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Abstract. Advanced attack sequences combine different kinds of steps (e.g. 
attacker, protocol, and administration steps) on multiple networked systems. 
We propose a SPIN based approach for formal modeling and analysis of such 
scenarios. Our approach is especially suited for scenarios were protocol and 
network level aspects matter simultaneously. Typical attack sequences and not 
yet considered variants can be automatically found. The development of 
scenario models is supported by a modeling framework and the use of the high-
level process specification language cTLA. A compiler translates the high-level 
cTLA models to Promela. This allows the powerful model-checking tool SPIN 
to be employed for analysis. Through integration of the compiler and SPIN into 
the Eclipse platform both model development and analysis are facilitated. 

1   Introduction 

Since security became an issue in computing, the objective of automatically analyzing 
system models and thus completely revealing immanent vulnerabilities and potential 
attack patterns exists. This objective is very ambitious, as we had to learn early, and 
may be reachable only under certain restrictions. Mainly there are two reasons why 
attempts for automated security analysis fail in practice. First, the development of 
suitable models is very expensive, since the model design is error-prone and tedious 
even if performed by well-educated and well-experienced designers. Second, analysis 
runs tend to exceed given time and memory limitations, since the analysis procedures 
have a high algorithmic complexity. These problems, by the way, are not restricted to 
automated security analysis but are already well-known in the general field of 
automated verification. Nevertheless, because security analysis of computer networks 
has to reason about unknown vulnerabilities, malfunctions and attack effects in 
comparably large systems, the search space is more complex and the problems 
therefore occur in an increased form. 

Thus currently, a more realistic but still ambitious objective is to concentrate on a 
narrower field of interest and to lower the grade of automation by some forms of user 
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guidance. One recognizes that formal modeling and analysis have a certain value, 
even if they are only employed for the representation and precise description of 
known attacks, since they can lead to a better understanding and insight into the 
phenomena and so probably indirectly contribute to future enhancements. In fact, the 
current status already provides some enhancements. Still, the costs of model 
development demand for the specialization to closer fields of interest and the analysis 
tool limitations demand for user guidance and restricted analysis scopes. Experience, 
however, showed that analysis runs which concentrate on a certain known and 
predefined class of attacks can find new unexpected variants. 

Advanced network attacks combine different aspects like carefully crafted attack 
steps, normal protocol execution steps and administrator actions on different hosts 
instead of plain vulnerability exploitations [Ver04]. Network level aspects, e.g.  
topology and connectivity, and protocol level aspects have to be considered 
simultaneously. Existing approaches concentrate on either protocol or network level 
aspects (cf. section 2). 

We resort to formal modeling and analysis techniques for the functional aspects of 
concurrent process systems. Considering the problems of formal analysis which result 
from the expensive model design and the limitations of automated analysis tools, we 
follow up a combined approach which is mainly based on two elements. First, the 
system verification tool SPIN [Hol03] is applied for automated analysis in order to 
profit from its powerful analysis procedures. Second, the development of models is 
supported by a high-level modeling framework which provides model architecture 
guidelines and re-usable model definition components. The framework is based on the 
process specification language cTLA [HK00]. cTLA is a variant of Leslie Lamport’s 
Temporal Logic of Actions TLA [Lam94] and provides for the modular definition of 
process types and the derivation of new process types by refinement and composition. 
Therefore, cTLA facilitates the efficient re-use and adaptation of framework elements. 
In comparison to SPIN’s model description language Promela more abstract and 
compositional model definitions are supported. The link to SPIN is provided by a 
compiler translating cTLA model definitions into Promela. Besides just translating 
models the compiler applies model optimizations. Moreover, the practical application 
of our approach is supported by means of a model development environment, which 
is implemented by extensions to the well-known software development tool Eclipse 
[Ecl05]. 

The approach has already been applied successfully to the modeling and analysis 
of different scenarios. [RPK04] presents the modeling and SPIN-based analysis of 
ARP spoofing like attacks respectively erroneous network management actions in a 
small LAN. Furthermore, we researched the modeling and analysis of RIP routing 
attacks. 

This paper focuses on the compositional structure of our models, the optimized 
translation of our models to Promela and the integration of SPIN and related tools 
into the Eclipse universal tool platform. As a next step, after addressing related work, 
we give an outline of the modeling framework and the model definition language 
cTLA. Two example models clarify the framework’s application and highlight the 
compositional structure of our cTLA modeling. Then we discuss the principles of 
translating cTLA models to Promela. Model optimizations are outlined in the next 
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section. Finally we describe how model editing, model translation, and SPIN-based 
analysis are integrated into Eclipse. 

2   Related Work 

Formal analysis and verification of security properties can be generally structured into 
program and protocol verification. Program verification shall enhance the 
trustworthiness of software systems (e.g. [BR00]). In protocol verification security 
weaknesses of protocols shall be found. Basic and cryptographic protocols (e.g. 
[MS02]) are particularly interesting. In both fields a variety of methods is applied, 
including classic logic and algebraic calculi (e.g. [KK03]), special calculi (e.g. 
[BAN89]), and process system modeling techniques (e.g. [LBL99]). Different kinds 
of analysis tools are used, including logic programming environments like Prolog, 
expert system shells, theorem provers, algebraic term rewriting systems, and 
especially model checkers. Some approaches even combine several analysis 
techniques [Mea96]. 

The formal modeling and analysis of complex, intertwined attack types in 
computer network scenarios is a relatively new field. Existing approaches either focus 
abstractly on protocols and disregard network level aspects like topology, 
connectivity, and routing or the other way around. For example, in [RS02] the 
analysis of attack sequences resulting from the combined behavior of system 
components is described for a single host. A process model is used which is specified 
in a Prolog variant. Security properties are expressed by labeling states safe and 
unsafe. Execution sequences which lead to unsafe states and correspond to 
vulnerability executions are searched using a Prolog based programming 
environment.  

In [AR00, NBR02] an approach called topological vulnerability analysis is 
presented. A network of hosts is checked for attack sequences consisting of 
combining predefined vulnerabilities. The host modeling consists of two sets 
representing existing vulnerabilities and attacker access level. Network topology is 
modeled using a multi-valued connectivity matrix. Protocols are represented very 
simply through fixed values in the connectivity matrix; no sending, receiving, or 
processing of protocol elements is modeled. Exploit definitions have to be given with 
the model. Using SMV possible combinations of the given vulnerabilities leading to 
the violation of a property (e.g. attacker has root access level on a specified host) are 
analyzed. 

Our approach supports modeling and analysis of network and protocol level 
aspects simultaneously in a single model. With respect to efficient modeling, the 
framework makes use of techniques invented for high-performance implementation of 
protocols. In particular we learned from the activity thread implementation model 
which schedules activities of different protocol layers in common sequential control 
threads [Svo89], and from integrated layer processing which combines operations of 
different layers [AP93]. Partial order reductions, proposed in [ABH97], have a 
strong relationship to the partial order reduction implementation model providing the 
basis for the elimination of nondeterministic execution sequences. Furthermore, 



224 G. Rothmaier, T. Kneiphoff, and H. Krumm 

 

approaches for Promela level model optimizations have to be mentioned. Many 
interesting low-level optimizations are described in [Ruy01]. 

3   Modeling Framework 

In order to foster re-use and reduce the effort needed for modeling, we looked into the 
possibility of creating a framework for formal modeling of computer networks. 
Because frameworks usually make heavy use of object-oriented mechanisms for 
composing elements and describing their relationships, we have to use a specification 
language that can express such concepts as well. 

cTLA 2003 Specification Language 

cTLA is based on TLA [Lam94], but supports explicit notions of process instances, 
process types, and process type composition [HK00]. Furthermore, cTLA 2003 adds 
object-oriented process composition types. Here we only give a conceptual overview 
of cTLA 2003. A language oriented description can be found in the technical report 
[RK03]. 

A cTLA specification describes a state-transition system which is composed of 
subsystems. These subsystems may be composed of further subsystems but are finally 
sets of process instances. Thus, after resolving subsystems, a cTLA system is always a 
composition of process instances. 

Process instances belong to processes, which are typed. Each process type 
describes its own, self-contained state-transition system. In the simplest case, a 
process type does not use composition, but is completely self-contained. The state 
space of such a simple process type is completely defined through the set of local 
variables. Its transitions consist just of the process’s actions. Actions are 
parameterized and describe atomic transitions consisting of guards and effects. 
Guards define conditions that must be met to make the action executable, effects 
describe the state changes triggered by the action’s execution. 

 

Fig. 1. Action Coupling in a Simple cTLA System 
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Object oriented mechanisms are introduced with the cTLA process composition 
type EXTENDS and CONTAINS. These composition types allow new process types to 
be derived from other process types. The state space and the transitions of such 
process types depend not only on the locally defined variables and actions, but also on 
the state and transitions of the inherited process types. 

Synchronization and communication between process instances is done via joint 
actions. Joint actions couple 1..n actions of process instances, i.e. their guards and 
effects are conjugated. All process instances not taking part in a joint action perform a 
stuttering step. On the system level, system actions have to be given to define the 
possible state transitions. 

As an example, consider Figure 1. A simple cTLA System Sys1 contains three 
process instances NodeA, NodeB and PhysMedia which are instances of types 
Node respectively Media. Each instance has it’s own variables and actions. Four 
system actions, na_rcv(pkt), na_snd(pkt), nb_snd(pkt) and 
nb_rcv(pkt) are defined through coupling of instances’ actions. For example, 
action na_rcv(pkt) couples NodeA’s  rcv action with PhysMedia’s out action 
and NodeB performs a stuttering step. 

Computer Network Modeling Framework 

Frameworks as known from the world of object oriented programming consist of 
classes and their relationships. With process types and process composition types we 
have similar mechanisms available in cTLA 2003. We aim to transfer qualities known 
from object oriented frameworks like “natural modeling”, broad level re-use of 
proven elements and architectures to formal modeling, especially of computer 
network related scenarios. Thus, we developed a modeling framework for TCP/IP 
based computer networks in cTLA 2003. We only give an overview of the framework 
here, a structure diagram and element-by-element description can be retrieved via our 
web site [Rot04]. 

The framework is structured into layers horizontally. The first layer, Enumerations 
& Functions, is used to define the network topology, initial address assignment and 
protocols desired for a model. For example, the enumeration ZoneIdT contains the 
model’s zones (usually matching Ethernet segments), the function fSrcToIa is used 
to assign initial addresses and the enumeration ProtocolT symbolically lists 
protocols required in the model. 

The second layer, Data Types, contains common data types for interfaces, packets 
and buffers used by other elements of the framework. For instance, the type 
InterfaceT combines attributes of an interface; PacketT is a record used to 
represent a packet and PacketBufT defines a buffer for such a packet. 

Finally, the third layer, Process Types, provides core process types. For example, 
process type RouterIpNode models the basic behavior of a forwarding IP node and 
HostIpNode represents a passive IP host node. Through inheritance behavior is 
specialized. For example, ActiveHostIpNode adds behavior for the processing 
and sending of packets to HostIpNode. 

Usually, all layers of the framework collaborate to model a conception. For 
example, a scenario’s network topology is modeled by several functions (e.g. 
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fSrcToZone) and enumerations (e.g. ZoneIdT), together with appropriate 
handling by processes (e.g. Media, HostIpNode, RouterIpNode) and their 
actions (e.g. out, rcv) which are parameterized with data types (e.g. PacketT). 

During the design of the core process types we realized the usefulness of ideas 
known from efficient protocol implementation techniques. Especially the activity 
thread [Svo89] approach, which schedules activities of different protocol layers in 
common sequential control threads, and integrated layer processing [AP93], which 
combines operations of different layers, were helpful. Thus the number of concurrent 
execution paths (for packet processing) is smaller. This resembles partial order 
reduction techniques but is contained in framework derived models already. Fewer 
actions and buffers in the cTLA model lead to a reduced SPIN state-vector size and 
less possible transitions in the Promela model. 

Example models use the basic structure and node types given by the framework. Of 
course, they usually have to add their own specific node types, e.g. 
RipRouterIpNode. These node types are derived from the framework’s basic 
nodes and add data structures and behavior e.g. for processing additional protocols 
like RIP routing. 

4   Example Models 

Our approach has already been successfully used for the modeling and analysis of two 
example scenarios, the IP-ARP [RPK04] and RIP models. We focus on the structure 
of the models and the relationship to the framework here.  

IP-ARP Model 

In the IP-ARP scenario, a small LAN with three hosts running a basic TCP/IP stack is 
modeled. This scenario is analyzed for confidentiality violations, i.e. packets received 
by non-intended recipients. 

The IP-ARP cTLA model structure is based on a preliminary version of the current 
framework. For the hosts, instances of the IpArpNode process type, which extends 
HostIpNode from the framework, are used. The IpArpNode process type adds 
support for a low-level ARP protocol layer. ARP queries are broadcasted for 
resolving yet unknown IP to hardware address mappings. ARP replies are processed 
and a local ARP cache is managed. On the IP level, changing of assigned IP addresses 
through management actions is added. Furthermore, packets to destination IP 
addresses with hardware addresses not yet in the ARP cache are buffered and the 
ARP layer is signaled. The LAN itself is modeled by a one zone Media instance with 
appropriate supporting enumerations (ZoneIdT, NodeIdT) and topology functions 
(fSrcToZone). Finally, the system is defined as an instance of the 
IpArpExample process type which is in turn a composition of one Media and 
three IpArpNode instances. 

After translation, depending on the inserted assertions modeling confidentiality 
properties, various violating sequences can be found. Interestingly, these sequences 
can be triggered by both ARP attacks and certain IP change management actions. 
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RIP Model 

The RIP scenario consists of three LANs, connected by three routers R1, R2, R3 in a 
triangle-like fashion. Representative hosts H1, H2, HA are chosen from the LANs. 
The hosts are TCP/IP nodes, the routers additionally run the RIP protocol. In this 
scenario, man-in-the-middle attacks through forged RIP updates by host HA on 
communication between hosts H1 and H2 are analyzed. 
 

 

Fig. 2. Compositional Structure of the RIP Model 

In the RIP model, all routers are instances of RipRouterIpNode (cf. Figure 2), 
which is based on RouterIpNode from the framework. The RipRouterIpNode 
type adds functionality for processing and sending RIP update messages and updating 
its routing table accordingly. The hosts are modeled by different process types 
ultimately based on HostIpNode according to their role in the scenario (attacker, 
active or passive communication partner). The LANs are modeled by a six zones 
Media instance with appropriate helper enumerations and functions. The system is 
an instance of the composed process type IpRipExample containing Media, three 
RipRouterIpNode, and three HostIpNode derived instances. 

Again, depending on the exact property modeling, various attack sequences can be 
found. Figure 3 shows an example sequence. The sequences resemble typical routing 
attack ideas mentioned in [BHE01]. 

5   Translating cTLA Specifications to Promela 

To be able to leverage both a high level cTLA based framework and SPIN’s powerful 
capabilities for checking Promela specifications, we engineered the cTLA2PC tool. It 
takes a cTLA specification as input and transforms it to an equivalent, optimized 
Promela specification. Alternatively, the output of a simplified, “flat” cTLA 
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specification is possible as well. cTLA2PC is based on the ANTLR parser 
construction kit. In the following section, we give a short description of the most 
current version cTLA2PC version (“cTLA2PC 2”). 
 

 

Fig. 3. Simplified Attack Sequence in the RIP scenario 

The translation process starts with the scanner and parser components of cTLA2PC. 
If syntax errors are encountered, cTLA2PC prints an error message and the translation 
halts right after the parsing phase. After scanning and parsing, the semantic analysis is 
applied. Semantic analysis includes type checking of action parameters, function 
return values and assignments. Again, errors are flagged and stop the translation 
process. 
 

 

Fig. 4. Transforming a Compositional cTLA System to Promela 

The key phase for the translation of cTLA specifications to Promela is the 
expansion (cf. Figure 4). It transforms a compositional cTLA system to an expanded 
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cTLA system. A compositional cTLA system (CompSystemInstance) is an 
instance of a process type (CompSystemType) containing process type instances 
(e.g. pt1i1, pt2i1, …). Each process type (PT1, PT2, …) may contain or extend 
further process types. 

Because such a model structure is not possible with Promela’s process types 
(proctype), extended and contained process types must be resolved prior to 
building the Promela system. This is done during the expansion phase. As an 
example, consider the expansion of an action from the IP-ARP model (cf. Listing 1). 
The compositional form of the action is given by the coupling of actions from the 
contained process type instances bnA (of process type IpArpNode) and med 
(Media). The expanded form of the action contains no process type instances. 
Instead, init code and variables from the instances have been merged directly into the 
generated expanded or flat system type (ExpSystemType). This allows the actions 
to be flat as well, i.e. to directly consist of the merged action code of the previously 
coupled instances. 
 
// Original Action as defined in the Compositional System 
snd_A( pkt: PacketT ) ::= bnA.snd( pkt ) AND med.in( pkt ); 
 
// Action after Expansion (Flat System) 
snd_A( pkt: PacketT ) ::= 
  pValidIf(pkt.sci, NA_MII)     // guards 
 AND pkt = bnA_ifs[pkt.sci - 1].spa.pkt 
  AND bnA_ifs[pkt.sci - 1].usd = TRUE 
 ... 
 AND bnA_ifs[pkt.sci - 1].spa.usd' = FALSE  // effects 
 ... 

Listing 1. Compositional and Expanded Form of an Action 

Starting from the flat system, code optimizations can be applied. Section 6 
describes a few optimizations optionally done by cTLA2PC during this phase. 

Depending on the chosen output, either the cTLA code generation or the Promela 
code generation phase follows. The key step in the Promela code generation phase is 
the handling of actions and their parameters. Because of the expansion phase only a 
single, simple process instance is left in the system. This instance, however, still 
contains multiple, parameterized actions. Thus, all actions are embedded into a 
Promela non-deterministic do selection loop. The translation of the actions 
themselves, which are structured into guard and effect statements, can be done quite 
easily. Quantified guards (cTLA keywords FORALL, EXISTS) and effects 
(UPDATEALL) are special cases which have to be handled through the introduction of 
local loop blocks and corresponding temporary variables (Promela keyword 
hidden) in the code. 

Still, action parameters have to be handled. They are implicitly existentially 
quantified in cTLA, i.e. if parameter values exist that satisfy the action’s guards, the 
action is executable with this parameter setting. Action parameters are handled 
through the introduction of shared global variables and input generator processes. At 
first, we tried using Promela channels instead of shared variables, but simple global 
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variables proved to be more efficient. The actions’ parameters are replaced by these 
variables. Input generator processes are used to allow the global variables to reach all 
possible values. The processes use the randomness non-deterministic if approach 
described in [Ruy01]. Different actions may (re-)use the same global variables and 
input generator processes, thus reducing the number of additional variables and 
processes. The described approach works fine and was successfully used in [RPK04], 
but is relatively costly in terms of possible transitions and – to a lesser extent – state 
space. In Section 6 we discuss a more efficient approach to the handling of 
parameterized actions. 

Finally, the Promela code generation follows. Thanks to the previously generated 
intermediate code, the Promela code is derived in a straightforward way. This 
concludes the translation process. Additional translation options, which are useful for 
special cases, are recognized by cTLA2PC. For example, the --simulation switch 
includes a control flow generator and symbolic action names into the Promela code. 
This allows scripted testing of partial execution sequences and symbolic choice of 
actions in SPIN’s interactive simulation mode. Furthermore, the --trace-points 
switch helps in mapping SPIN’s verification results back to the cTLA model. It inserts 
extra trace statements for cTLA actions and parameters into the Promela model. 

6   Optimizations 

Our current tool version, cTLA2PC 2, supports several switches for applying different 
optimizations to the Promela code. Some of the low-level optimizations are inspired 
from [Ruy01]. Ruys describes the bitvector optimization. SPIN internally stores each 
element of a bit array as a byte. This may lead to an eightfold increase in the size of 
the state vector. The bitvector optimization maps up to eight elements of a bit array 
into a single byte and replaces element accesses with appropriate macros. With 
cTLA2PCs --optbitarrays and --opt-bool2byte switches, we implement 
a generalized bitvector optimization. Arrays of records with multi bit fields – possibly 
of different size – are mapped into arrays of byte. Furthermore, bools are mapped 
into bytes as well, because SPIN internally stores each bool as a byte. Using this 
generalized bitvector optimization we were able to significantly reduce the state 
vector for both the IP-ARP and the RIP model (cf. Table 1). 

Table 1. Effects of Different Optimizations for both the IP-ARP and RIP Models 

Model Optimization State Vector
Standard 250 Bytes 
Paramodulation 210 Bytes 

IP-ARP 

Generalized Bitvector 168 Bytes 
Standard 448 Bytes 
Paramodulation 424 Bytes 

RIP 
 

Generalized Bitvector 344 Bytes 
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Higher level optimizations can lead to even better results. Our models have a 
special structure because of their cTLA origin. This of course leads to particular 
optimization possibilities. A rewarding area for optimizations is the transformation of 
actions. During this transformation several new processes and variables for handling 
action parameters are created (cf. Section 5). 

The paramodulation optimization makes use of coupling between parameters in 
cTLA system actions. Typically, some action parameters serve as output parameters of 
constituting process actions. Thus, value determining equalities exist. Using these 
equalities, parameters occurrences in the action can be substituted and the parameters 
can be removed from the action’s parameter list. As an example of a slightly more 
complicated case, reconsider action snd_A( pkt: PacketT) from Listing 1, 
where PacketT is a record and an equality pkt = bnA_ifs[ pkt.sci-1 
].spa.pkt exists. Substituting pkt using this equality does not work, because the 
right hand side depends on the field sci of pkt. However, after a parameter 
refinement of snd_A, i.e. splitting its parameter pkt into its fields scn, sci, 
sha, dha, dat and transforming all guards and effects containing pkt accordingly 
partial paramodulation becomes possible. Now, equalities without dependencies exist 
for all fields of pkt except sci. Accordingly, all parameters but x_pkt_sci can be 
substituted in snd_A, leading to the final version snd_A(x_pkt_sci) with just 
one simple parameter. 

Paramodulation optimizes a model with respect to two aspects. First, the number of 
shared global variables is reduced, inducing a smaller state space. Second, 
corresponding input generator processes are saved as well. This leads to fewer 
possible transitions and accordingly smaller search depths for checking action 
sequences. In both the IP-ARP and the RIP model, the state vector is clearly smaller 
after applying the paramodulation optimization (cf. Table 1). 

Even with paramodulation, however, the larger RIP based scenario could not be 
analyzed by SPIN. Input generator processes for setting parameter values substantially 
increase the complexity of the Promela model. The state vector is only enlarged by a 
small amount (about 4 bytes per process), but the number of possible transitions is 
expanded greatly. For example, each setting of a parameter value requires at least one 
step. If an action requires several parameters, usually a separate setting step is 
required for each parameter. Furthermore, because all input generators run freely as 
separate processes, two types of useless sequences are possible. First, sequences 
setting parameters not used by (and not defined for) an action may occur. Second, the 
same parameter may be set in several consecutive steps, each time overwriting the 
previous value. Only the last step of such a sequence before an action execution 
determines the parameter value. Because SPIN must consider all possible sequences 
for model checking, however, it has to follow the useless sequence types as well. 

To prevent these useless sequence types, we evaluated making input generators and 
actions more intelligent. For that purpose, we enhanced cTLA2PC to add code to the 
beginning of an action that sets enable flags only for the input generators associated 
with the used parameters. Each input generator resets its enable flag after setting a 
parameter value. This approach prevents both useless sequence types mentioned 
above. Unfortunately, this approach proved to be counterproductive anyway. The 
additional flags and their management overhead usually add more complexity to the 
model than is saved through the prevention of the useless sequences. 
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Consequently, we developed a radically different approach for handling 
parameterized actions: unrolling input generators. Following this approach, no input 
generators are created by cTLA2PC. Instead, parameters are unrolled by copying the 
actions and replacing the parameters with fixed values. For example, an action with 
two parameters p1, p2 has to be copied |p1|⋅|p2| times, where |pi|, i=1, 2 is the 
cardinality of the type associated with parameter pi. In the copies, the parameters are 
successively replaced with fixed values for all possible values. Because all variable 
types in cTLA (and Promela) are finite, the number of fixed actions replacing a 
parameterized action is finite as well. 

Of course, the unroll optimization may lead to very large Promela specifications, 
but this only increases translation time1. We evaluated the effects of the unroll 
optimization with the afore-mentioned RIP scenario. For benchmark purposes a 
simple assertion was added to the rcv action of host H2. This assertion was analyzed 
using SPIN in breadth-first search mode. As Table 2 shows, SPIN performs 
remarkably better with the Promela model generated using the unroll approach than 
with standard input generators. 

Table 2. Effects of the unroll optimization in the RIP model 

Optimization State Vector Stored States Transitions Depth Memory 
Standard 332 Bytes 1.19E+06 2.3E+08 14 203 Bytes 
Unroll 316 Bytes 1.99E+04 1.8E+06 11 11 Bytes 

 

As input generator steps are no longer needed, the search depth required for finding 
a violating path is reduced as is the number of possible transitions at each level.  
Furthermore, the state vector is decreased as well. The unroll optimization was the 
critical last step for the successful automated analysis of the RIP model with SPIN. 

Finally, efficiency should be kept in mind right from the design phase of a model. 
There, the framework helps again. Derived models inherit ideas from efficient protocol 
implementation (cf. Section 3), thus saving buffers and actions right from the start. 

7   Eclipse Integration 

We aim to ease the application of our modeling and analysis approach through 
appropriate tool support and integration. The Eclipse workbench is a well-known, 
widely adopted “universal tool platform” [Ecl05]. It defines only a core set of 
services. A modern plug-in architecture [Bol03] allows extending and customizing 
Eclipse’s functionality. Current web directories contain over 700 Eclipse plug-ins, 
even if many are of an experimental nature. We engineered a prototypical integration 
of the SPIN and cTLA2PC tools into Eclipse. 

Our integration is comprised of 8 Eclipse plug-ins (cf. Figure 5) implemented by 
70 Java classes, totaling about 12,000 lines of code.  

                                                           
1 We experienced some problems with very large models during SPIN or gcc translation (yacc 

stack overflow errors with the SPIN Windows port and gcc hangs during verifier translation) 
but could work around them. 
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Fig. 5. Plug-in Architecture (UML Component Diagramm) 

Except for the promelaeditor and ctlaeditor plug-ins, all plug-ins are 
separated into a .ui and .core component. User interface elements are implemented 
by the .ui component, the corresponding non-graphical functionality is implemented 
by the .core component. The underlying architectural pattern of the Eclipse 
framework is that different UI implementations can be used to present the same core 
functionality. Communication between UI and core components is handled via events. 

Taken together, our plug-ins provide editing, translation, simulation, debugging 
and verification of specifications. Thanks to core services inherited from Eclipse, our 
integration covers further aspects, e.g. aggregation of files related to a specification 
into a project as well. For space reasons, we only describe the simulation and 
debugging of specifications in more detail. 

To support simulation of Promela specifications from within Eclipse SPIN’s output 
is captured and transferred to Eclipse’s console window. Additionally, for interactive 
simulations, the output is parsed and an interactive selection dialog is displayed for 
each non-deterministic choice (cf. Figure 6). Choices marked by SPIN as 
“unexecuteable” are not displayed in the selection dialog. Furthermore, “debugging” 
of Promela specifications is supported as well. Breakpoints can be set in the Promela 
editor. If the corresponding line of the specification is hit, the simulation will be 
stopped. The user can then resume the specification simulation or step through it. 
Additionally, variables can be added to the watch window. That means that the 
current value of such a variable is always displayed by Eclipse. 

The plug-in spin.core implements the functionality to run the SPIN tool in the 
background based on Eclipse’s Launching architecture. For SPIN simulation a new 
LaunchConfigurationsType is defined. The spin.ui plug-in contains a 
dialog for setting additional SPIN options based on Eclipse’s 
LaunchConfigurationDialog and the selection dialog for interactive 
simulation. The spin.debug.core plug-in parses SPIN output and detects 
changes of watched variables, hit breakpoints etc. If breakpoints are defined, a 
CodeModifier is applied to the Promela file prior to starting the simulation. Its 
purpose is to add special marker printf statements at the appropriate lines. The 
plug-in captures SPIN’s output using a limiting buffer and scans it for the marker. If 
the marker is found, a breakpoint has been hit. The breakpoint’s file and line number 
can be extracted from additional information after the marker. This implementation of 
breakpoints resembles XSpin.  
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Fig. 6. Simulating a cTLA2PC generated Promela Specification in Eclipse 

8   Concluding Remarks 

The presented modeling framework and tool support facilitates the experimentation 
with small to medium size formal computer network models substantially and – as our 
experience showed – can be used not only for the precise description of known 
scenarios and attack processes but also for the automated detection of unknown attack 
variants. The development of models, however, is still a demanding task, since each 
model design decision about whether at all and how a certain detail of the real 
scenario is to be represented in the model, may yield either too strong an increase of 
the set of reachable states or the loss of relevant analysis results. Therefore, our 
current work continues to investigate approaches of efficient protocol implementation 
in order to achieve further enhancements of the modeling framework. Moreover, we 
study the integration of symbolic reasoning into the approach. Particularly 
symbolically proven state invariants shall help to justify model simplifications. 

Another interesting idea - raised by the reviewers - is the application of our 
approach  to areas not related to network attacks. The framework is specific for 
network modeling but otherwise our approach – high level cTLA and framework 
based modeling, optimized translation to Promela, model checking with SPIN  –  is 
generic. It would be interesting to apply it to other problems in the modeling, 
simulation, and analysis area. 
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