
On Batcher's Merge Sorts as Parallel Sorting AlgorithmsChristine R�ub�Max-Planck-Institut f�ur InformatikIm StadtwaldD-66123 Saarbr�uckenemail: rueb@mpi-sb.mpg.deAbstractIn this paper we examine the average running times of Batcher's bitonic merge andBatcher's odd-even merge when they are used as parallel merging algorithms. It has beenshown previously that the running time of odd-even merge can be upper bounded by afunction of the maximal rank di�erence for elements in the two input sequences. Here wegive an almost matching lower bound for odd-even merge as well as a similar upper boundfor (a special version of) bitonic merge. From this follows that the average running time ofodd-even merge (bitonic merge) is �((n=p)(1+log(1+p2=n))) (O((n=p)(1+log(1+p2=n))),resp.) where n is the size of the input and p is the number of processors used. Usingthese results we then show that the average running times of odd-even merge sort andbitonic merge sort are O((n=p)(logn+ (log(1+ p2=n))2)), that is, the two algorithms areoptimal on the average if n � p2=2plogp. The derived bounds do not allow to comparethe two sorting algorithms directly, thus we also present experimental results, obtainedby a simulation program, for various sizes of input and numbers of processors.1 IntroductionBatcher's bitonic merge sort and odd-even merge sort are two well known comparator net-works for sorting [1, 11]. The two networks can easily be converted into parallel sorting algo-rithms where each processor holds more than one element by replacing comparisons betweeninput elements by a split{and{merge procedure [11]. The running time of a straightforwardimplementation will then be O((n=p)(logn+ log2 p)), where n is the size of the input and pis the number of processors used. Although this is not optimal, the constants involved aresmall and the two algorithms can be the fastest available for small input sizes.In contrast to odd-even merge sort, bitonic merge sort has often been used in comparativestudies of sorting algorithms for parallel computers [3, 9, 5, 7]. Because of the small constantfactors, here bitonic merge sort proved to be the fastest sorting algorithm for small inputsizes.In [12] it has been shown that the average running time of the odd-even merge (odd-evenmerge sort) algorithm can be improved much by keeping the amount of communication toa minimum. The resulting running times are O((n=p)(1 + log(1 + p2=n))) for merging and�Supported by the Deutsche Forschungsgemeinschaft, SFB 124, TP B2, VLSI Entwurfsmethoden undParallelit�at. 1

O((n=p)(logn+ log p log(1+ p2=n))) for sorting. (In the case of merging (sorting) we assumethat each outcome of the merging (each permutation of the input elements, resp.) is equallylikely.) In the meantime this version of odd-even merge sort has been used in two comparativestudies of sorting [4, 14]. In both cases, odd-even merge sort was the fastest sorting algorithmamong those considered for some input size.In [4] the derived bounds from [12] were also used to predict the running time of theimplementation. However, it turned out that the predictions were much too pessimistic.In fact, as we will show in this paper, the average running time of the odd-even merge sortalgorithm can be bounded by O((n=p)(logn+(log(1+p2=n))2)), and thus the odd-even mergesort algorithm is optimal on the average if n � p2=2plogp. We will also show that the runningtime of the odd-even merge algorithm is closely related to the maximal rank di�erence forelements in the two input sequences. From this we derive nearly matching upper and lowerbounds for its average running time.In [13] it was pointed out that the average running time of bitonic merge sort can be im-proved by storing the input elements such that the smaller indexed processor always receivesthe smaller elements and again keeping the amount of communication at a minimum (thecorresponding merging network is known as the balanced merger [6]). This means that analready established ordering among elements will be preserved. In this paper we will showthat the average running time of the order-preserving bitonic merge algorithm can be upperbounded by a function of the maximal rank di�erence of elements in the input sequence.From this we obtain O((n=p)(1 + log(1 + p2=n))) (O((n=p)(logn + (log(1 + p2=n))2)), resp.)as upper bound for the average running time of the order-preserving bitonic merge (bitonicmerge sort, resp.) algorithm.The results obtained in this paper do not allow to compare the behaviour of the odd-even merge sort algorithm and the order-preserving bitonic merge sort algorithm directly.Thus we also present experimental results that compare the average running times of the twoalgorithms for varying sizes of input and numbers of processors. For these experiments wedo not use a speci�c computer model; rather, we assume that the processors form a completegraph and that the number of exchanged elements determines the running time. The actualaverage running time of an implementation depends strongly on the parallel machine usedand such an investigation is beyond the scope of this paper. However, we hope the resultsobtained here will help to estimate actual average running times in the future.The obtained upper bounds on the running times show that the two merge sort algo-rithms can be very fast with a large number of processors and a moderate input size. Theexperimental results show that the upper bounds are too pessimistic; this is largely due tothe fact that we wanted to obtain a closed formulation.This paper is organized as follows. Section 2 de�nes comparator network based parallelalgorithms and Section 3 shows how we de�ne running time. Section 4 is concerned with odd-even merge, Section 5 with bitonic merge, and Section 6 with the two merge sort algorithms.Section 7 gives some experimental results and Section 8 contains some conclusions.2 Comparator Network Based Parallel AlgorithmsThe algorithms considered here are based on comparator networks. A comparator networkconsists solely of comparators and wires. Each comparator network for an input of size n can2

be drawn as a diagram consisting of n horizontal lines that are connected by vertical links,where each vertical link corresponds to a comparator [11].A comparator network for merging (sorting) p elements can be turned into a parallelalgorithm for merging (sorting, resp.) n = pr elements using p processors as follows. Theprocessors are assigned to the horizontal lines and each comparator that connects the lines oftwo processors is replaced by a procedure that sends the smallest r elements stored at bothprocessors together to one processor and the other r elements to the other processor.To improve the running time of the algorithm, the exchange procedure can be implementedas follows. If the procedure is called for processors Pi and Pj , they �rst determine whetherthey have to exchange any elements in this step. This can be done in time O(1) by sending thelargest and smallest elements of the lists. If elements have to be exchanged, the processorseither exchange all their elements at once or use binary search to determine how manyelements have to be exchanged and afterwards exchange exactly these elements. As we willsee, this can reduce the average running time of an algorithm much.In the remainder of this paper we mean by odd-even merge (sort) and bitonic merge (sort)parallel procedures that use the above explained exchange procedure. Additionally we implythat the input elements are stored such that the smaller elements are always sent to theprocessor with the smaller index. (In the case of bitonic merge the corresponding mergingnetwork is known as the balanced merger [6]. In [2] it was shown that the bitonic mergenetwork and the balanced merger are essentially the same networks.) We will also assumethat the number p of processors used is a power of two. The algorithms considered in thispaper can also be used if p is not a power of two: let p0 be the next larger power of two.Use the algorithm for p0 processors. Every time a processor Pi has to communicate with aprocessor Pj where j � p, Pi does nothing. Since the larger elements are always sent to thelarger indexed processor, this procedure will merge or sort the input correctly. The givenbounds on the running times hold with p replaced by p0.3 What do we measure?Any parallel algorithm consists of two parts, namely computation and communication. Inmany parallel computers existing today the constants involved in communication are muchlarger than the constants involved in computation (e.g., Intel's Paragon or Cray's T3D), butthere are also computers where the constants are approximately the same (e.g., MasPar'sMP-1). Thus the constants involved in the two parts can be quite di�erent and we treatthem separately.We will make statements of the following kind. Let alg stand for an algorithm, let nbe the size of the input and let p be the number of processors used. Each processor storesr = n=p elements of the input. The algorithm consists of T steps where in each step pairsof processors communicate and possibly exchange elements. We de�ne the functions talg andRalg as follows (for ease of notation later on we number the steps from T down to 1).De�nition 1 talg(T + 1; j) = 0, 0 � j � p� 1.talg(i; j) = maxftalg(i+1; j); talg(i+1; k)g+x(j; k), 1 � i � T , where Pk is the processor thatcommunicates with Pj in step i and x(j; k) is the number of elements Pj and Pk exchange.If Pj does not communicate with any processor in step i, talg(i; j) = talg(i+ 1; j).Finally, Ralg(r; p) = maxft(1; j); 0 � j � p� 1g.3

A lower bound for Ralg will always be a lower bound for the running time of the algorithm.For our upper bounds on Ralg we assume in most cases that x(i; j) = r whenever the twocommunicating processors exchange an element. By doing this, we neglect the communicationnetwork but we account for the local computation time. In this formulation we also neglectthe time it takes to determine whether two processors exchange elements which leads toadditional �(T) time. We do this because the constant involved in this part of the algorithmscan be much larger than the other constants because of startup times.4 Odd-even mergeIn this and the following sections p always denotes the number of processors used.In this section we show that the running time of odd-even merge is closely related tothe maximal rank di�erence of elements in the two input sequences. Namely, we show thefollowing. Let A and B be the two sorted sequences to be merged and let dmax = maxfjrank of x in A � rank of x in Bj; x 2 A [Bg. Then the running time of odd-even merge is�((n=p)(1 + log(1 + dmaxp=n))) where n is the size of the input. (A similar, but somewhatweaker, upper bound has been proved in [13].) From these bounds upper and lower boundsfor the average running time of odd-even merge follow.From the odd-even merge network we can derive the following parallel merge procedure(see Figure 1). Assume we want to merge two sorted lists A and B of length m such thatthe even indexed processors hold subsequences of A and the odd indexed processors holdsubsequences of B. Each processor holds 2m=p =: r elements. The following procedure willmerge the two lists.procedure Odd Even Merge(p);for all i, 0 � i < p=2, pardocompare{exchange(P2i; P2i+1);for i = log p� 1 downto 1 dofor all j; 1 � j � (p� 2i)=2, pardocompare{exchange(P2j�1; P2j+2i�2);Compare-exchange(Pi; Pj) denotes a procedure where Pi gets the smallest r elementsstored at Pi and Pj , and Pj gets the largest r elements.First we will analyze the running time of the for-loop of the odd-even merge algorithm.For ease of notation, we call the step of the for-loop where the index i has a certain value k,step k of the for-loop or step k of the algorithm. Correspondingly, the �rst step of odd-evenmerge will also be called step log p.Let Aj = Ajr; Ajr+1; :::; A(j+1)r�1 and Bj = Bjr; Bjr+1; :::; B(j+1)r�1, 0 � j � p � 1.We de�ne imax as the �rst (or maximal) i where at least two elements are exchanged in thefor-loop of the algorithm and emax as the maximal number of elements that any processorexchanges in step imax. The following lemma gives upper and lower bounds on dmax thatdepend on imax and emax.Lemma 11. dmax � (2imax�1 � 1)r + 2emax.2. If emax < r (emax = r), dmax � 2imax�1r + 2emax (dmax � 2imaxr, resp.).3. Let (2j�1 + 2)r � dmax � (2j � 1)r+ 1. Then imax = j and emax = r.4

P0;A0P1;B0P2;A1P3;B1P4;A2P5;B2P6;A3P7;B3P8;A4P9;B4P10;A5P11;B5P12;A6P13;B6P14;A7P15;B7
E0E1E3E4E5E6E7E9E10E11E12E13E14E15E8E2

Figure 1: Odd-even merge with 16 processors.Proof. Let � = 2imax . Before the execution of step imax processors P2j and P2j+1 hold theelements of Aj [Bj , 0 � j < p=2. Also, in step imax only elements from A will be exchangedby elements from B (this is not necessarily the case in later steps).1. (A simpler version of this claim has been proved in [12].) Let P2j+1 and P2j+� be twoprocessors that exchange emax elements in step imax. Assume that P2j+1 sends emax elementsfromA. The largest element fromA that is sent by P2j+1 is A(j+1)r�emax =: z and the smallestelement from B that is sent by P2j+� is B(j+�=2)r+emax�1. Thus, the rank of z in A di�ersfrom the rank of z in B by (j + �=2)r + emax � ((j + 1)r � emax) = (�=2 � 1)r + 2emax =(2imax�1 � 1)r+ 2emax and the claim follows.2. First suppose that r elements from B are moved from processor P2j+1 to processor P2j+�(the case that elements from A are moved is symmetric). At the end of the for-loop theseelements can not be stored at a larger processor than P2j+� (a proof of this fact can befound in Lemma 2). Thus the smallest of these r elements, namely Bjr , has rank at most(2j + �)r� jr = (j+ �)r in A, and its rank di�erence is at most (j + �)r� jr = �r = 2imaxr.Note that this is the largest possible rank di�erence in this case.Next assume that emax < r and suppose that emax elements from B are moved from processorP2j+1 to processor P2j+� (again, the other case is symmetric). If 2j+� = p�2, the exchangedelements from B belong to Bp=2�1��=2. Since their rank in A is at most p=2 � r, the claimfollows by a simple calculation. Thus suppose that 2j+ � < p� 2. Then the emax exchangedelements form Bj can only be larger than emax elements of Aj+�=2+1, since else processorsP2j+3 and P2j+2+� would exchange more than emax elements. Thus the rank of the smallest ofthe exchanged elements, namely B(j+1)r�emax , in A is at most (j+1+�=2)r+emax and its rankdi�erence is at most (j+1+�=2)r+emax�((j+1)r�emax) = (�=2)r+2emax = 2imax�1r+2emax.Again observe that this is the largest rank di�erence possible in this case.5

3. First assume that indeed imax = j, but that emax < r. According to Claim 2, dmax �2imax�1 + 2emax < (2imax�1 + 2)r = (2j�1 + 2)r, which is a contradiction.Next assume that imax < j. According to Claim 2, dmax � 2imaxr � 2j�1r < (2j�1 + 2)r,which is again a contradiction.Finally assume that imax > j. According to Claim 1, dmax � (2imax�1 � 1)r + 2 >(2j � 1)r + 1, and thus Claim 3 holds. 2Lemma 1.1 gives immediately rise to an upper bound on the running time that depends ondmax: since imax is the �rst step of the for-loop that is executed, no processor can exchangemore than (imax � 1)r + emax elements during the execution of the for-loop. Lemma 1.2shows that dmax cannot be too large; however, this does not give rise to a lower bound of therunning time: the remaining imax � 1 steps could be executed in less than (imax � 1)r time.In the following we proof a lower bound for the running time of odd-even merge thatdepends on dmax. To this end we �rst examine which paths an element takes during theexecution of odd-even merge, and which paths are particularly expensive.Lemma 21. Let x be stored at processor Pj before a step of the for-loop and at processor Pk after thestep, j 6= k. Then x cannot move farther away from Pj than Pk in the remaining steps of thefor-loop, and it can never return to Pj.2. Let x be stored at processor Pj before the execution of the for-loop and at processor Pk atthe end of the for-loop. Then the path x takes during the execution of the for-loop is uniquelydetermined by j and k.Proof.1. To see this, �rst observe that in all steps of the for-loop processors with odd indexescommunicate with processors with even and larger indexes. Thus x, if it is exchanged, alter-nates between odd and even indexed processors. Since the distances between the processorsbecome smaller in each step, x can never be moved to a processor that is farther away fromPj than Pk or return to Pj .2. This follows from part 1 and the fact that the distance between communicating processorsis more than halved in each step of the for-loop. 2Lemma 3 Let x be stored at Pj at the beginning of the for-loop and at Pj+� at the end ofthe for-loop where � = �2=3(2i � 1 + �), � 2 f0; 1=2g and i 2 N . Then x will be moved toanother processor exactly in the last i steps of the for-loop.Proof. First note that i is even i� � = �2=3(2i�1) and i is odd i� � = �2=3(2i�1=2). Thisfollows because � and i are natural numbers.According to Lemma 2, the steps of the for-loop in which x is moved to a di�erentprocessor are uniquely determined by j and j + �. Thus it su�ces to show that j + � is theprocessor that can be reached from Pj during the last i steps of the for-loop. First supposethat � = 0. Let Pk be the processor that can be reached from Pj by using all of the last isteps. Then jk � jj = (2i � 1)� (2i�1 � 1) + :::+ (22 � 1)� (21 � 1)= 2=3(2i � 1): 6

Next suppose that � = 1=2. Again, let Pk be the processor that can be reached from Pjby using all of the last i steps. Thenjk � jj = (2i � 1)� (2i�1 � 1) + :::� (22 � 1) + (21 � 1)= 2=3(2i � 1=2): 2The following two lemmas show that if one element is moved a certain number z ofprocessors forward during the for-loop, we can always �nd a subsequence Z of the input (i.e.,Z = Aj or Z = Bj) where all elements of Z are moved y or 1 + y processors forward for ally � z � 2. From this we can then derive a lower bound for the running time of odd-evenmerge.Lemma 4 Let Bj have rank j + � in A and let Bk have rank k + in A, j < k and � > .Let � > � > . Then there exists an index l, j < l < k, such that Bl has rank l+� in A, thatis, every rank di�erence between � and occurs between Bj and Bk. A similar claim holdsfor A and B interchanged.Proof. Let Bq have rank q+� in A. Consider Bq+1. Then either Bq+1 follows directly afterBq in A[B, or z � 1 elements of A lie between Bq and Bq+1. In the �rst case Bq+1 has rankq+� = (q+1)+(��1) in A and in the second case it has rank q+�+z = (q+1)+�+(z�1)in A. That is, in the �rst case the rank di�erence is decreased by one whereas in the secondcase the rank di�erence can not be decreased.Since the rank di�erence can not decrease by more than one, it follows that all rank di�erencesbetween � and occur between Bj and Bk. 2Lemma 5 Let x be an element that is moved from processor P2j+1 to processor P2j+1+�during the execution of the for-loop, � � 2. Let 0 � � � �� 2. Then there exists a processorP2k+1, k > j, where all elements stored at processor P2k+1 before the execution of the for-loopwill be stored at processor P2k+1+� or at processor P2k+2+� at the end of the for-loop.Proof. Assume that x 2 B. Then x belongs to Bj (the case that x 2 A is symmetric). Letq > j be maximal such that Bt is stored at processor P2t+1 for all t, j < t � q, before theexecution of the for-loop. The index q exists because � � 2: Assume that x = B(j+1)r�1.The rank of x in A [B is at least (2j + 1 + �)r and thus x > A(j+�)r. Since � � 2,B(j+1)r > A(j+2)r and P2(j+1)+1 stores Bj+1 before the execution of the for-loop. We willshow that j < k � q.First observe that either q � p�2 and B(q+1)r < A(q+2)r�1, and thus Bqr 's rank di�erenceis at most (q+2)r�1�qr = 2r�1, or that else q = p�1 and thus the rank di�erence for Bqris r. On the other hand, the di�erence of ranks for x is at least (2j+1+�)r�2((j+1)r�1) =(�� 1)r+ 2.We next show that there exists an index u, j < u � q, where the �rst element of Bu willbe stored at processor P2u+1+� at the end of the for-loop. Assume otherwise. Then, for all t,j < t � q, Btr's rank in A[B will be either at least (2t+2+�)r or at most (2t+1+�)r� 1.That means that Btr 's rank in A is at least (t+2+ �)r or at most (t+1+ �)r� 1, and thatthe di�erence of ranks for Btr is at least (2+�)r or at most (1+�)r� 1. On the other hand,the rank di�erence for B(j+1)r is at least (��1)r+1 > (1+�)r�1 and thus at least (2+�)r.7

Since (2 + �)r � ((1 + �)r � 1) = r + 1, if follows from Lemma 4 and by induction that therank di�erence for Btr is at least (2 + �)r � 2r for all t, j < t � q, which is a contradiction.Thus, let w, j < w � q be maximal such that Bwr ends in P2w+1+� . Assume there existsan element in Bw that does not end in P2w+1+� or in P2w+2+� . Then B(w+1)r will end at leastin P2w+�+3 = P2(w+1)+1+� . However, because w is chosen maximal, this can not happen.Thus B(w+1)r lands at least in P2w+4+� = P(2(w+1)+2+�) and B(w+1)r's rank di�erence is atleast 2((w+1)+2+�)r� (2(w+1)r) = (2+�)r. This is a contradiction, since we can againargue that Bqr 's rank di�erence is at least (2 + �)r. 2By combining Lemma 3 and Lemma 5, we can show a relationship between dmax and themaximal distance a subsequence of A or B has to travel.Lemma 6 If dmax � (2=3)(2i + 7=2)r, i � 2, there exists a subsequence Aj of A or asubsequence Bj of B, where Aj (Bj , resp.) is moved to a di�erent processor during steps ithrough 2 of the for-loop.Proof. Let � = (2=3)(2i� 1)if i is even and let � = (2=3)(2i� 2) if i is odd. Let � = �+2 �(2=3)(2i + 2). Let x be an element with rank di�erence dmax. We assume that x = Bs andBs > As. Thus x's rank in A[B is at least 2s+ (2=3)(2i+7=2)r. Let s = tr+ u, 0 � u < r.Then 2s+(2=3)(2i+7=2)r = 2(tr+u)+(2=3)(2i+7=2)r � (2t+(2=3)(2i+2)+1)r � (2t+1+�)r.Thus x will be moved from processor P2t+1 to at least processor P2t+1+�. According to Lemma5, there will be a subsequence of B that is moved from processor P2j+1 to processors P2j+1+�and P2j+2+� during the execution of the for-loop. Because of the choice of �, this subsequencewill thus be moved to a di�erent processor during steps i through 2 of the for-loop: if i is even(odd), processor P2j+2+� (processor P2j+1+� , resp.) will be reached by step 2, and processorP2j+1+� (processor P2j+2+� , resp.) will be reached by step 1. 2Next we put together the results shown above to proof lower and upper bounds on therunning time of the for-loop of odd-even merge that depend on dmax.De�nition 2 Let tfor(i; j), 1 � i � log p; 0 � j � p� 1 and Rfor(r; p), be de�ned as describedin Section 3 where alg = for stands for the for-loop of odd-even merge.Theorem 1 Let T = (blog(maxf2; dmax=r � 3=2� 7=2g)c � 1)r, and let S = (blog(dmax=r+1)c+ 1)r.1. T � Rfor(r; p)� S.2. If dmax � r, Rfor(r; p) � dmax=2.3. Let dmax=r = 2xy � 1, 1 � y < 2 (thus S = (x + 1)r). Let dmax=r � 3=2 � 7=2 � 0. If(3=2)y � 5=2x � 2, S � T = r. If (3=2)y� 5=2x < 2, S � T = 2r.4. S � T 2 fr; 2rg.Proof. Claim 1 follows from Lemma 1.1 and Lemma 6 and Claim 2 follows from Lemma1.1. Claim 3 follows from Claim 1 by simple calculations, and Claim 4 follows directly fromClaim 3. 2We want to use the relationship between the running time of odd-even merge and themaximal rank di�erence in the input from Theorem 1 to derive bounds for the averagerunning time of odd-even merge. Till now we only considered the running time of the for-loop of odd-even merge; now we include the �rst step, before the for-loop.8

De�nition 3 Let todd(i; j), 1 � i � log p + 1; 0 � j � p � 1 and Rodd(r; p), be de�ned asdescribed in Section 3 where alg = odd stands for odd-even merge.Let P (�) be the probability that there exists an element x in A[B where the rank of x in Adi�ers from the rank of x in B by �.For � > 0, let QA(�) be the probability that there exists an element x in A where the rankof x in B minus the rank of x in A is �.Theorem 2 r0@QA (2r� 1) + blog((3=2)p�7)c�1Xi=2 QA ��2i+1 + 7� r=3�1A� Exp (Rodd)� r0@1 + log p�1Xi=1 P ��2i�1 � 1� r�1AProof. If an element x in A has rank di�erence dmax and x's rank in B is larger than x's rankin A, the subsequence Aj from Lemma 6 will be moved in the �rst step of odd-even merge.Also, if dmax � 2r � 1, at least one subsequence of A will be sent to a di�erent processor inthe �rst step. This can be seen as follows. Assume that Ax has rank di�erence 2r � 1. Ifx = jr for a j � 0, Aj will be moved in the �rst step. If x = jr+ k, q � k < r, A(j+1)r hasa rank di�erence of at least r and thus Aj+1 will be moved in the �rst step. Thus the twoinequalities follow from Lemma 6 and Lemma 1. 2Theorem 2 gives bounds for the average running time of odd-even merge in terms of theprobability that a certain rank di�erence occurs. To arrive at a closed formulation, we haveto substitute the probabilities by closed formulas. Since the same has to be done for bitonicmerge, we do this in Section 6 for both merging algorithms together.The following lemma gives an expensive input for odd-even merge.Lemma 7 Let A0 > Bm. Then processor P1 and processor Pp�2 exchange their elements inall steps of odd-even merge.Proof. First note that all processors exchange all their elements in the �rst step. Byinduction it can be shown that before step i of the for-loop, log p � 1 � i � 1, the �rst2i+1 processors store elements of the following kind. The even indexed processors store asorted sequence F i and and the odd indexed processors store a sorted sequence Gi wherethe �rst element of F i is larger than the last element of Gi. (Note that F log p�1 = B andGlogp�1 = A.) A similar claim holds for the last 2i+1 processors. Thus processor P1 andprocessor Pp�2 have to exchange all their elements in all steps of the for-loop. 25 Bitonic mergeThe bitonic merge network uses the following recursion.Let A = A0; A1; A2; :::; Am�1 and B = B0; B1; B2; :::; Bm�1 be the two sequences to be mergedand denote the outcome of the merge by E0; :::; E2m�1. If m = 1, compare and exchange,if necessary, A0 and B0. Else, merge Aeven = A0; A2; A4; ::: with Bodd = B1; B3; ::: into9

C = C0; C1; C2; ::: and Aodd = A1; A3; ::: with Beven = B0; B2; B4; ::: into D = D0; D1; D2; :::.After this is done, compare and exchange, if necessary, Ci with Di to form elements E2i andE2i+1 of the output, i � 0.To obtain a network from this recursion we have to decide how to store the input. Figure2.a shows the network given in [1] where B is stored in reversed order behind A, and Figure2b shows the network we use. It is obtained by storing A and B alternating (this networkis also known as the balanced merging network [6]). From it we can again derive a parallelmerging algorithm by substituting all comparisons by the Compare-Exchange procedure ofSection 4.procedure Bitonic Merge(p);for i = log p downto 1 dof mask = 2i � 1;for all j, j&2i�1 = 0, pardocompare{exchange(Pj ; Pj^maske);gHere, & denotes bitwise AND and ^ denotes bitwise XOR. That is, in step i each processorPj communicates with the processor whose index is obtained by ipping the rightmost i bitsof the binary representation of j. (Similar to odd-even merge, we denote the step of bitonicmerge where the index i has value k by step k.)A0A1A2A3A4A5A6A7B7B6B5B4B3B1B0B2
A0A1A2A3A4A5A6A7B7B6B5B4B3B2B1B0P0P1P2P3P4P5P6P7P8P9P10P11P12P14P15P13

P0P1P2P3P4P5P6P7P8P9P10P11P13P14P15b) modi�ed bitonic mergea) original bitonic merge P12Figure 2: Bitonic merge with 16 processors.Note that the distances between communicating processors in a given step of Bitonic Mergedi�er much: the distances ly between 1 and 2i � 1 in step i. Since we want to establish arelationship between dmax (see Section 4) and the running time of Bitonic Merge, we dividethe communicating pairs of processors into log p batches. The membership to a batch is10

determined by the di�erence between the indexes of the subsequences of A and B the twoprocessors hold at the beginning of the algorithm. Batch i covers all (odd) di�erences � where2i�2 � � < 2i�1 if i � 2 and where � = 0 if i = 1. Thus, Batch 1 contains all communicatingpairs of step 1, and Batch i, i � 2, contains all communicating pairs (Pj ; Pk) of steps log pthrough 2 where 2i�1 < k� j < 2i (0 < k� j < 4 if i = 2). Note that communicating pairs ofBatch i, i � 2, occur in steps log p through i. Figure 2 shows the balanced merger of size 16where membership to a batch is indicated by the thickness of the vertical line connecting thetwo horizontal lines corresponding to the communicating processors. We want to establish arelationship between the maximal i where a pair of processors belonging to Batch i exchangeelements and dmax and the running time of Bitonic Merge. The following lemmas will dothis.Lemma 8 Each processor Pj can belong to at most one communicating pair of Batch i ifi � 3 and to at most two communicating pairs of Batch 2.Proof. First assume that i � 3. Let Pj belong to Batch i in step l of the for-loop. In step lPj communicates with Pk where k can be produced from j by ipping the rightmost l bits ofj. In other words, j � k = j mod 2l � k mod 2l = 2(j mod 2l)� 2l + 1. Since j and k belongto Batch i, we know that 2i�1 < jj�kj < 2i and thus 2i�1 < j2(j mod 2l)�2l+1j < 2i. Fromthis we can derive that either 2i�1 + 2l � 1 < 2(j mod 2l) < 2i + 2l � 1 or else 2l � 2i � 1 <2(j mod 2l) < 2l � 2i�1 � 1. Thus either 2l�1 + 2i�2 � j mod 2l � 2l�1 + 2i�1 � 1 or else2l�1 � 2i�1 � j mod 2l � 2l�1 � 2i�2 � 1.Let v be maximal where Pj belongs to Batch i in step v and let i � q < v. Since one ofthe above inequalities holds for v, 2q divides 2v�1, and q � i, either2i�2 � j mod 2q � 2i�1 � 1or else 2q � 2i�1 � j mod 2q � 2q � 2i�2 � 1:Now assume that Pj belongs to Batch i in step q. Then either2q�1 + 2i�2 � j mod 2q � 2q�1 + 2i�1 � 1or else 2q�1 � 2i�1 � j mod 2q � 2q�1 � 2i�2 � 1:Thus, we have two sets of inequalities where one of each set has to hold. However, then either2i�1 + 2i�2 � 2q�1 + 2i�2 � j mod 2q � 2i�1 � 1;or else 2i�2 � j mod 2q � 2q�1 � 2i�2 � 1 and 2q�1 � 2i�1 � j mod 2q � 2i�1 � 1(i.e., q � i+ 1 and q � i), or else2q � 2i�1 � j mod 2q � 2q�1 + 2i�1 � 1 and 2q�1 + 2i�2 � j mod 2q � 2q � 2i�2 � 1(i.e., q � i and q � i+ 1), or else2q�1 � 2q � 2i�1 � j mod 2q � 2q�1 � 2i�2 � 1;11

neither of which is possible.Next assume that i = 2. Let Pj belong to Batch 2 in step l. Now we can conclude thateither 2l�1 � j mod 2l � 2l�1 + 1 or else 2l�1 � 2 � j mod 2l � 2l�1 � 1.Let v be maximal where Pj belongs to Batch 2 in step v, and let 2 � q < v. Since 2qdivides 2v�1 and the above condition holds for v, either 0 � j mod 2q � 1, or else 2q � 2 �j mod 2q � 2q � 1.Again assume that Pj belongs to Batch i in step q. Then 2q�1� 2 � j mod 2q � 2q�1+1.This can only be the case if q = 2 and thus there exist at most two steps where Pj belongsto Batch 2. 2To derive an upper bound for the running time of bitonic merge Lemma 8 does not su�ce:it might happen that a processor has to wait for other processors that belong to batches withsmaller numbers. The following lemma shows that no processor has to wait for a long time.Lemma 9 Let Pjlog p+1 ; Pjlog p ; :::; Pji+1; Pji be a path an element x can take during steps log pthrough i of the algorithms, i � 2 (that means that x is stored at processor Pjk after theexecution of step k).Then there exists at most one index t, log p � t > i, where Pjt and Pjt+1 belong to Batchi or smaller in step t.Proof. Let processor Pk belong to Batch i or smaller in step q, q � i. Then jk � lj < 2iwhere l is produced from k by ipping the rightmost q Bits. In other words, k mod 2q +l mod 2q = 2q � 1, and l = k+ 2q � 1� 2(k mod 2q). Thus jk� lj = jk mod 2q � l mod 2qj =j2(k mod 2q) � 2q + 1j < 2i, or 2q � 2i � 1 < 2(k mod 2q) < 2q + 2i � 1. It follows that2q�1 � 2i�1 � k mod 2q � 2q�1 + 2i�1 � 1. That means that k = k12q + 2q�1 + k2 ork = k12q + 2q�1 � 2i�1 + k2, where 0 � k2 < 2i�1.Assume that v = jt, log p � t > i, and Pv belongs to Batch i or smaller in step t. Let tbe chosen minimal among all indexes with this property. We know that v = v12t+ 2t�1 + v2or v = v12t + 2t�1 � 2i�1 + v2 where 0 � v2 < 2i�1 (see Figure 2).Assume further that u = js, s > t, and Pu belongs to Batch i or smaller in step s. SincePv can be reached from Pu in steps s through t (in all of these steps, either the rightmostt bits are ipped or all of them stay the same), u is of the form u = u12t + 2t�1 + u2 oru = u12t + 2t�1 � 2i�1 + u2, where 0 � u2 < 2i�1. From this follows that s = t, which is acontradiction. 2De�nition 4 Let imax be the maximal i where a communicating pair of Batch i exchangesan element and let emax be the maximal number of elements exchanged in Batch imax.Let tbit(i; j), 1 � i � log p+ 1; 0 � j � p� 1 and Rbit(r; p), be de�ned as described in Section3 where alg = bit stands for bitonic merge.Lemma 10 dmax � 2imax�2r + 2emax if imax � 3 (dmax � 1 if imax = 2).Proof. For imax = 2 the claim is obvious. Thus assume that imax > 2.Let Pg and Ph be two processors that exchange elements in step v > imax and that belongto Batch bmax in step v. We distinguish two cases.Case 1. Processors Pg and Ph hold the same elements they held at the beginning of the for-loop. Then the two processors hold two sequences Aj and Bk where jj�kj � 2imax�2+1. Thus12

Since Pv belongs to Batch i or smaller in step t, v has one of thefollowing forms (the �rst line shows the bit positions):s s-1 s-2 t t-1 i-2 0x ... x 1 0 ... 0 x ... xx ... x 0 1 ... 1 x ... xSince Pu belongs to Batch i or smaller in step s, u has one of thefollowing forms:x ... x 1 0 ... 0 ... 0 x ... xx ... x 0 1 ... 1 ... 1 x ... xSince Pv can be reached from Pu in steps s through t, u has one ofthe following forms:x ... x 1 0 ... 0 x ... xx ... x 0 1 ... 1 x ... xIf s > t, this is a contradiction.Figure 3: Binary representation of v and u (an x stands for either 1 or 0)there exists a rank di�erence of at least (2imax�2+emax)r�(r�emax) = 2imax�2r+2emax�1.Case 2. Processors Pg and Ph hold elements they did not hold at the beginning of the for-loop. Then at least one of them exchanged an element in step w where w > v. Let Ph be thisprocessor. According to Lemmas 8 and 9, Ph belongs to Batch imax � 1 or smaller in stepw. Let Pj be the processor Ph is connected to in step w. Then, before the execution of stepw, Ph and Pj both hold the elements they held at the beginning of the for-loop (this followsfrom Lemma 9). Assume that h&2v�1 = 0, that is, h is the smaller of the two communicatingprocessors in step v (the other case is symmetric). Assume further that Ph belongs to Batchl in step w, l < imax. Then h = h12w + 2w�1 + h2 or h = h12w + 2w�1 � 2l�1 + h2 where0 � h2 < 2l�1 (see proof of Lemma 9). Since h&2v�1 = 0 and l < v < w, h = h12w+2w�1+h2where 0 � h2 < 2l, that is, Ph is the larger of the two processors in step w. Accordingly,Pj is the smaller of the two processors and after the execution of step w Ph can only storeelements that have an even larger rank di�erence. 2Lemma 11 Rbit � (imax + 1)r.Proof. It is clear that the rightmost imax steps can be executed in time imaxr. According toLemma 9, each processor has to wait for at most time r before it can begin to execute stepimax and thus the claim follows. 2Comment. The above bound on Rbit cannot be improved easily: if a processor has to waitbefore it can start with the execution of step imax, this might be because of a rank di�erencesome distance away and we cannot argue for a larger dmax than in Lemma 11.Now we can prove the main results of this section.13

Theorem 31. If dmax � r, Rbit(r; p)� dmax +minfr; r=2+ dmaxg.2. Rbit(r; p)� (3 + maxf0; blog((dmax � 1)=r)cg)r.Proof. This follows from Lemma 10 and Lemma 11.Theorem 4 Exp (Rbit(r; p))� r0@3 + log p�3Xi=1 P �2ir�1A :Proof. This follows from Lemma 10, Lemma 11, and the de�nition of P (�) from Section 4.6 Asymptotic BoundsIn this section we derive closed formulations for the bounds on the average running times ofthe merging and sorting algorithms. We will use the following two lemmas.Lemma 12 Let A and B be two sorted sequences of length m each, and let each outcome ofmerging A and B be equally likely. ThenP (�) = 20@ 2mm+ �!�Xk�1 2mm+ 2k�!� 2mm+ (2k+ 1)�!!1A, 2mm ! ;p�2 s m2(m2 ��2)e���2m +(2 ln 2�1)�4m3 � � P (�) � 4p�s m2(m2 ��2)e��2m ;and p�2 s m2(m2 ��2)e���2m +(2 ln2�1)�4m3� � QA(�):Proof.The �rst claim follows from the repeated reection principle (see [8]), and the secondclaim follows from the �rst one and the following lemma.Lemma 13p�2 s m2(m2 ��2)e���2m +(2 ln2�1)�4m3 � � � 2mm+���2mm � � 2p�s m2(m2 ��2)e��2m :The proof for this lemma can be found in the appendix.Theorem 52mp 0:84max�0;��log�max�1; 0:339qp2=m� 7���� 2��+ 0:886e��4mp2 +(2 ln2�1) 16mp4 �!� Exp (Rodd(r; p))�2mp �1:17 + �log�1 + 0:84qp2=m���14

Theorem 6 Exp (Rbit(r; p))� 2mp �3:17 +max�0; �log�0:42qp2=m����Proof of Theorem 5 and Theorem 6.First we proof the upper bounds. In Theorem 2 and Theorem 4 we gave upper bounds forRodd(r; p) and Rbit(r; p) that contain summands of the form P (�i) where �i = (2i�1 � 1)r,1 � i � log p � 1, for Rodd and �i = 2ir, 1 � i � log p � 3, for Rbit. By Lemma 12 weknow that P (�i) � 8=p3�e��2i =m (here we made use of the fact that �i � m=2). Note that�i+1=�i � 2 (for odd-even merge this is true if i � 2). Let i� be the smallest i such thate��2i =m � �, � < 1. Then e��2i�+j=m � �(2j)2 where j � 1. In the case of bitonic merge wechoose � = 0:5 and bound the �rst i� terms of the sum by 1, and in the case of odd-evenmerge we choose � = 0:54 = 0:0625 and bound the �rst i� � 1 terms of the sum by 1. Thisleads to the claimed upper bounds.This leaves the lower bound for odd-even merge. In Theorem 2 we gave a lower boundfor Rodd that contains summands of the from QA(�i) where �i = (2i+1 + 7)r=3, 2 � i �b(3=2)p� 7c � 1. Since �i � 0 we know by Lemma 12 thatQA(�i) � p�=2e��2i =m+(2 ln2�1)�4i =m3 � p�=2e��2i =m+(2 ln2�1)(�2i =m)2 :Let i� be the largest i such that e��2i =m � �, � > 0. ThenRodd(r; p)� 2m=p(QA(2r� 1) +p��=2 � i� � 1)= 2m=p(QA(2r � 1) +p��=2(blog(3p� ln �m=r � 7)c � 2)):By choosing � = 0:95 and substituting the formula from Lemma 12 we arrive at the claimedbound. 2De�nition 5 Let RoddSort(r; p) for odd-even merge sort and RbitSort(r; p) for bitonic mergesort be de�ned as described in Section 3.Theorem 7 Exp (RoddSort(r; p))� 2 log p� 1 + 0:195if n � 2p2 ln 2, andExp (RoddSort(r; p))� 2 log p+ 0:195 + &0:5 log 1:39p2n !' 1 + &0:5 log 2:78p2n !'!if n < 2p2 ln 2. Exp (RoddSort(r; p))� 3 log p� 3 + 0:195if n � 0:5p2 ln 2, andExp (RoddSort(r; p))� 3 log p� 2 + 0:195+ &0:5 log 0:35p2n !' 1 + &0:5 log 0:7p2n !'!if n > 0:5p2 ln 2. 15

Proof. Both algorithms work by dividing the input into two sets, sorting the two setsrecursively and then merging the resulting lists. Before the �nal merging step can start, bothrecursive calls must be �nished. That is, we have to wait for the maximum running time oftwo independent sorts.Let Rmerge stand for either Rodd or Rbit and let Rsort stand for either RoddSort or RbitSort.Above we have shown that Exp(Rmerge(r; p)=r) can be upper bounded by a function f(r; p)and that the probability that Rmerge(r; p)=r is at least f(r; p) + j � 1 + 1=r is bounded by(8=p3�)2�(2j)2 , j � 1. We treat the contribution of f(r; p) and the running times exceedingf(r; p) separately. The contribution of the second part can be represented as follows.Given is a complete binary tree with p=2 leaves where each node stands for a call of themerging procedure. The nodes are labeled with numbers in f0; 1; :::; logpg where a label of0 denotes a running time of at most f(r; p0) (p0 the appropriate number of processors) andwhere a label of j denotes a running time between f(r; p0) + j � 1+ 1=r and f(r; p0)+ j. Therunning time of the sorting algorithm corresponds to the \heaviest" path from the root to aleaf in this tree, where the weight of a path is the sum of the labels of its nodes.Let us examine the labels of the nodes and their probabilities more closely. (For this, weare going to use the notation from the proof of Theorem 5 and Theorem 6.) Firstly, for odd-even merge sort (bitonic merge sort) the labels of nodes corresponding to 2 or 4 (2 to 8, resp.)processors are always 0. Secondly, the probability that a node v has a certain label dependson the relationship between r and the number of processors used in the corresponding merge.Suppose that the number of processors p� is such that i��1 � 1 in the case of odd-even merge(i� � 1 in the case of bitonic merge sort), and suppose that p� is maximal with this property.Let � = 0:5 . Then the probability that v has label j, j � 1, is bounded by (8=p3�)�(2j)2 .This is also true for all nodes on the same level as or on a higher level than v. On the otherhand, consider a node w that corresponds to a merge with p0 = p�=2k processors. Then theprobability that w is labeled with j, j � 1, is bounded by (8=p3�)�(2j)22k . Consider thesubtree with root v and suppose that v1 and v2 are the children of v. We will show that itis possible to replace v1 (v2, resp.) by one node with the same probabilities as the nodes onhigher levels. First we unite all nodes with depth k, k � 1, in the subtree rooted at v1 intoone node, that means we replace the subtree rooted at v1 by a path. (In our notation thedepth of the root node is 1). For the new node a depth k the probability that its label is jis bounded by (8=p3�)�(2j)22k+12k = (8=p3�)�(2j)22k+1�k . Next we bound the probabilitythat the weight of the path starting at v1 is j, j � 1. By induction it can be shown thatthis probability is bounded by (8=p3�)�(2j)2 . Now we are given a complete binary tree ofdepth log p � log p� + 2 where for any node the probability that its label is j, j � 1, is(8=p3�)0:5(2j)2 .Let T (d; i) be the probability that the weight of the root of the tree with depth d is atleast i. We can bound Exp(Rsort(r; p)=r) bylogpXi=1 f(r; 2i) + logp(logp+1)=2Xi=1 T (min (log p� c; log(p=p�) + 2; i)) ;where c = 2 and p� = 2blog(r=(2ln2))c for odd-even merge sort, and c = 3 and p� = 2blog(2r=ln2)cfor bitonic merge sort. Thus it su�ces to upper bound T (d; i). Instead of doing this directlywe will lower bound S(d; i) = 1� T (d; i+1), i.e., S(d; i) is the probability that the weight of16

the root is at most i. It is easy to see thatS(d; i) = min(i;logp)Xj=0 yj(S(d� 1; i� j))2where yj is the probability that a node is labeled with j, j � 0.For ease of calculation we assume that labels range from 0 to 1 and replace y1 byq1 = (8=p3�)2�4, yj by qj = q1=212(j�1) for j � 2, and y0 by 1 �P1j=1 qj . Let � = 2�12, = q1=(1��) � 0:163. We will show that S(d; d�1+ i)� 1�i+1 for i � 0. This is obviousfor d = 1. For larger p's we haveS(d; d� 1 + i) = d�1+iXj=0 qj(S(d� 1; d� 1 + i� j))2 � i+1Xj=0 qj(1� i+2�j)2= �1� q11� ���1� i+2�2 + i+1Xj=1 q1�j�1 �1� i+2�j�2= �1� q11� ���1� i+2�2 + q1 i+1Xj=1 �j�1 �1� 2i+2�j + 2(i+2�j)�= �1� q11� ���1� i+2�2 + q1 1� �i+11� � � 2q1i+11� � ��i+11� � + q12(i+1)1� � �2�i+11� �2= 1� 2i+2 + 2(i+2) + q11� � �2i+2 � 2(i+2)� �i+1�� 2q1i+1 � �i+11� � + q12(i+1)� �i+11� �2� 1� i+1 + i+1 �1� 2 + i+3�+ q11� � �i+1 �2 � 3�� �i+1�� 2q11� � �i+1 � �i+1�� 1� i+1 + i+1 1� 2 + i+3 � 2q11� � !� 1� i+1:The last inequality follows because � 1=2� q1 � �.Thus we have shown that T (d; d� 1 + i) � i for i � 1 and we getlog p(logp+1)=2Xi=1 T (d; i)� d� 2 + 11� :This leaves the contribution of f(r; 2i). For odd-even merge sort we havelog pXi=1 f(r; 2i) = log pXi=1 �1 + �log�1 +pln 2q2i+1=r��� ;and for bitonic merge sort we havelogpXi=1 f(r; 2i) = logpXi=1 �3 +max�0; �log�0:5pln 2q2i+1=r���� :17

Let y = log(r=(2 ln2))� 1 (y = log(2r= ln 2)� 1) in the case of odd-even merge sort (bitonicmerge sort, resp.). Note that log p� = byc. As long as i � y, each term of the �rst (second,resp.) sum will be bounded by 2 (3, resp.). Assume that log p� < log p. Then we getlogpXi=log p�+1 �log�1 +pln 2q2i+1=r�� � log p�logp�Xi=1 llog �1 +p2i�m� 1+log p�log p�+d(logp�log p�)=2eXi=1 2i � 1+log p�log p�+&12 log 1:39p2n !'&12 log 2:78p2n !'and logpXi=log p�+1 �log�0:5pln 2q2i+1=r�� � log p�log p�Xi=1 llog �p2i�m= log p�log p�Xi=1 �12 i� � d(logp�log p�)=2eXi=1 2i � &12 log 0:35p2n !'&12 log 0:7p2n !' :Putting everything together we arrive at upper bounds for odd-even merge sort of 2 log p�1 + 0:195 if n � 2p ln 2 and 2 log p + 0:195 + d0:5 log(1:39p2=n)e(1 + d0:5 log(2:78p2=n)e) ifn < 2p ln 2. The upper bounds for bitonic merge sort are 3 log p� 3 + 0:195 if n � 0:5p ln 2and 3 log p� 2 + 0:195 + d0:5 log(0:35p2=n)e(1 + d0:5 log(0:7p2=n)e) if n < 0:5p ln 2. Here wehave taken into account that for 2 and 4 processors only 1 and 2, resp., steps are executed.2 Comment. The upper bound for bitonic merge sort is in most cases much larger thanthe upper bound for odd-even merge sort. The reason for this is that in each step where twoprocessors exchange elements we assume that they exchange all their elements as explainedin Section 3. However, if we use the number of elements actually exchanged instead, the 3 inthe above bounds can be replaced by 2 for large n.
10

12

14

16

18

20

22

24

26

0 20 40 60 80 100 120 140 160 180 200

’R_bitSort.1024’
’Rounds_bit’

’R_oddSort.1024’
’Rounds_odd’

Figure 4: Exchanged elements while sorting with 1024 processors18

7 Experimental resultsIn the above sections we proved bounds on the average running times of odd-even merge(sort) and bitonic merge (sort). These bounds are asymptotically similar and do not allowan actual comparison of odd-even merge and bitonic merge. In this section we present somesimulation results for the algorithms. In all cases, odd-even merge (sort) and bitonic merge(sort) were run on the same, randomly generated inputs. We used the mean of 30 runs.Figure 4 shows RbitSort=r and RoddSort=r for 1024 processor. The number of elementsper processor ranges from 10 to 200. One can see that the average number of exchanges perelement drops rapidly towards a value of slightly larger than 10 = log 1024. Bitonic mergesort performs always a bit better than odd-even merge sort. Figure 4 also shows the averagemaximum number of rounds: instead of counting the exchanged elements as in Ralg, we counta 1 if at least one element is exchanged and a 0 else. This is essentially what we did whenderiving the upper bounds. As one can see, the values here are much larger and we cannotexpect to derive exact bounds for RoddSort and RbitSort with this method. If we count thenumber of rounds, odd-even merge sort performs in most cases better than bitonic mergesort. Thus here the relationship between the running times is the same as that of the boundsderived in Section 6.
0

5

10

15

20

25

30

35

40

4 16 64 256 1024 4096 16384

’R_bitSort’
’R_oddSort’

’Rounds_bitSort’
’Rounds_oddSort’

Figure 5: Exchanged elements while sorting 100 elements per processorFigure 5 shows RbitSort=100 and RoddSort=100 for 100 elements per processor and variousnumber of processor. The average number of exchanges per element grows very slowly andis for 16384 processors still smaller than 2 log p. In most cases, the two values are almostidentical. If we consider the average maximum number of rounds, odd-even merge sortperforms better in many cases than bitonic merge sort. For large numbers of processors, thebound through the average maximum number of rounds becomes better.Figure 6 shows Rbit=100 and Rodd=100 for merging two lists with 100 elements per pro-cessor. At the beginning bitonic merge outperforms odd-even merge, but at the end thischanges. Thus it is likely that for very large number of processors odd-even merge sort isfaster than bitonic merge sort. 19

0.5

1

1.5

2

2.5

3

4 16 64 256 1024 4096 16384

’R_bit’
’R_odd’

Figure 6: Exchanged elements while merging 100 elements per processor8 ConclusionsIn this paper we have derived new upper bounds for the average running time of specialvariants of odd-even merge sort and bitonic merge sort. We have shown that for large sizes ofinput each element will be exchanged at most twice (three times, resp.) with high probability.For several reasons, the derived bounds are not tight. Firstly, we wanted to derive closedformulations. By evaluating the formulas used in Sections 4 to 6 numerically, better boundsare possible. Secondly, we assumed that each time one element has to be exchanged allelements are exchanged (in [4] this was done and called guarded split and merge). If only theminimal number of elements is exchanged, for large sizes of input each element will be sentnot much more often than log p times.Ways to reduce the amount of communication in the worst case haven been examinedin [7] and [10]. There it is suggested to rearrange the input elements regularly to be ableto perform more work locally. In [7] ([10], resp.) it is shown how to do this with a totalcommunication volume of 2n log p (n log p, resp.) if n � p2 (n � 2logp2=2, resp.). However, ifn � p2, our version of the bitonic merge sort algorithm will have a communication volumeof about n log p with high probability. Since the local computation in the algorithms from[7] and [10] is more complicated, it is doubtful that these algorithms will outperform theorder-preserving bitonic merge sort algorithm for many inputs.As was already mentioned in [13], for large sizes of inputs sample sort will perform betterthan either odd-even merge sort or order-preserving bitonic merge sort. However, the sim-ple techniques used here should increase the size of the input up to which the merge sortalgorithms are faster. 20

AppendixLemma 3p�2 s m2(m2 ��2)e���2m +(2 ln2�1)�4m3 � � � 2mm+���2mm � � 2p�s m2(m2 ��2)e��2m :Proof. With the help of Stirling's approximation for n! the following can be shown.Let n 2 N and let �n 2 N, 0 < � < 1. Then1p8n�(1� �)2nH2(�) � n�n! � 1p2�n�(1� �)2nH2(�);where H2(x) = �x log x� (1� x) log(1� x). (See, e.g. [15], pp. 308 �.)Using this we gets �m24(m2 ��2)22m(H2(m+�2m)�1) � 2mm+ �!, 2mm ! � s 4m2�(m2 ��2)22m(H2(m+�2m)�1):Taylor series expansion of ln x around 0:5 leads toln(x) = ln(0:5) + 2(x� 0:5)� 222 (x� 0:5)2 + 233 (x� 0:5)3� 244 (x� 0:5)4 + :::and thus H2�m+�2m � = �m +�2m log�m+ �2m �� m��2m log�m��2m �= � log(e) m+ �2m ln(0:5)+ 2 �2m � 222 � �2m�2 + 233 � �2m�3 � 244 � �2m�4 + :::!+m��2m ln(0:5)� 2 �2m � 222 � �2m�2 � 233 � �2m�3 � 244 � �2m�4 � :::!!= 1� log e �1� 12���m�2 + �13 � 14���m�4 + �15 � 16���m�6 + :::!= 1� log e 12 ��m�2 + 112 ��m�4 + 130 ��m�6 + :::! :Since 1Xi=1 12i� 1 � 12i = ln 2;we get 1� log e 0:5�m2 + (ln 2� 0:5)�m4! � H2�m+ �2m � � 1� log e 0:5�m2! ;and thus the claim follows. 21

References[1] K. E. Batcher. Sorting networks and their applications. Proceedings of AFIPS SpringJoint Computer Conference, pages 307{314, 1968.[2] G. Bilardi. Merging and sorting networks with the topology of the omega network. IEEEtrans. on comp., C-38, 10:1396{1403, 1989.[3] Guy E. Blelloch, Charles E. Leiserson, Bruce M. Maggs, C. Greg Plaxton, Stephen J.Smith, and Marco Zagha. A comparison of sorting algorithms for the ConnectionMachine CM-2. In Proceedings of the 3rd Annual ACM Symposium on Parallel Al-gorithms and Architectures, pages 3{16, Hilton Head, South Carolina, July 21{24, 1991.SIGACT/SIGARCH.[4] K. Brockmann and R. Wanka. E�cient oblivious parallel sorting on the MasPar MP-1. In Proc. 30th Hawaii International Conference on System Sciences (HICSS). IEEE,January 1997.[5] Ralf Diekmann, Joern Gehring, Reinhard Lueling, Burkhard Monien, Markus Nuebel,and Rolf Wanka. Sorting large data sets on a massively parallel system. In Proc. 6thIEEE-SPDP, pages 2{9, 1994.[6] Martin Dowd, Yehoshua Perl, Larry Rudolph, and Michael Saks. The periodic balancedsorting network. Journal of the ACM, 36(4):738{757, October 1989.[7] Andrea C. Dusseau, David E. Culler, Klaus Erik Schauser, and Richard P. Martin. Fastparallel sorting under LogP: experience with the CM-5. IEEE Transactions on Paralleland Distributed Systems, 7(8):791{805, August 1996.[8] W. Feller. An Introduction to Probability Theory and Its Applications I. John Wiley,New York, second edition, 1950.[9] William L. Hightower, Jan F. Prins, and John H. Reif. Implementations of randomizedsorting on large parallel machines. In Proceedings of the 4th Annual ACM Symposiumon Parallel Algorithms and Architectures, pages 158{167, San Diego, California, June29{July 1, 1992. SIGACT/SIGARCH.[10] Mihai Florin Ionescu and Klaus E. Schauser. Optimizing parallel bitonic sort. In IPPS97, pages 303{309, 1997.[11] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Program-ming. Addison-Wesley, Reading, MA, USA, 1973.[12] Ch. R�ub. On the average running time of odd-even merge sort. In 12th Annual Sym-posium on Theoretical Aspects of Computer Science (STACS'95), volume 900 of LNCS,pages 491{502, Munich, Germany, 2{4 March 1995. Springer.[13] Ch. R�ub. On the average running time of odd{even merge sort. Journal of Algorithms,22(2):329{346, February 1997. 22

[14] A. Wachsmann and R. Wanka. Sorting on a massively parallel system using a libraryof basic primitives: Modeling and experimental results. Technical Report TR-RSFB-96-011, Universit�at-GH Paderborn, May 1996. also Proc. European Conference in ParallelProcessing (Euro-Par); 1997; to appear.[15] F. J. Mac Williams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-Holland, Amsterdam, 2 edition, 1978.

23

