On Batcher’s Merge Sorts as Parallel Sorting Algorithms

Christine Rib*
Max-Planck-Institut fiir Informatik
Im Stadtwald
D-66123 Saarbriicken
email: rueb@mpi-sh.mpg.de

Abstract

In this paper we examine the average running times of Batcher’s bitonic merge and
Batcher’s odd-even merge when they are used as parallel merging algorithms. It has been
shown previously that the running time of odd-even merge can be upper bounded by a
function of the maximal rank difference for elements in the two input sequences. Here we
give an almost matching lower bound for odd-even merge as well as a similar upper bound
for (a special version of) bitonic merge. From this follows that the average running time of
odd-even merge (bitonic merge) is ©((n/p)(1+log(1+p?/n))) (O((n/p)(1+log(1+p?/n))),
resp.) where n is the size of the input and p is the number of processors used. Using
these results we then show that the average running times of odd-even merge sort and
bitonic merge sort are O((n/p)(logn + (log(1 + p*/n))?)), that is, the two algorithms are

optimal on the average if n > p?/2V1°82, The derived bounds do not allow to compare
the two sorting algorithms directly, thus we also present experimental results, obtained
by a simulation program, for various sizes of input and numbers of processors.

1 Introduction

Batcher’s bitonic merge sort and odd-even merge sort are two well known comparator net-
works for sorting [1, 11]. The two networks can easily be converted into parallel sorting algo-
rithms where each processor holds more than one element by replacing comparisons between
input elements by a split-and—merge procedure [11]. The running time of a straightforward
implementation will then be O((n/p)(logn + log® p)), where n is the size of the input and p
is the number of processors used. Although this is not optimal, the constants involved are
small and the two algorithms can be the fastest available for small input sizes.

In contrast to odd-even merge sort, bitonic merge sort has often been used in comparative
studies of sorting algorithms for parallel computers [3, 9, 5, 7]. Because of the small constant
factors, here bitonic merge sort proved to be the fastest sorting algorithm for small input
sizes.

In [12] it has been shown that the average running time of the odd-even merge (odd-even
merge sort) algorithm can be improved much by keeping the amount of communication to
a minimum. The resulting running times are O((n/p)(1 + log(1 + p*/n))) for merging and

*Supported by the Deutsche Forschungsgemeinschaft, SFB 124, TP B2, VLSI Entwurfsmethoden und
Parallelitat.

O((n/p)(logn +logplog(1l + p*/n))) for sorting. (In the case of merging (sorting) we assume
that each outcome of the merging (each permutation of the input elements, resp.) is equally
likely.) In the meantime this version of odd-even merge sort has been used in two comparative
studies of sorting [4, 14]. In both cases, odd-even merge sort was the fastest sorting algorithm
among those considered for some input size.

In [4] the derived bounds from [12] were also used to predict the running time of the
implementation. However, it turned out that the predictions were much too pessimistic.
In fact, as we will show in this paper, the average running time of the odd-even merge sort

algorithm can be bounded by O((n/p)(logn+ (log(1+p?/n))?)), and thus the odd-even merge

sort algorithm is optimal on the average if n > p2/2\/@. We will also show that the running
time of the odd-even merge algorithm is closely related to the maximal rank difference for
elements in the two input sequences. From this we derive nearly matching upper and lower
bounds for its average running time.

In [13] it was pointed out that the average running time of bitonic merge sort can be im-
proved by storing the input elements such that the smaller indexed processor always receives
the smaller elements and again keeping the amount of communication at a minimum (the
corresponding merging network is known as the balanced merger [6]). This means that an
already established ordering among elements will be preserved. In this paper we will show
that the average running time of the order-preserving bitonic merge algorithm can be upper
bounded by a function of the maximal rank difference of elements in the input sequence.
From this we obtain O((n/p)(1 +log(1 + p*/n))) (O((n/p)(logn + (log(1 + p*/n))?)), resp.)
as upper bound for the average running time of the order-preserving bitonic merge (bitonic
merge sort, resp.) algorithm.

The results obtained in this paper do not allow to compare the behaviour of the odd-
even merge sort algorithm and the order-preserving bitonic merge sort algorithm directly.
Thus we also present experimental results that compare the average running times of the two
algorithms for varying sizes of input and numbers of processors. For these experiments we
do not use a specific computer model; rather, we assume that the processors form a complete
graph and that the number of exchanged elements determines the running time. The actual
average running time of an implementation depends strongly on the parallel machine used
and such an investigation is beyond the scope of this paper. However, we hope the results
obtained here will help to estimate actual average running times in the future.

The obtained upper bounds on the running times show that the two merge sort algo-
rithms can be very fast with a large number of processors and a moderate input size. The
experimental results show that the upper bounds are too pessimistic; this is largely due to
the fact that we wanted to obtain a closed formulation.

This paper is organized as follows. Section 2 defines comparator network based parallel
algorithms and Section 3 shows how we define running time. Section 4 is concerned with odd-
even merge, Section 5 with bitonic merge, and Section 6 with the two merge sort algorithms.
Section 7 gives some experimental results and Section 8 contains some conclusions.

2 Comparator Network Based Parallel Algorithms

The algorithms considered here are based on comparator networks. A comparator network
consists solely of comparators and wires. Each comparator network for an input of size n can

be drawn as a diagram consisting of n horizontal lines that are connected by vertical links,
where each vertical link corresponds to a comparator [11].

A comparator network for merging (sorting) p elements can be turned into a parallel
algorithm for merging (sorting, resp.) n = pr elements using p processors as follows. The
processors are assigned to the horizontal lines and each comparator that connects the lines of
two processors is replaced by a procedure that sends the smallest r elements stored at both
processors together to one processor and the other r elements to the other processor.

To improve the running time of the algorithm, the exchange procedure can be implemented
as follows. If the procedure is called for processors P; and P;, they first determine whether
they have to exchange any elements in this step. This can be done in time O(1) by sending the
largest and smallest elements of the lists. If elements have to be exchanged, the processors
either exchange all their elements at once or use binary search to determine how many
elements have to be exchanged and afterwards exchange exactly these elements. As we will
see, this can reduce the average running time of an algorithm much.

In the remainder of this paper we mean by odd-even merge (sort) and bitonic merge (sort)
parallel procedures that use the above explained exchange procedure. Additionally we imply
that the input elements are stored such that the smaller elements are always sent to the
processor with the smaller index. (In the case of bitonic merge the corresponding merging
network is known as the balanced merger [6]. In [2] it was shown that the bitonic merge
network and the balanced merger are essentially the same networks.) We will also assume
that the number p of processors used is a power of two. The algorithms considered in this
paper can also be used if p is not a power of two: let p’ be the next larger power of two.
Use the algorithm for p’ processors. Every time a processor P; has to communicate with a
processor P; where j > p, P; does nothing. Since the larger elements are always sent to the
larger indexed processor, this procedure will merge or sort the input correctly. The given
bounds on the running times hold with p replaced by p'.

3 What do we measure?

Any parallel algorithm consists of two parts, namely computation and communication. In
many parallel computers existing today the constants involved in communication are much
larger than the constants involved in computation (e.g., Intel’s Paragon or Cray’s T3D), but
there are also computers where the constants are approximately the same (e.g., MasPar’s
MP-1). Thus the constants involved in the two parts can be quite different and we treat
them separately.

We will make statements of the following kind. Let alg stand for an algorithm, let n
be the size of the input and let p be the number of processors used. Each processor stores
r = n/p elements of the input. The algorithm consists of T steps where in each step pairs
of processors communicate and possibly exchange elements. We define the functions t4;, and
R4 as follows (for ease of notation later on we number the steps from T down to 1).

Definition 1 t,,(T4+1,7)=0,0<;7<p-1.

taig(?,J) = max{tagy(i+1,j), tag(i+1,k)} +2(j, k), 1 <i < T, where Py is the processor that
communicates with P; in step 1 and x(j, k) is the number of elements P; and Py exchange.
If P; does not communicate with any processor in step i, tqq(7, j) = tag(t + 1, 7).

Finally, Rqig(r,p) = max{t(1,75);0 < j <p—1}.

A lower bound for Ry, will always be a lower bound for the running time of the algorithm.
For our upper bounds on R, we assume in most cases that z(¢,j) = r whenever the two
communicating processors exchange an element. By doing this, we neglect the communication
network but we account for the local computation time. In this formulation we also neglect
the time it takes to determine whether two processors exchange elements which leads to
additional ©(T') time. We do this because the constant involved in this part of the algorithms
can be much larger than the other constants because of startup times.

4 Odd-even merge

In this and the following sections p always denotes the number of processors used.

In this section we show that the running time of odd-even merge is closely related to
the maximal rank difference of elements in the two input sequences. Namely, we show the
following. Let A and B be the two sorted sequences to be merged and let dy;q, = max{|
rank of # in A — rank of 2 in B|; # € AU B}. Then the running time of odd-even merge is
O((n/p)(1 +log(l + dpmazp/n))) where n is the size of the input. (A similar, but somewhat
weaker, upper bound has been proved in [13].) From these bounds upper and lower bounds
for the average running time of odd-even merge follow.

From the odd-even merge network we can derive the following parallel merge procedure
(see Figure 1). Assume we want to merge two sorted lists A and B of length m such that
the even indexed processors hold subsequences of A and the odd indexed processors hold
subsequences of B. Each processor holds 2m/p =: r elements. The following procedure will
merge the two lists.

procedure Odd_Even_Merge(p);
for all i, 0 < i< p/2, pardo
compare-exchange(Py;, Pait1);
for : = logp — 1 downto 1 do
for all j,1<j < (p—2')/2, pardo
compare—exchange(Pyj_1, Pyjioi_3);

Compare-exchange(P;, P;) denotes a procedure where P, gets the smallest r elements
stored at P; and Pj, and P; gets the largest r elements.

First we will analyze the running time of the for-loop of the odd-even merge algorithm.
For ease of notation, we call the step of the for-loop where the index ¢ has a certain value &,
step k of the for-loop or step k of the algorithm. Correspondingly, the first step of odd-even
merge will also be called step log p.

Let A7 = Ajr7Ajr—|—17---7A(j-|—1)r—1 and B = BjT,BjT+1,...,B(j+1)T_1, 0<7<p—1.
We define 4,4, as the first (or maximal) ¢ where at least two elements are exchanged in the
for-loop of the algorithm and e,,,, as the maximal number of elements that any processor
exchanges in step i,4,. The following lemma gives upper and lower bounds on d,,,, that
depend on i,,4, and €,,4z.

Lemma 1

1. dpae > (2=~ — Dr + 26,00

2. If emaz <7 (€maz =T), dmaz < Qimaz—lp 4 90 (dmaz < Qimaz resp.).
3. Let (2771 +2)r < dppaw < (27 — 1)1+ 1. Then ez = j and €pmaz = 7.

Po; Ag ‘ Ly

Py; By ‘ Ey
Py Ay ‘ Ey
P3; By ‘ Es
Py; Ay ‘ Ey
Ps; By ‘ Es5
Fes; As ‘ Es
Pr; Bs ‘ Er
Pg; Ay Es
Po; By ‘ ‘ Ey
Pyo; As ‘ E1o
P11; Bs ‘ E1y
P23 Ag ‘ E1y
P35 Bs ‘ Eis
Pra; A7 ‘ E4
P55 Br Ei5

Figure 1: Odd-even merge with 16 processors.

Proof. Let § = 2'mas, Before the execution of step fmqe processors Py; and Psjy4; hold the
elements of A7UB7, 0 < j < p/2. Also, in step 4,4, only elements from A will be exchanged
by elements from B (this is not necessarily the case in later steps).

1. (A simpler version of this claim has been proved in [12].) Let Py;4q and Psjis be two
processors that exchange e,,q, elements in step iy,4,. Assume that Ppjyq sends €y,4, elements
from A. The largest element from A that is sent by P2j4118 Aj41)r—epan
element from B that is sent by Pyjis i B(j16/2)rfemae—1- Lhus, the rank of z in A differs
from the rank of z in B by (j + 6/2)r + €maz — ((J + 1)7 — €maz) = (/2 =)1 + 2€pm42 =
(2imaz =1 — 1) 4 26,4, and the claim follows.

2. First suppose that r elements from B are moved from processor P11 to processor Py ys
(the case that elements from A are moved is symmetric). At the end of the for-loop these
elements can not be stored at a larger processor than P,jys (a proof of this fact can be
found in Lemma 2). Thus the smallest of these r elements, namely Bj,, has rank at most
(2j 4+ 8)r —jr = (j+3&)r in A, and its rank difference is at most (j 4 §)r — jr = §r = 2imacyp,
Note that this is the largest possible rank difference in this case.

Next assume that €,,4. < r and suppose that €,,4, elements from B are moved from processor
Py;41 to processor Pyj4s (again, the other case is symmetric). If 2j+6 = p—2, the exchanged
elements from B belong to BP/2=1-9/2_ Since their rank in A is at most p/2 — r, the claim
follows by a simple calculation. Thus suppose that 25+ < p— 2. Then the e,,4, exchanged
elements form B can only be larger than e, elements of A7+8/2+1 gince else processors

=: z and the smallest

Pyj13 and Psji94s would exchange more than e, elements. Thus the rank of the smallest of
the exchanged elements, namely B 1), —e,,,,; il A is at most (j—|—1—|—5/2)r—|—emax and its rank
difference is at most (j+1+46/2)r+emar—((F+1)r—emaz) = (6/2)r+2€mae = 2°m* L r4-2€,00.-
Again observe that this is the largest rank difference possible in this case.

3. First assume that indeed 4,4, = J, but that e, < r. According to Claim 2, d,4: <
2imae=l 4 2e 0 < (20mae=l L 2)p = (2271 4 2} which is a contradiction.

Next assume that ¢,,4, < j. According to Claim 2, dq, < Qimawy < 291y < (21_1 +2)r,
which is again a contradiction.

Finally assume that ime, > j. According to Claim 1, dpae > (2mee™! — 1)r +2 >
(29 — 1)r + 1, and thus Claim 3 holds. O

Lemma 1.1 gives immediately rise to an upper bound on the running time that depends on
Qinaz: SINCE 14, 18 the first step of the for-loop that is executed, no processor can exchange
more than (imaes — 1)r + €mas elements during the execution of the for-loop. Lemma 1.2
shows that d,,4, cannot be too large; however, this does not give rise to a lower bound of the
running time: the remaining ¢m,q, — 1 steps could be executed in less than (ipmqe, — 1)r time.

In the following we proof a lower bound for the running time of odd-even merge that
depends on d,,4;. To this end we first examine which paths an element takes during the
execution of odd-even merge, and which paths are particularly expensive.

Lemma 2

1. Let x be stored at processor P; before a step of the for-loop and at processor Py after the
step, j # k. Then x cannot move farther away from P; than Py in the remaining steps of the
for-loop, and 1t can never return to P;.

2. Let x be stored at processor P; before the execution of the for-loop and at processor Py at
the end of the for-loop. Then the path v takes during the execution of the for-loop is uniquely
determined by j and k.

Proof.

1. To see this, first observe that in all steps of the for-loop processors with odd indexes
communicate with processors with even and larger indexes. Thus z, if it is exchanged, alter-
nates between odd and even indexed processors. Since the distances between the processors
become smaller in each step, z can never be moved to a processor that is farther away from
P; than Py or return to P;.

2. This follows from part 1 and the fact that the distance between communicating processors
is more than halved in each step of the for-loop. |

Lemma 3 Let x be stored at P; at the beginning of the for-loop and at Pjis at the end of
the for-loop where § = £2/3(2' — 1+), a € {0,1/2} and i € N. Then = will be moved to
another processor exactly in the last 1 steps of the for-loop.

Proof. First note that i is even iff § = £2/3(2' — 1) and 7 is odd iff § = £2/3(2' —1/2). This
follows because ¢ and ¢ are natural numbers.

According to Lemma 2, the steps of the for-loop in which z is moved to a different
processor are uniquely determined by j and j + 8. Thus it suffices to show that j + ¢ is the
processor that can be reached from P; during the last ¢ steps of the for-loop. First suppose
that o = 0. Let P, be the processor that can be reached from P; by using all of the last ¢
steps. Then

k—j] = 2@ -1)-27 ' - +.+22-1)-(2'-1)
= 2/3(2' - 1).

Next suppose that @ = 1/2. Again, let P, be the processor that can be reached from P;
by using all of the last ¢ steps. Then

k—j] = @ -1)-2'-D+.-22-1D+(2'-1)
= 2/3(2' —1/2). O

The following two lemmas show that if one element is moved a certain number z of
processors forward during the for-loop, we can always find a subsequence Z of the input (i.e.,
Z=A orZ= Bj) where all elements of Z are moved y or 1 + y processors forward for all
y < z — 2. From this we can then derive a lower bound for the running time of odd-even
merge.

Lemma 4 Let B; have rank j+ 6 in A and let By, have rank k+~v in A, j < k and 6 > .
Let § > B > ~. Then there exists an index l, j <1 < k, such that By has rank 4+ in A, that
is, every rank difference between 6 and v occurs between B; and By. A similar claim holds
for A and B interchanged.

Proof. Let B, have rank ¢+ « in A. Consider B,y;. Then either B,; follows directly after
B, in AUB, or z > 1 elements of A lie between B, and Byy;. In the first case B4 has rank
g+a=(¢+1)4+(v—1)in A and in the second case it has rank g+ a+z = (¢+1)+a+(z—1)
in A. That is, in the first case the rank difference is decreased by one whereas in the second
case the rank difference can not be decreased.

Since the rank difference can not decrease by more than one, it follows that all rank differences
between ¢ and v occur between B; and Bj. |

Lemma 5 Let x be an element that is moved from processor Pyjy1 to processor Pyjii4q
during the execution of the for-loop, o > 2. Let 0 < 3 < av— 2. Then there exists a processor
Popy1, k> j, where all elements stored at processor P11 before the execution of the for-loop
will be stored at processor Papyi14 or at processor Popio. 5 at the end of the for-loop.

Proof. Assume that + € B. Then z belongs to B’ (the case that € A is symmetric). Let
q > j be maximal such that B! is stored at processor Py for all t, j < t < ¢, before the
execution of the for-loop. The index ¢ exists because v > 2: Assume that @ = B 1),_1-
The rank of z in AU B is at least (27 + 1+ a)r and thus z > A(jq),- Since o > 2,
Bijr1yr > A(j2)r and Pygjy1y4, stores B/*1 before the execution of the for-loop. We will
show that 7 < k < ¢q.

First observe that either ¢ < p—2 and B 41y, < A(g42)r—1, and thus By, ’s rank difference
is at most (¢+2)r —1—gr = 2r — 1, or that else ¢ = p—1 and thus the rank difference for By,
is r. On the other hand, the difference of ranks for is at least (2j+14a)r—2((j+1)r—1)=
(v = 1)r +2.

We next show that there exists an index u, j < u < ¢, where the first element of B* will
be stored at processor Pp,4143 at the end of the for-loop. Assume otherwise. Then, for all ¢,
Jj <t<gq,By’srank in AUB will be either at least (2t 4+24 §)r or at most (2t+ 1+ 3)r — 1.
That means that By, ’s rank in A is at least (4 2+ §)r or at most (t+ 14 3)r — 1, and that
the difference of ranks for By, is at least (24 3)r or at most (1+ 3)r — 1. On the other hand,
the rank difference for B(;y,), is at least (¢ —1)r+1 > (1+3)r —1 and thus at least (24 3)r.

Since 2+ f)r — (1 + B)r — 1) = r 4 1, if follows from Lemma 4 and by induction that the
rank difference for By, is at least (2 +)r > 2r for all ¢, j < t < ¢, which is a contradiction.

Thus, let w, j < w < ¢ be maximal such that By, ends in Ps,4143. Assume there exists
an element in B* that does not end in Pyyq148 0T in Poyq243. Then B(w-l—l)r will end at least
in Powts+s = Po(wi1)4+143- However, because w is chosen maximal, this can not happen.
Thus Byy1), lands at least in Poyyats = Plows1)+24+8) and Byyr),'s rank difference is at
least 2((w+41)4+24 F)r — (2(w+1)r) = (2+ 3)r. This is a contradiction, since we can again
argue that By, ’s rank difference is at least (2 + §)r.]

By combining Lemma 3 and Lemma 5, we can show a relationship between d,,,q, and the
maximal distance a subsequence of A or B has to travel.

Lemma 6 If dpa, > (2/3)(20 + 7/2)r, i > 2, there exists a subsequence A’ of A or a
subsequence B’ of B, where A’ (B7, resp.) is moved to a different processor during steps i
through 2 of the for-loop.

Proof. Let 3 = (2/3)(2' — 1)if i is even and let 8 = (2/3)(2! —2) if i is odd. Let « = 342 <
(2/3)(2 + 2). Let = be an element with rank difference d,q,. We assume that @ = B, and
B, > A,. Thus 2’s rank in AU B is at least 25+ (2/3)(2' +7/2)r. Let s = tr4+u, 0 < u < r.
Then 2s+(2/3) (2147/2)r = 2(tr+u)+(2/3) (2+7/2)r > (2t+(2/3)(214+2)+1)r > (2t+1+a)r.
Thus z will be moved from processor Py;41 to at least processor Py4144. According to Lemma
5, there will be a subsequence of B that is moved from processor P5;4; to processors Pojy143
and Pj4 04 during the execution of the for-loop. Because of the choice of 3, this subsequence
will thus be moved to a different processor during steps ¢ through 2 of the for-loop: if 7 is even
(odd), processor Pyjio43 (processor Pyjy143, resp.) will be reached by step 2, and processor
Pyj114p (processor Pyjyo4g, resp.) will be reached by step 1. O

Next we put together the results shown above to proof lower and upper bounds on the
running time of the for-loop of odd-even merge that depend on d,, 4.

Definition 2 Let tg,(i,7), 1 < i <logp,0<j <p—1 and R, (r,p), be defined as described
in Section 8 where alg = for stands for the for-loop of odd-even merge.

Theorem 1 Let T = (|log(max{2, dpae/r-3/2—7/2})] — 1)r, and let S = (|log(dmaz/T +
)]+ 1)r.

1. T < Rfor(r7p) < S.

2. If dmax < r, Rfor(r7p) < dmax/2-

3. Let dppuz/r =2y —1,1 <y <2 (thus S = (x + 1)r). Let dpao/r-3/2—-7/2 > 0. If
(3/2)y—5/2°>2,S—T=r. If(3/2)y—5/2° <2, S —T = 2r.

4. S—-Te{r2r}.

Proof. Claim 1 follows from Lemma 1.1 and Lemma 6 and Claim 2 follows from Lemma
1.1. Claim 3 follows from Claim 1 by simple calculations, and Claim 4 follows directly from
Claim 3. O

We want to use the relationship between the running time of odd-even merge and the
maximal rank difference in the input from Theorem 1 to derive bounds for the average
running time of odd-even merge. Till now we only considered the running time of the for-
loop of odd-even merge; now we include the first step, before the for-loop.

Definition 3 Let toqa(?,5), 1 < i <logp+ 1,0 < j < p—1 and Roaa(r,p), be defined as
described in Section 3 where alg = odd stands for odd-even merge.

Let P(A) be the probability that there exists an element x in AU B where the rank of x in A
differs from the rank of x in B by A.

For A > 0, let Q4(A) be the probability that there exists an element x in A where the rank
of © in B minus the rank of x in A is A.

Theorem 2
[log((3/2)p—T)]-1 '
r (QA (2r — 1) + > oQa((ev+7) r/3))

=2

< Exp (Rodd)

< (1 +10§1P ((271-1) r))

Proof. If an element z in A has rank difference d,,,4, and @’s rank in B is larger than z’s rank
in A, the subsequence A; from Lemma 6 will be moved in the first step of odd-even merge.
Also, if dyee > 2r — 1, at least one subsequence of A will be sent to a different processor in
the first step. This can be seen as follows. Assume that A, has rank difference 2r — 1. If
x = jr fora j > 0, A’ will be moved in thle first step. If @ = jr+ k&, ¢ <k <r, Ay, has
a rank difference of at least r and thus A’t! will be moved in the first step. Thus the two
inequalities follow from Lemma 6 and Lemma 1. O

Theorem 2 gives bounds for the average running time of odd-even merge in terms of the
probability that a certain rank difference occurs. To arrive at a closed formulation, we have
to substitute the probabilities by closed formulas. Since the same has to be done for bitonic
merge, we do this in Section 6 for both merging algorithms together.

The following lemma gives an expensive input for odd-even merge.

Lemma 7 Let Ay > B,,. Then processor P, and processor P,_, exchange their elements in
all steps of odd-even merge.

Proof. First note that all processors exchange all their elements in the first step. By
induction it can be shown that before step ¢ of the for-loop, logp — 1 > ¢ > 1, the first
2i+1 processors store elements of the following kind. The even indexed processors store a
sorted sequence F* and and the odd indexed processors store a sorted sequence G* where
the first element of F* is larger than the last element of G'. (Note that F'°8P~! = B and
G"8P~1 = A)) A similar claim holds for the last 2°+' processors. Thus processor P; and
processor P,_o have to exchange all their elements in all steps of the for-loop. O

5 Bitonic merge

The bitonic merge network uses the following recursion.

Let A = Ag, Ay, Ay, ..., Ajy—1 and B = By, By, Bo, ..., B,,,_1 be the two sequences to be merged
and denote the outcome of the merge by FEy, ..., Eo,n—1. If m = 1, compare and exchange,
if necessary, Ag and Bp. Else, merge A¢ven = Ao, Az, A4, ... with Bgqq = Bj, Bs, ... into

C = 007017027 ... and Aodd = A17 1437 ... with Beven = _BO7 Bz, _B47 ...into D = DO, -D17 Dz,
After this is done, compare and exchange, if necessary, C; with D, to form elements E3; and
Ey;4+1 of the output, ¢ > 0.

To obtain a network from this recursion we have to decide how to store the input. Figure
2.a shows the network given in [1] where B is stored in reversed order behind A, and Figure
2b shows the network we use. It is obtained by storing A and B alternating (this network
is also known as the balanced merging network [6]). From it we can again derive a parallel
merging algorithm by substituting all comparisons by the Compare-Exchange procedure of
Section 4.

procedure Bitonic_Merge(p);
for + = log p downto 1 do
{ mask = 2/ — 1;
for all j, j&2'~! =0, pardo
compare—exchange(P;, Pj maske);
}

Here, & denotes bitwise AND and " denotes bitwise XOR. That is, in step i each processor
P; communicates with the processor whose index is obtained by flipping the rightmost ¢ bits
of the binary representation of j. (Similar to odd-even merge, we denote the step of bitonic
merge where the index 7 has value k by step k.)

Ao ‘ Py Ao I Py
Ay Py By I Py
As ‘ P, Ay I Py
As Py B I Py
Ay ‘ Py As I Py
As Py Bo I Py
Ag ‘ FPe Az I Py
A7 Py B I Py
B; ‘ P Ay I Py
Bg Py B, I Py
Bsy ‘ Py As I Py
By Py Bsy I Py
Bs ‘ Pis Ag I Prs
Bo Py Bg I Py
B ‘ Py A7 I Py
By Pyg Bs Pyg
a) original bitonic merge b) modified bitonic merge

Figure 2: Bitonic merge with 16 processors.

Note that the distances between communicating processors in a given step of Bitonic_Merge
differ much: the distances ly between 1 and 2° — 1 in step i. Since we want to establish a
relationship between d,,q, (see Section 4) and the running time of Bitonic_Merge, we divide
the communicating pairs of processors into logp batches. The membership to a batch is

10

determined by the difference between the indexes of the subsequences of A and B the two
processors hold at the beginning of the algorithm. Batch ¢ covers all (odd) differences § where
21=2 < § < 271 if ¢ > 2 and where § = 0 if i = 1. Thus, Batch 1 contains all communicating
pairs of step 1, and Batch ¢, ¢ > 2, contains all communicating pairs (P;, Py) of steps logp
through 2 where 27~ < k—j < 2/ (0 < k—j < 4if i = 2). Note that communicating pairs of
Batch ¢, ¢ > 2, occur in steps log p through i. Figure 2 shows the balanced merger of size 16
where membership to a batch is indicated by the thickness of the vertical line connecting the
two horizontal lines corresponding to the communicating processors. We want to establish a
relationship between the maximal 7 where a pair of processors belonging to Batch ¢ exchange
elements and d,;q, and the running time of Bitonic_Merge. The following lemmas will do
this.

Lemma 8 Fach processor P; can belong to at most one communicating pair of Batch i if
1 > 3 and to at most two communicating pairs of Batch 2.

Proof. First assume that ¢« > 3. Let P; belong to Batch 7 in step [of the for-loop. In step [
P; communicates with Py where &k can be produced from j by flipping the rightmost [/ bits of
j. In other words, j — k = j mod 2! — k mod 2! = 2(j mod 2!) — 2! + 1. Since j and k belong
to Batch 4, we know that 2071 < |j —k| < 2! and thus 27! < |2(j mod 2') — 2! +1] < 2'. From
this we can derive that either 2=! + 2! — 1 < 2(j mod 21) <2042 _Torelse2 —20 -1 <
2(j mod 2’) < 20— 2i=1 _ 1. Thus either 2/-1 4 2:72 < 7 mod ol < ol=1 4 9t=1 _ 1 or elge
ol=1 _9i=1 < jmod 2! < 2I=1 —2i=2 _ 1,

Let v be maximal where P; belongs to Batch ¢ in step v and let : < ¢ < v. Since one of
the above inequalities holds for v, 29 divides 21, and ¢ > ¢, either

272 < jmod 29 <271 — 1

or else ' '
20 — 271 < ymod 29 < 29 — 2172 _ 1,

Now assume that P; belongs to Batch ¢ in step ¢. Then either
2071 L 9172 < jmod 29 < 2971 427l

or else ' '
20—t _ 9=l < jmod 29 < 2971 9172 _ 1,

Thus, we have two sets of inequalities where one of each set has to hold. However, then either
2i=1 4 9172 < 9a-1 4 972 < yped 29 < 271 — 1,
or else
272 < jmod 29 <297 — 272 _ 1 and 297 — 27 < jmod 27 < 27 — 1
(i.e., ¢ > i+ 1 and ¢ < i), or else
29 271 < imod 29 <297 4 27 1 and 297 4+ 2772 < jmod 27 < 29 — 2172 _ 1
(i.e., g <iand g > i+ 1), or else

2071 <29 _ 971 < ymod 29 < 207t 972 1

11

neither of which is possible.

Next assume that ¢ = 2. Let P; belong to Batch 2 in step /. Now we can conclude that
either 2171 < 7 mod ol <2l=1 4 {orelse 271 —2< 7 mod ol < ol=1 _ 1,

Let v be maximal where P; belongs to Batch 2 in step v, and let 2 < ¢ < v. Since 2¢
divides 2'~! and the above condition holds for v, either 0 < j mod 29 < 1, or else 29 — 2 <
7 mod 29 <29 — 1,

Again assume that P; belongs to Batch ¢ in step ¢. Then 2971 —2 < j mod 29 < 2971 4 1.
This can only be the case if ¢ = 2 and thus there exist at most two steps where P; belongs
to Batch 2. |

To derive an upper bound for the running time of bitonic merge Lemma 8 does not suffice:
it might happen that a processor has to wait for other processors that belong to batches with
smaller numbers. The following lemma shows that no processor has to wait for a long time.

Lemma 9 Let P; Py ey Pjy oty Py be a path an element x can take during steps log p
og p+1 log p Ji+1 Ji
through t of the algorithms, © > 2 (that means that x is stored at processor P after the
execution of step k).
Then there erists at most one index t, logp >t > 1, where P;, and P;

1 or smaller in step t.

w41 belong to Batch

Proof. Let processor Pj belong to Batch i or smaller in step ¢, ¢ > i. Then |k —] < 2
where [is produced from k by flipping the rightmost ¢ Bits. In other words, k mod 29 +
Imod2?=29—-1 and [=k+2?—1-2(k mod 27). Thus |k — | = |k mod 2¢ — [mod 2¢| =
12(k mod 29) — 29 + 1| < 2!, or 29 — 2' — 1 < 2(k mod 29) < 2¢ 4 2! — 1. It follows that
2¢-1 _ 91-1 < Lmod 2¢ < 2971 4 2i-1 _ 1. That means that &k = k;2¢ + 297! + &, or
k=120 42071 — 271 4) where 0 < ky < 2071,

Agsume that v = j;, logp >t > 4, and P, belongs to Batch 7 or smaller in step ¢t. Let ¢
be chosen minimal among all indexes with this property. We know that v = v12t 4+ 2t=1 4 vy
or v =012+ 271 — 2171 4 o where 0 < vy < 2071 (see Figure 2).

Agsume further that v = js, s > t, and P, belongs to Batch ¢ or smaller in step s. Since
P, can be reached from P, in steps s through ¢ (in all of these steps, either the rightmost
t bits are flipped or all of them stay the same), u is of the form u = ;2" + 271 + uy or
w=u 2t 4+ 271 — 2i=1 4y where 0 < uy < 2°~!. From this follows that s = ¢, which is a
contradiction. |

Definition 4 Let i,,,, be the maximal ¢ where a communicating pair of Batch i exchanges
an element and let €,,4, be the mazimal number of elements exchanged in Batch ip,qz.

Let tyi(i,7), 1 <i<logp+1,0 < j<p—1 and Ryy(r,p), be defined as described in Section
3 where alg = bit stands for bitonic merge.

Lemma 10 dmax > 2imam_2r + 2€max Zf 7;maa& > 3 (dmax > 1 Zf imax = 2)

Proof. For 4,,,, = 2 the claim is obvious. Thus assume that ,,4, > 2.

Let P, and P} be two processors that exchange elements in step v > 4,4, and that belong
to Batch by, in step v. We distinguish two cases.

Case 1. Processors P, and P, hold the same elements they held at the beginning of the for-
loop. Then the two processors hold two sequences A; and By, where |j—k| > 2imaz=24 1 Thus

12

Since P, belongs to Batch ¢ or smaller in step ¢, v has one of the
following forms (the first line shows the bit positions):

s s1 s2 t t-1 i-2 0
X ... X 1 o ... 0 x .. x
X ... x 0 1 ... 1 x .. x

Since P, belongs to Batch ¢ or smaller in step s, « has one of the
following forms:

X .. X 1 0 0 .. 0 x ... x
x .. x 0 1 1 .. 1 x ... x

Since P, can be reached from P, in steps s through ¢, u has one of
the following forms:

X ... X 1 o ... 0 x .. x
X ... x 0 1 ... 1 x .. x

If s > t, this is a contradiction.

Figure 3: Binary representation of v and » (an x stands for either 1 or 0)

there exists a rank difference of at least (29 ~2 4 €,,40)7 — (7 — €mmaz) = 2m9¢ ™20 +-2€, 40 — 1.
Case 2. Processors P, and P, hold elements they did not hold at the beginning of the for-
loop. Then at least one of them exchanged an element in step w where w > v. Let P, be this
processor. According to Lemmas 8 and 9, Pj, belongs to Batch 4,4, — 1 or smaller in step
w. Let P; be the processor P is connected to in step w. Then, before the execution of step
w, P, and P; both hold the elements they held at the beginning of the for-loop (this follows
from Lemma 9). Assume that h&2V~1 = 0, that is, & is the smaller of the two communicating
processors in step v (the other case is symmetric). Assume further that P, belongs to Batch
lin step w, | < imae. Then A = h12¥ +29=1 4 hy or h = hy2¥ 4 2@~ — 21=1 4 hy where
0< hy <271 (see proof of Lemma 9). Since h&2V™! = 0and I < v < w, h = b 24291 4]y
where 0 < hy < 2!, that is, Py is the larger of the two processors in step w. Accordingly,
P; is the smaller of the two processors and after the execution of step w P, can only store
elements that have an even larger rank difference. O

Lemma 11 Ry < (Vyax + 1)

Proof. It is clear that the rightmost ¢,,4, steps can be executed in time ¢,,4,r. According to
Lemma 9, each processor has to wait for at most time r before it can begin to execute step
tmaz and thus the claim follows. O

Comment. The above bound on Ry cannot be improved easily: if a processor has to wait
before it can start with the execution of step #,,4z, this might be because of a rank difference
some distance away and we cannot argue for a larger d,,4, than in Lemma 11.

Now we can prove the main results of this section.

13

Theorem 3

1. If dmax < r, szt(r P) < dmax + min{r T‘/2—|— dmax}-

2. Rpit(r,p) < (3 4+ max{0, [log((dmas — 1)/7) |1
Proof. This follows from Lemma 10 and Lemma 11.

Theorem 4
logp—3
Exp (Rpit (r, p)) (3—|— Z P (21))

Proof. This follows from Lemma 10, Lemma 11, and the definition of P(A) from Section 4.

6 Asymptotic Bounds

In this section we derive closed formulations for the bounds on the average running times of
the merging and sorting algorithms. We will use the following two lemmas.

Lemma 12 Let A and B be two sorted sequences of length m each, and let each outcome of
merging A and B be equally likely. Then

() B () i) /()

m2 _(£+(21n2—1)A—§) m2 _a2
m m < - - m
7(7”2 — Az)e P(A) \/_ (Az)e 3

o5

and
2 _(Am—2-|-(21n2—1)2—3)

m@ < Qa(A).

<[5

Proof.
The first claim follows from the repeated reflection principle (see [8]), and the second
claim follows from the first one and the following lemma.

Lemma 13

/7 S(Beemena) () 2 [T
2 \/ (m? AZ)

The proof for this lemma can be found in the appendix.

Theorem 5

2;”6 (0 84max{ <{10g <max{17 0.339/p%/m — 7}>J _ 2)} + 0.886¢ (p—’;—l—(zmz 1)p_m))

< Exp (Roga(r, p)) <
%m <1.17+ [log <1 +0.84 Pz/mﬂ)

14

Theorem 6

Exp (Rpit(r, p)) < 27m <3'17+ max{O, [log <0'42 p2/m>-‘ }>

Proof of Theorem 5 and Theorem 6.

First we proof the upper bounds. In Theorem 2 and Theorem 4 we gave upper bounds for
Roaa(r,p) and Ry (r,p) that contain summands of the form P(A;) where A; = (2071 — 1)r,
1 <ie<logp —1, for Rygg and A; = 2,1 < i < logp — 3, for Rp;;. By Lemma 12 we
know that P(A;) < 8/v/3re™2i/™ (here we made use of the fact that A; < m/2). Note that
Ai11/A; > 2 (for odd-even merge this is true if ¢ > 2). Let i, be the smallest ¢ such that
e=AY/m < a, @ < 1. Then e_A?aﬂ‘/m < o) where 7 > 1. In the case of bitonic merge we
choose o = 0.5 and bound the first ¢, terms of the sum by 1, and in the case of odd-even
merge we choose o = 0.5 = 0.0625 and bound the first i, — 1 terms of the sum by 1. This
leads to the claimed upper bounds.

This leaves the lower bound for odd-even merge. In Theorem 2 we gave a lower bound
for Roqq that contains summands of the from Q4(A;) where A; = (2“’1 +7)r/3,2 <1<
|(3/2)p— 7] — 1. Since A; > 0 we know by Lemma 12 that

QA(A;) > /726D /mH@Im2=1)A m® 5)9 —AF m+(2In2=1)(AF/m)”
Let ig be the largest 7 such that e=2{/™ > 3. 3 > 0. Then
Road(r,p) > 2m/p(Q4(2r — 1) + /73/2 - ig — 1)
= 2m/p(Qa(2r — 1) + V7B/2(|log(3v/~ In Bm/r — 7)| - 2)).

By choosing 8 = 0.95 and substituting the formula from Lemma 12 we arrive at the claimed
bound. O

Definition 5 Let Roqasort(r,p) for odd-even merge sort and Ryiisori(r, p) for bitonic merge
sort be defined as described in Section 3.

Theorem 7
EXP (RoddSort(ry P)) <2 logp —140.195

if n > 2p?1n2, and

1.39p? 2.78p?
Exp (Rodasort (r; p)) < 2log p + 0.195 + {0.5103;(np ﬂ (1+ {0.5103;(np)D

if n < 2p*ln 2.

Exp (Roddsort(r,p)) < 3logp — 3 +0.195
if n > 0.5p?1n 2, and

2 2
Exp (Roddsort (7 1)) < 3logp — 2+ 0.195 4 ’70.510g (0'35p ﬂ (1 v {0_51(% (0-719)D
n

n

if n > 0.5p?1n 2.

15

Proof. Both algorithms work by dividing the input into two sets, sorting the two sets
recursively and then merging the resulting lists. Before the final merging step can start, both
recursive calls must be finished. That is, we have to wait for the maximum running time of
two independent sorts.

Let Ryerge stand for either Roqq or Rp; and let R,y stand for either Rogasort OF RbitSort-
Above we have shown that Exp(Ryerge(r, p)/r) can be upper bounded by a function f(r,p)
and that the probability that Ry.erge(r, p)/r is at least f(r,p) 4+ j — 14 1/r is bounded by
(8/\/?>_7T)2_(2j)27 j > 1. We treat the contribution of f(r,p) and the running times exceeding
f(r,p) separately. The contribution of the second part can be represented as follows.

Given is a complete binary tree with p/2 leaves where each node stands for a call of the
merging procedure. The nodes are labeled with numbers in {0, 1, ...,logp} where a label of
0 denotes a running time of at most f(r,p’) (p’ the appropriate number of processors) and
where a label of j denotes a running time between f(r,p')+j—141/r and f(r,p’)+j. The
running time of the sorting algorithm corresponds to the “heaviest” path from the root to a
leaf in this tree, where the weight of a path is the sum of the labels of its nodes.

Let us examine the labels of the nodes and their probabilities more closely. (For this, we
are going to use the notation from the proof of Theorem 5 and Theorem 6.) Firstly, for odd-
even merge sort (bitonic merge sort) the labels of nodes corresponding to 2 or 4 (2 to 8, resp.)
processors are always 0. Secondly, the probability that a node v has a certain label depends
on the relationship between r and the number of processors used in the corresponding merge.
Suppose that the number of processors p,, is such that ¢, —1 < 1in the case of odd-even merge
(2o < 1in the case of bitonic merge sort), and suppose that p, is maximal with this property.
Let = 0.5 . Then the probability that v has label 7, 7 > 1, is bounded by (8/\/3_7T)ﬁ(zj)2.
This is also true for all nodes on the same level as or on a higher level than v. On the other
hand, consider a node w that corresponds to a merge with p’ = p, /2" processors. Then the
probability that w is labeled with j, 7 > 1, is bounded by (8/\/3_7T)ﬁ(2j)22k. Consider the
subtree with root v and suppose that vy and vy are the children of v. We will show that it
is possible to replace vy (vg, resp.) by one node with the same probabilities as the nodes on
higher levels. First we unite all nodes with depth k, & > 1, in the subtree rooted at vy into
one node, that means we replace the subtree rooted at v; by a path. (In our notation the
depth of the root node is 1). For the new node a depth k the probability that its label is j
is bounded by (8/\/3_7T)ﬁ(2j)22k+12k = (8/\/3_7T)ﬁ(2j)22k+1_k. Next we bound the probability
that the weight of the path starting at vy is j, ; > 1. By induction it can be shown that
this probability is bounded by (8/\/3_7T)ﬁ(zj)2. Now we are given a complete binary tree of
depth logp — log po + 2 where for any node the probability that its label is j, 7 > 1, is
(8/v/37)0.5(2).

Let T'(d, i) be the probability that the weight of the root of the tree with depth d is at
least ¢. We can bound Exp(Rsore(r,p)/r) by

logp ~ logp(logp+1)/2
Z flr,2Y + Z T (min (logp — ¢,log(p/pa) + 2, 1)),
=1 =1

where ¢ = 2 and p, = 2Uo8("/(2n2))] fo1 odd-even merge sort, and ¢ = 3 and p, = 2llog(2r/In2)]

for bitonic merge sort. Thus it suffices to upper bound T'(d, 7). Instead of doing this directly
we will lower bound S(d,i) =1—-T(d, 1+ 1), i.e., S(d,7) is the probability that the weight of

16

the root is at most 7. It is easy to see that

min(¢,logp)

Sdi)y= >, y(Sd-1i-j)*

=0

where y; is the probability that a node is labeled with j, 7 > 0.
For ease of calculation we assume that labels range from 0 to oo and replace y; by

q = (8/V3m)274, y; by ¢; = ¢1/2207Y for j > 2, and yo by 1 —3772,¢;. Let 6 = 2-12
v =q/(1-3)~0.163. We will show that S(d,d—1+1) > 1—~'*! for i > 0. This is obvious
for d = 1. For larger p’s we have

S(d,d— 1 —|—i) = Z qj(S(d— 1,d -1 —|—i—j))2 > qu(l B 71+2—])2
=0 =0

41

¢ i\ 2 . fo 2
= (1-25) () e S (1)
- (1 q1 (1 i+2)2 §5j_1 (1 9nit2-j 2(i+2—j))
=\t 15 -7 +a@ 2 -2y +7
' it+1 5 \it+1
q i+2) 2 1-4¢*! it : It
:<1_1_15> (1_7+2) + ¢ 135 —2qy' ! 1(_7)% + @20 1(1%

. . m : : : ,yz—l—l 5i—l—1 72(z—|—1) 5z—|—1
= 12912 4 0 4 T (0912 2007 gt _QQIj‘FQI —
>1- 7i+1 -I-’VH'l (1 DY 7i+3) i 1‘1_1 : (7i+1 (27 _ 73) _ 5i-|—1) _ 12_% (7i+1 _ 5i-|—1)

&

Z 1_,)/l-|—1_|_,)/l-|—1 (1_2,)/_I_,)/l-|—3_ q1)

The last inequality follows because v < 1/2 — ¢ — 4.
Thus we have shown that T(d,d — 1 +1) < v for i > 1 and we get

log p(logp+1)/2 1
o Tdi)y<d-2+ T

=1 o
This leaves the contribution of f(r,2'). For odd-even merge sort we have

(o e o257

logp logp

2 fr2) =3

=1
and for bitonic merge sort we have

logp logp

; f(r, 2i) = Z <3 + m:aLX{O7 [log <05mm>-‘ }) .

=1

17

Let y =log(r/(2In2)) — 1 (y = log(2r/In2) — 1) in the case of odd-even merge sort (bitonic
merge sort, resp.). Note that logp, = |y]. As long as ¢ < y, each term of the first (second,
resp.) sum will be bounded by 2 (3, resp.). Assume that log p, < logp. Then we get

logp log p—log pa

> [mg <1 +VIn 2,/2i+1/rﬂ < ¥ [10g (1 i ﬁﬂ
i=log pa+1 =
[(log p—log pa)/2]) ,
<ltlogp-logpat Y. 20 <1+log p_logpﬁglog (1.3519 ﬂ Bbg (2.7:p ﬂ
=1
and | 1 1
ile og p—10g pa
> [log <0.5\/1n 2\/2i+1/r>-‘ < Y [10g (ﬁﬂ
i=log pa+1 =

log p—log pa [(log p—log pa)/2] 2 2
1. 1 0.35p 1 0.7p
= E il < E 2 < | =1 —1 .
i=1 [22-‘ B i=1 = {2 Og(n)-‘ {2 Og(n)-‘

Putting everything together we arrive at upper bounds for odd-even merge sort of 2log p—
1+0.195if n > 2pln2 and 2logp + 0.195 + [0.5log(1.39p*/n) (1 + [0.5log(2.78p*/n)]) if
n < 2pln2. The upper bounds for bitonic merge sort are 3logp — 34+ 0.195if n > 0.5pln2
and 3logp — 2+ 0.195 + [0.510g(0.35p%/n) (1 + [0.510g(0.7p*/n)]) if n < 0.5pIn2. Here we
have taken into account that for 2 and 4 processors only 1 and 2, resp., steps are executed.
O

Comment. The upper bound for bitonic merge sort is in most cases much larger than
the upper bound for odd-even merge sort. The reason for this is that in each step where two
processors exchange elements we assume that they exchange all their elements as explained
in Section 3. However, if we use the number of elements actually exchanged instead, the 3 in
the above bounds can be replaced by 2 for large n.

26

T T
'R_bitSort. 1024’ <
A ’Rounds_bit" +
'R_oddSort.1024' o
24 - 4 'Rounds_odd’ x|

22 |- + + 4

X+
+
+

20 - B

18

o
I

o0
I

16 -

14 'S B

o
o
o

12

<
o
<

F oo

o0
Fa
o

10

I I I I I
0 20 40 60 80 100 120 140 160 180 200

Figure 4: Exchanged elements while sorting with 1024 processors

18

7 Experimental results

In the above sections we proved bounds on the average running times of odd-even merge
(sort) and bitonic merge (sort). These bounds are asymptotically similar and do not allow
an actual comparison of odd-even merge and bitonic merge. In this section we present some
simulation results for the algorithms. In all cases, odd-even merge (sort) and bitonic merge
(sort) were run on the same, randomly generated inputs. We used the mean of 30 runs.

Figure 4 shows Rpitsort/T and Rogasort/r for 1024 processor. The number of elements
per processor ranges from 10 to 200. One can see that the average number of exchanges per
element drops rapidly towards a value of slightly larger than 10 = log 1024. Bitonic merge
sort performs always a bit better than odd-even merge sort. Figure 4 also shows the average
maximum number of rounds: instead of counting the exchanged elements as in R4, we count
a 1 if at least one element is exchanged and a 0 else. This is essentially what we did when
deriving the upper bounds. As one can see, the values here are much larger and we cannot
expect to derive exact bounds for R,gisort and Rpijrsors with this method. If we count the
number of rounds, odd-even merge sort performs in most cases better than bitonic merge
sort. Thus here the relationship between the running times is the same as that of the bounds
derived in Section 6.

40

T
'R_bitSort’

o
'R_oddSort" +
'Rounds_bitSort’ ©]
35 'Rounds_oddSort’ x
®
30 B
=
b
25 2 1
= ¢
20 | - 4
* 3
a]
x
15 | o $ 1
x
a) +
S
x
10 E & b
¥ @
Y
5r = - ~
¢
° @
0 I I I I I
4 16 64 256 1024 4096 16384

Figure 5: Exchanged elements while sorting 100 elements per processor

Figure 5 shows Rpitsort/100 and Rogasort/100 for 100 elements per processor and various
number of processor. The average number of exchanges per element grows very slowly and
is for 16384 processors still smaller than 2logp. In most cases, the two values are almost
identical. If we consider the average maximum number of rounds, odd-even merge sort
performs better in many cases than bitonic merge sort. For large numbers of processors, the
bound through the average maximum number of rounds becomes better.

Figure 6 shows Rp;;/100 and R,44/100 for merging two lists with 100 elements per pro-
cessor. At the beginning bitonic merge outperforms odd-even merge, but at the end this
changes. Thus it is likely that for very large number of processors odd-even merge sort is
faster than bitonic merge sort.

19

'R_bit' o
'R_odd’ +

o+

0.5 I I I I
4 16 64 256 1024 4096 16384

Figure 6: Exchanged elements while merging 100 elements per processor

8 Conclusions

In this paper we have derived new upper bounds for the average running time of special
variants of odd-even merge sort and bitonic merge sort. We have shown that for large sizes of
input each element will be exchanged at most twice (three times, resp.) with high probability.
For several reasons, the derived bounds are not tight. Firstly, we wanted to derive closed
formulations. By evaluating the formulas used in Sections 4 to 6 numerically, better bounds
are possible. Secondly, we assumed that each time one element has to be exchanged all
elements are exchanged (in [4] this was done and called guarded split and merge). If only the
minimal number of elements is exchanged, for large sizes of input each element will be sent
not much more often than log p times.

Ways to reduce the amount of communication in the worst case haven been examined
in [7] and [10]. There it is suggested to rearrange the input elements regularly to be able
to perform more work locally. In [7] ([10], resp.) it is shown how to do this with a total
communication volume of 2nlogp (nlogp, resp.) if n > p? (n > 2logp?/2, resp.). However, if
n > p?, our version of the bitonic merge sort algorithm will have a communication volume
of about nlogp with high probability. Since the local computation in the algorithms from
[7] and [10] is more complicated, it is doubtful that these algorithms will outperform the
order-preserving bitonic merge sort algorithm for many inputs.

As was already mentioned in [13], for large sizes of inputs sample sort will perform better
than either odd-even merge sort or order-preserving bitonic merge sort. However, the sim-
ple techniques used here should increase the size of the input up to which the merge sort
algorithms are faster.

20

Appendix

Lemma 3
VE [mE _(gniJr(zlnz—l)jl—i) < (TnzfA) <2 mize_%
>\ R TREY

Proof. With the help of Stirling’s approximation for n! the following can be shown.
Let n € N and let un € N, 0 < ¢ < 1. Then

;Qnm(u) < (n) < ;th&(“)’
8npu(l — p) ~\un) T 2rnp(l - p)

where Hy(z) = —zloga — (1 — z)log(1 —). (See, e.g. [15], pp. 308 ff.)
Using this we get

T pam(H(ngER)1 o 2 2m A o (R,
4(m? — A?) m+ A m m(m? — A?)

Taylor series expansion of In z around 0.5 leads to

In(z) =1n(0.5) + 2(z — 0.5) — 22—2(96 —0.5)% + 23—3(96 —-0.5)% - 24—4(96 —0.5) 4 ...

and thus

m+ A m 4+ A m+ A m— A m— A
H2 = — log — log

2m 2m 2m 2m 2m

— _log(c) (m;f (m(o 5)+2———< > < >3—24—4<%>4+...)+
23
=

in (m(o 5— 22 2 <£>2 -

w3

m 2m

) -HE))
)ﬁ%(%)ﬂ...).

1 1 <A>2_|_ 1 <A
G R 12 \Um
Since
s 1 1
Z - ——,:1112,
—~ -1 2
1=1
we get

SRl

AZ
1-loge (0.5— + (In2-0.5)
m

4 2
) < H, <m+A> §1—10ge(0.5é),
2m m

and thus the claim follows.

21

References

[1]

[2]

[10]

[11]

[12]

[13]

K. E. Batcher. Sorting networks and their applications. Proceedings of AFIPS Spring
Joint Computer Conference, pages 307-314, 1968.

G. Bilardi. Merging and sorting networks with the topology of the omega network. IEEE
trans. on comp., C-38, 10:1396-1403, 1989.

Guy E. Blelloch, Charles E. Leiserson, Bruce M. Maggs, C. Greg Plaxton, Stephen J.
Smith, and Marco Zagha. A comparison of sorting algorithms for the Connection
Machine CM-2. In Proceedings of the 3rd Annual ACM Symposium on Parallel Al-
gorithms and Architectures, pages 3—16, Hilton Head, South Carolina, July 21-24, 1991.
SIGACT/SIGARCH.

K. Brockmann and R. Wanka. Efficient oblivious parallel sorting on the MasPar MP-
1. In Proc. 30th Hawaii International Conference on System Sciences (HICSS). IEEE,
January 1997.

Ralf Diekmann, Joern Gehring, Reinhard Lueling, Burkhard Monien, Markus Nuebel,
and Rolf Wanka. Sorting large data sets on a massively parallel system. In Proc. 6th
IEEE-SPDP, pages 2-9, 1994.

Martin Dowd, Yehoshua Perl, Larry Rudolph, and Michael Saks. The periodic balanced
sorting network. Journal of the ACM, 36(4):738-757, October 1989.

Andrea C. Dusseau, David E. Culler, Klaus Erik Schauser, and Richard P. Martin. Fast
parallel sorting under LogP: experience with the CM-5. IEEE Transactions on Parallel
and Distributed Systems, 7(8):791-805, August 1996.

W. Feller. An Introduction to Probability Theory and Its Applications I. John Wiley,
New York, second edition, 1950.

William L. Hightower, Jan F. Prins, and John H. Reif. Implementations of randomized
sorting on large parallel machines. In Proceedings of the Jth Annual ACM Symposium
on Parallel Algorithms and Architectures, pages 158-167, San Diego, California, June
29-July 1, 1992. SIGACT/SIGARCH.

Mihai Florin Ionescu and Klaus E. Schauser. Optimizing parallel bitonic sort. In IPPS
97, pages 303-309, 1997.

Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Program-
ming. Addison-Wesley, Reading, MA, USA, 1973.

Ch. Riib. On the average running time of odd-even merge sort. In 12th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS’95), volume 900 of LNCS,
pages 491-502, Munich, Germany, 2-4 March 1995. Springer.

Ch. Riib. On the average running time of odd—even merge sort. Journal of Algorithms,
22(2):329-346, February 1997.

22

[14] A. Wachsmann and R. Wanka. Sorting on a massively parallel system using a library
of basic primitives: Modeling and experimental results. Technical Report TR-RSFB-96-
011, Universitit-GH Paderborn, May 1996. also Proc. European Conference in Parallel
Processing (Euro-Par); 1997; to appear.

[15] F. J. Mac Williams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-
Holland, Amsterdam, 2 edition, 1978.

23

