 ® ==B); apply,

A ® =(applyq); ! @ ==—B;apply,
=!®=B;1® —~(apply,); apply;
=1®-B

=m:A®-B — —-B

=14 preserves composition: let f: A B— C and g: A® C — D. Then

—a(f*ag)



=-4(04®@B;A® fig)
=A@ (04 ®@B;A® f;9); A® —(A @ apply,);apply 4
=A®-(A®apply;;64 @ B;A® f;g);apply 4

:(5A®A®A®—|C;A®A®—|9;A®A®—|(A®f);appIyA®A

_‘A(.f) *A _‘A(g)
=04 @ B;A®A® (A ®applyy; f); A®@apply; A @ (A @ applyy; g);apply 4

=64 ®A®A®—|C’;A®A®—|g;A®A®—|(A®f);A®appIyA;app|yA
So the required identity follows from the axiom

apply agar = (w2, m1) @ ~(A @ A" @ =B); A" @ apply ;apply.a

and the facts that (my,m ) is central and &; (mwo, m ) = 6.
The triangular identity — aforce 4 % 4 force4 = id holds:

—aforcey * 4 forceu
= =4 (ma;apply;) *4 forcea
= (A @ —apply;; —a(ma)) x4 forces
= (A @ —apply,; Ta) x4 forces
=04 ®-B;A® A® —-apply;; A @ mq; m2; apply,
= A ® —apply,;64 @ n=B; A ® ma;ma; applyy
= A @ —apply,; m2; apply,
= A @ —apply,:! @ === B;apply,
=1®~B;1 @ —apply,;apply,
= ma; mapply,; apply,
=m:A®-B — -B

force is natural:

_'A_'A.f * A fOfCeA
=A@ -(A@-fapply )iapply ;apply;
=AQ® ﬂapplyA;A @ (A @~ f);apply 4

=A® ﬂapplyA; apply 45 f

= A®@apply,; f
= forcey x4 f

Putting this all together, it follows that we have



Proposition 18. Given a ®@--category, (K,—,apply,thunk), the construction
(k(J),—a,forcea) as above, together with the given thunk, give an indexed —-
category.

Proof. Most of the proof is given above. For the rest, the axioms hold simply
because the category H; is given by K. O

Theorem 19. Given a symmetric premonoidal category K for which the pre-
monoidal structure restricts to finite product structure on the centre, to extend
this to the structure of a @--category is equivalent to extending the structure of
the k-category k(J) to that of an indezed —-category.

Proof. We need to prove that the construction of the proposition is a bijection
up to isomorphism. Given an indexed —-category, one can obtain a ®—-category
by considering H;. In order to show that the construction applied to that ®--
category yields the original indexed —-category, everything is routine provided
one can show that for any indexed —-category, the behaviour of = on H; deter-
mines its behaviour on H4 for all A. But this follows from the fact that — is
indexed and from the final axiom. O

There is little difference between the notions of indexed —-category and ®—-
category. The only difference between them lies in the choice of an explicitly
given category with finite products and an identity on objects strict monoidal
functor into a symmetric premonoidal category rather than consideration of a
property of the centre. The former is the structure given naturally by an indexed
not-category. But also, that structure is a category theoretically more natural
structure than that of @—-category, as explained in [15]. Computationally, how-
ever, it is natural to assume that in the presence of first-class continuations
the whole of the centre admits finite products. This is becasue the self-adjoint
structure allows every central morphism to be reified, as explained in [19].

9 Conclusions

We have shown how to account for environments in languages with a more
computational flavour than the pure A-calculus by generalising two semantics
for environments and showing them essentially equivalent.

Modelling environments in some way is pervasive in semantics; however we
have put here particular emphasis on continuation semantics, for the following
reasons:

— First-class continuations allow the full callcc to be added to the language,
which is the most powerful version of control found in actual languages. This
contrasts with the situation for state, where only a rather weak notion of
global state is added by commonly used notions like the state monad.

— The construct to be studied has universal properties on the category of
computations. That does not seem to be the case for constructs associated
with state, such as assignment.



— Continuations are an advanced concept in programming languages that could
be made easier to use by semantic clarification. While local state has sub-
tleties, it is not obvious if global variables as introduced by the state monad
are all that much in need of elucidation.

(We have made a comparison with state here, as state and control appear to be
the most natural things to add to a programming language, but this discussion
would apply to other effects, such as exceptions.)
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