
Software Maintenance

Gerardo Canfora and Aniello Cimitile

gerardo.canfora@unisannio.it, cimitile@unisannio.it

University of Sannio, Faculty of Engineering at Benevento
Palazzo Bosco Lucarelli, Piazza Roma

82100, Benevento Italy

Tel. ++39 0824 305804 Fax. ++39 0824 21866

29 November, 2000

1 Introduction
The term maintenance, when accompanied to software, assumes a meaning profoundly
different from the meaning it assumes in any other engineering discipline. In fact, many
engineering disciplines intend maintenance as the process of keeping something in working
order, in repair. The key concept is the deterioration of an engineering artifact due to the use
and the passing of time; the aim of maintenance is therefore to keep the artifact’s functionality
in line with that defined and registered at the time of release.

Of course, this view of maintenance does not apply to software, as software does not
deteriorate with the use and the passing of time. Nevertheless, the need for modifying a piece
of software after delivery has been with us since the very beginning of electronic computing.
The Lehman’s laws of evolution [50, 51] state that successful software systems are
condemned to change over time. A predominant proportion of changes is to meet ever-
changing user needs. This is captured by the first law of Lehman [50, 51]: “A program that is
used in a real world environment necessarily must change or become progressively less useful
in that environment”. Significant changes also derive from the need to adapt software to
interact with external entities, including people, organizations, and artificial systems. In fact,
software is infinitely malleable and, therefore, it is often perceived as the easiest part to
change in a system [21].

This article overviews software maintenance, its relevance, the problems, and the available
solutions; the underlying objective is to present software maintenance not as a problem, but in
terms of solutions.

The remainder of the article is organized as follows. Section 2 defines software maintenance
and section 3 categorizes it. Costs and challenges of software maintenance are analyzed in
section 4. Sections 5-7 are devoted to the structure of the maintenance activity. In particular,
section 5 introduces general models of the maintenance process, while section 6 discusses
existing standards. Management of software maintenance is discussed in section 7. Sections 8

2

and 9 deal with two related areas that support software maintenance, namely reverse
engineering and reengineering. Section 10 is devoted to legacy systems, an issue that assumed
an ever increasing economic relevance in the last decade. Concluding remarks and areas for
further investigation are given in section 11, while section 12 provides resources for further
reading.

2 Definitions
Software maintenance is a very broad activity often defined as including all work made on a
software system after it becomes operational [56]. This covers the correction of errors, the
enhancement, deletion and addition of capabilities, the adaptation to changes in data
requirements and operation environments, the improvement of performance, usability, or any
other quality attribute. The IEEE definition is as follows [40]:

“Software maintenance is the process of modifying a software system or component
after delivery to correct faults, improve performances or other attributes, or adapt to
a changed environment.”

This definition reflects the common view that software maintenance is a post-delivery
activity: it starts when a system is released to the customer or user and encompasses all
activities that keep the system operational and meet the user’s needs. This view is well
summarized by the classical waterfall models of the software life cycle, which generally
comprise a final phase of operation and maintenance, as shown in figure 1.

Several authors disagree with this view and affirm that software maintenance should start well
before a system becomes operational. Schneidewind [67] states that the myopic view that
maintenance is strictly a post-delivery activity is one of the reasons that make maintenance
hard. Osborne and Chikofsky [59] affirm that it is essential to adopt a life cycle approach to
managing and changing software systems, one which looks at all aspects of the development
process with an eye toward maintenance. Pigoski [62] captures the needs to begin
maintenance when development begins in a new definition:

“Software maintenance is the totality of activities required to provide cost-effective
support to a software system. Activities are performed during the pre-delivery stage
as well as the post-delivery stage. Pre-delivery activities include planning for post-
delivery operations, supportability, and logistics determination. Post-delivery
activities include software modification, training, and operating a help desk.”

This definition is consistent with the approach to software maintenance taken by ISO in its
standard on software life cycle processes [44]. It definitively dispels the image that software
maintenance is all about fixing bugs or mistakes.

3

3 Categories of software maintenance
Across the 70’s and the 80’s, several authors have studied the maintenance phenomenon with
the aim of identifying the reasons that originate the needs for changes and their relative
frequencies and costs. As a result of these studies, several classifications of maintenance
activities have been defined; these classifications help to better understand the great
significance of maintenance and its implications on the cost and the quality of the systems in
use. Dividing the maintenance effort into categories has first made evident that software
maintenance is more than correcting errors.

Lientz and Swanson [54] divide maintenance into three components: corrective, adaptive, and
perfective maintenance. Corrective maintenance includes all the changes made to remove
actual faults in the software. Adaptive maintenance encompasses the changes needed as a
consequence of some mutation in the environment in which the system must operate, for
instance, altering a system to make it running on a new hardware platform, operating system,
DBMS, TP monitor, or network. Finally, perfective maintenance refers to changes that
originate from user requests; examples include inserting, deleting, extending, and modifying
functions, rewriting documentation, improving performances, or improving ease of use.
Pigoski [62] suggests joining the adaptive and perfective categories and calling them
enhancements, as these types of changes are not corrective in nature: they are improvements.
As a matter of fact, some organizations use the term software maintenance to refer to the
implementation of small changes, whereas software development is used to refer to all other
modifications.

Ideally, maintenance operations should not degrade the reliability and the structure of the
subject system, neither they should degrade its maintainability1, otherwise future changes will
be progressively more difficult and costly to implement. Unfortunately, this is not the case for
real-world maintenance, which often induces a phenomenon of aging of the subject system
[60]; this is expressed by the second law of Lehman [50, 51]: “As an evolving program
changes, its structure tends to become more complex. Extra resources must be devoted to
preserving the semantics and simplifying the structure”. Accordingly, several authors consider
a fourth category of maintenance, named preventive maintenance, which includes all the
modifications made to a piece of software to make it more maintainable [63].

ISO [43] introduces three categories of software maintenance: problem resolution, which
involves the detection, analysis, and correction of software nonconformities causing
operational problems; interface modifications, required when additions or changes are made
to the hardware system controlled by the software; functional expansion or performance
improvement, which may be required by the purchaser in the maintenance stage. A

1 The IEEE definition of maintainability reflects the definition of maintenance: the ease with which a
software system or component can be modified to correct faults, improve performance or other
attributes, or adapt to a changed environment [40]. ISO assumes maintainability as one of the six
primary characteristics of its definition of software quality and suggests that it depends on four sub-
characteristics: analyzability, changeability, stability, testability [42]; the new version of the standard,
currently under development, adds compliance as a fifth sub-characteristic.

4

recommendation is that all changes should be made in accordance with the same procedures,
as far as possible, used for the development of software. However, when resolving problems,
it is possible to use temporary fixes to minimize downtime, and implement permanent
changes later.

IEEE [41] redefines the Lientz and Swanson [54] categories of corrective, adaptive, and
perfective maintenance, and adds emergency maintenance as a fourth category. The IEEE
definitions are as follows [41]:

“ Corrective maintenance: reactive modification of a software product performed
after delivery to correct discovered faults.
Adaptive maintenance: modification of a software product performed after delivery
to keep a computer program usable in a changed or changing environment.
Perfective maintenance: modification of a software product performed after delivery
to improve performance or maintainability.
Emergency maintenance: unscheduled corrective maintenance performed to keep a
system operational.”

These definitions introduce the idea that software maintenance can be either scheduled or
unscheduled and reactive or proactive, as shown in figure 2. Figure 3 depicts the
correspondences that exist between ISO and IEEE categories.

4 Costs and challenges
However one decides to categorize the maintenance effort, it is still clear that software
maintenance accounts for a huge amount of the overall software budget for an information
system organization. Since 1972 [28], software maintenance was characterized as an
“iceberg” to highlight the enormous mass of potential problems and costs that lie under the
surface. Although figures vary, several surveys [1, 2, 7, 10, 34, 46, 54, 56, 58] indicate that
software maintenance consumes 60% to 80% of the total life cycle costs; these surveys also
report that maintenance costs are largely due to enhancements (often 75–80%), rather than
corrections.

Several technical and managerial problems contribute to the costs of software maintenance.
Among the most challenging problems of software maintenance are: program comprehension,
impact analysis, and regression testing.

Whenever a change is made to a piece of software, it is important that the maintainer gains a
complete understanding of the structure, behavior and functionality of the system being
modified. It is on the basis of this understanding that modification proposals to accomplish the
maintenance objectives can be generated. As a consequence, maintainers spend a large
amount of their time reading the code and the accompanying documentation to comprehend
its logic, purpose, and structure. Available estimates indicate that the percentage of
maintenance time consumed on program comprehension ranges from 50% up to 90% [32, 55,
73]. Program comprehension is frequently compounded because the maintainer is rarely the

5

author of the code (or a significant period of time has elapsed between development and
maintenance) and a complete, up-to-date documentation is even more rarely available [26].

One of the major challenges in software maintenance is to determine the effects of a proposed
modification on the rest of the system. Impact analysis [6, 64, 35, 81] is the activity of
assessing the potential effects of a change with the aim of minimizing unexpected side effects.
The task involves assessing the appropriateness of a proposed modification and evaluating the
risks associated with its implementation, including estimates of the effects on resources, effort
and scheduling. It also involves the identification of the system’s parts that need to be
modified as a consequence of the proposed modification. Of note is that although impact
analysis plays a central role within the maintenance process, there is no agreement about its
definition and the IEEE Glossary of Software Engineering Terminology [40] does not give a
definition of impact analysis.

Once a change has been implemented, the software system has to be retested to gain
confidence that it will perform according to the (possibly modified) specification. The process
of testing a system after it has been modified is called regression testing [52]. The aim of
regression testing is twofold: to establish confidence that changes are correct and to ensure
that unchanged portions of the system have not been affected. Regression testing differs from
the testing performed during development because a set of test cases may be available for
reuse. Indeed, changes made during a maintenance process are usually small (major rewriting
are a rather rare event in the history of a system) and, therefore, the simple approach of
executing all test cases after each change may be excessively costly. Alternatively, several
strategies for selective regression testing are available that attempt to select a subset of the
available test cases without affecting test effectiveness [39, 66].

Most problems that are associated with software maintenance can be traced to deficiencies of
the software development process. Sneidewind [67] affirms that “the main problem in doing
maintenance is that we cannot do maintenance on a system which was not designed for
maintenance”. However, there are also essential difficulties, i.e. intrinsic characteristics of
software and its production process, that contribute to make software maintenance an
unequalled challenge. Brooks [21] identifies complexity, conformity, changeability, and
invisibility as four essential difficulties of software and Rajlich [65] adds discontinuity to this
list.

5 Models
A typical approach to software maintenance is to work on code first, and then making the
necessary changes to the accompanying documentation, if any. This approach is captured by
the quick-fix model, shown in figure 4, which demonstrates the flow of changes from the old
to the new version of the system [8]. Ideally, after the code has been changed the requirement,
design, testing and any other form of available documents impacted by the modification
should be updated. However, due to its perceived malleability, users expect software to be
modified quickly and cost-effectively. Changes are often made on the fly, without proper
planning, design, impact analysis, and regression testing. Documents may or may not be
updated as the code is modified; time and budget pressure often entails that changes made to a

6

program are not documented and this quickly degrades documentation. In addition, repeated
changes may demolish the original design, thus making future modifications progressively
more expensive to carry out.

Evolutionary life cycle models suggest an alternative approach to software maintenance.
These models share the idea that the requirements of a system cannot be gathered and fully
understood initially. Accordingly, systems are to be developed in builds each of which
completes, corrects, and refines the requirements of the previous builds based on the feedback
of users [36]. An example is iterative enhancement [8], which suggests structuring a problem
to ease the design and implementation of successively larger/refined solutions. Iterative
enhancement explains maintenance too, as shown in figure 5. The construction of a new build
(that is, maintenance) begins with the analysis of the existing system’s requirements, design,
code and test documentation and continues with the modification of the highest-level
document affected by changes, propagating the changes down to the full set of documents. In
short, at each step of the evolutionary process the system is redesigned based on an analysis of
the existing system.

A key advantage of the iterative-enhancement model is that documentation is kept updated as
the code changes. Visaggio [76] reports data from replicated controlled-experiments
conducted to compare the quick-fix and the iterative-enhancement models and shows that the
maintainability of a system degrades faster with the quick-fix model. The experiments also
indicate that organizations adopting the iterative-enhancement model make maintenance
changes faster than those applying the quick-fix model; the latter finding is counter-intuitive,
as the most common reason for adopting the quick-fix model is time pressure.

Basili [8] suggests a model, the full-reuse model shown in figure 6, that views maintenance as
a particular case of reuse-oriented software development. Full-reuse begins with the
requirement analysis and design of a new system and reuses the appropriate requirements,
design, code, and tests from earlier versions of the existing system. This is a major difference
with the iterative enhancement, which starts with the analysis of the existing system. Central
to the full-reuse model is the idea of a repository of documents and components defining
earlier versions of the current system and other systems in the same application domain. This
makes reuse explicit and documented. It also promotes the development of more reusable
components.

The iterative-enhancement model is well suited for systems that have a long life and evolve
over time; it supports the evolution of the system in such a way to ease future modifications.
On the contrary, the full-reuse model is more suited for the development of lines of related
products. It tends to be more costly on the short run, whereas the advantages may be sensible
in the long run; organizations that apply the full-reuse model accumulate reusable components
of all kinds and at many different levels of abstractions and this makes future developments
more cost effective.

7

6 Processes
Several authors have proposed process models for software maintenance. These models
organize maintenance into a sequence of related activities, or phases, and define the order in
which these phases are to be executed. Sometimes, they also suggest the deliverables that
each phase must provide to the following phases. An example of such a process is shown in
figure 7 [82]. Although different authors identify different phases, they agree that there is a
core set of activity that are indispensable for successful maintenance, namely the
comprehension of the existing system, the assessment of the impact of a proposed change, and
the regression testing.

IEEE and ISO have both addressed software maintenance, the first with a specific standard
[41] and the latter as a part of its standard on life cycle processes [44]. The next two sections
describe the maintenance processes defined by these two documents.

6.1 IEEE-1219
The IEEE standard organizes the maintenance process in seven phases, as demonstrated in
figure 8. In addition to identifying the phases and their order of execution, for each phase the
standard indicates input and output deliverables, the activities grouped, related and supporting
processes, the control, and a set of metrics.

Problem/modification identification, classification, and prioritization. This is the phase in
which the request for change (MR – modification request) issued by a user, a customer, a
programmer, or a manager is assigned a maintenance category (see section 3 for maintenance
categories definitions), a priority and a unique identifier. The phase also includes activities to
determine whether to accept or reject the request and to assign it to a batch of modifications
scheduled for implementation.

Analysis. This phase devises a preliminary plan for design, implementation, test, and delivery.
Analysis is conducted at two levels: feasibility analysis and detailed analysis. Feasibility
analysis identifies alternative solutions and assess their impacts and costs, whereas detailed
analysis defines the requirements for the modification, devises a test strategy, and develop an
implementation plan.

Design. The modification to the system is actually designed in this phase. This entails using
all current system and project documentation, existing software and databases, and the output
of the analysis phase. Activities include the identification of affected software modules, the
modification of software module documentation, the creation of test cases for the new design,
and the identification of regression tests.

Implementation. This phase includes the activities of coding and unit testing, integration of
the modified code, integration and regression testing, risk analysis, and review. The phase also
includes a test-readiness review to asses preparedness fort system and regression testing.

Regression/system testing. This is the phase in which the entire system is tested to ensure
compliance to the original requirements plus the modifications. In addition to functional and

8

interface testing, the phase includes regression testing to validate that no new faults have been
added. Finally, this phase is responsible for verifying preparedness for acceptance testing.

Acceptance testing. This level of testing is concerned with the fully integrated system and
involves users, customers, or a third party designated by the customer. Acceptance testing
comprises functional tests, interoperability tests, and regression tests.

Delivery. This is the phase in which the modified systems is released for installation and
operation. It includes the activity of notifying the user community, performing installation and
training, and preparing and archival version for backup.

6.2 ISO-12207
While the standard IEEE-1219 [41] is specifically concerned with software maintenance, the
standard ISO-12207 [44] deals with the totality of the processes comprised in the software life
cycle. The standard identifies seventeen processes grouped into three broad classes: primary,
supporting, and organizational processes. Processes are divided into constituent activities each
of which is further organized in tasks. Figure 9 shows the processes and their distribution into
classes. Maintenance is one of the five primary processes, i.e. one of the processes that
provide for conducting major functions during the life cycle and initiate and exploit support
and organizational processes. Figure 10 shows the activities of the maintenance processes; the
positions do not indicate any-time dependent relationships.

Process implementation. This activity includes the tasks for developing plans and procedures
for software maintenance, creating procedures for receiving, recording, and tracking
maintenance requests, and establishing an organizational interface with the configuration
management process. Process implementation begins early in the system life cycle; Pigoski
[62] affirms that maintenance plans should be prepared in parallel with the development
plans. The activity entails the definition of the scope of maintenance and the identification and
analysis of alternatives, including offloading to a third party; it also comprises organizing and
staffing the maintenance team and assigning responsibilities and resources.

Problem and modification analysis. The first task of this activity is concerned with the
analysis of the maintenance request, either a problem report or a modification request, to
classify it, to determine its scope in term of size, costs, and time required, and to assess its
criticality. It is recommended that the maintenance organization replicates the problem or
verifies the request. The other tasks regard the development and the documentation of
alternatives for change implementation and the approval of the selected option as specified in
the contract.

Modification implementation. This activity entails the identification of the items that need to
be modified and the invocation of the development process to actually implement the
changes. Additional requirements of the development process are concerned with testing
procedures to ensure that the new/modified requirements are completely and correctly
implemented and the original unmodified requirements are not affected.

9

Maintenance review/acceptance. The tasks of this activity are devoted to assessing the
integrity of the modified system and end when the maintenance organization obtain the
approval for the satisfactory completion of the maintenance request. Several supporting
processes may be invoked, including the quality assurance process, the verification process,
the validation process, and the joint review process.

Migration. This activity happens when software systems are moved from one environment to
another. It is required that migration plans be developed and the users/customers of the system
be given visibility of them, the reasons why the old environment is no longer supported, and a
description of the new environment and its date of availability. Other tasks are concerned with
the parallel operations of the new and old environment and the post-operation review to assess
the impact of moving to the new environment.

Software retirement. The last maintenance activity consists of retiring a software system and
requires the development of a retirement plan and its notification to users.

7 Maintenance management
Management is “the process of designing and maintaining an environment in which
individuals, working together in groups, accomplish efficiently selected aims” [79]. In the
case of maintenance the key aim is to provide cost-effective support to a software system
during its entire lifespan. Management is concerned with quality and productivity, that imply
effectiveness and efficiency. Many authors [48, 79, 74] agree that management consists of
five separate functions, as shown in figure 11. The functions are: planning, organizing,
staffing, leading (sometimes also called directing), and controlling.

Planning consists of selecting missions and objectives and predetermining a course of actions
for accomplishing them. Commitment of human and material resources and scheduling of
actions are among the most critical activities in this function.

Organizing is the management function that establishes an intentional structure of roles for
people to fill in an organization. This entails arranging the relationships among roles and
granting the responsibilities and needed authority.

Staffing involves filling the positions in the organization by selecting and training people.
Two key activities of this function are evaluating and appraising project personnel and
providing for general development, i.e. improvement of knowledge, attitudes, and skills.

Leading is creating a working environment and an atmosphere that will assist and motivate
people so that they will contribute to the achievement of organization and group goals.

Controlling measures actual performances against planned goals and, in case of deviations,
devises corrective actions. This entails rewarding and disciplining project personnel.

The standard IEEE-1219 [41] suggests a template to guide the preparation of a software
maintenance plan based on the standard itself; figure 12 shows an outline of this template.

10

Pigoski [62] highlights that a particular care must be made to plan the transition of a system
from the development team to the maintenance organization, as this is a very critical element
of the life cycle of a system.

Software maintenance organizations can be designed and set up with three different
organizational structures: functional, project, or matrix [74, 83].

Functional organizations are hierarchical in nature, as shown in figure 13. The maintenance
organization is broken down into different functional units, such as software modification,
testing, documentation, quality assurance, etc. Functional organizations present the advantage
of a centralized organization of similar specialized resources. The main weakness is that
interface problems may be difficult to solve: whenever a functional department is involved in
more than a project conflicts may arise over the relative priorities of these projects in the
competition for resources. In addition, the lack of a central point of complete responsibility
and authority for the project may entails that a functional department places more emphasis
on its own specialty than on the goal of the project.

Project organizations are the opposite of the functional organizations (see figure 14). In this
case a manager is given the full responsibility and authority for conducting the project; all the
resources needed for accomplishing the project goals are separated from the regular functional
structure and organized into an autonomous, self-contained team. The project manager may
possibly acquire additional resources from outside the overall organization. Advantages of
this type of organization are a full control over the project, quick decision making, and a high
motivation of project personnel. Weaknesses include the fact that there is a start-up time for
forming the team, and there may be an inefficient use of resources.

Matrix organizations are a composition of functional and project organizations with the
objective of maximizing the strengths and minimizing the weaknesses of both types of
organizations. Figure 15 shows a matrix organization; the standard vertical hierarchical
organization is combined with an horizontal organization for each project. The strongest point
of this organization is that a balance is struck between the objectives of the functional
departments and those of the projects. The main problem is that every person responds to two
managers, and this can be a source of conflicts. A solution consists of specifying the roles,
responsibility and authority of the functional and project managers for each type of decisions
to be made, as shown in figure 16.

A common problem of software maintenance organizations is inexperienced personnel. Beath
and Swanson [10] report that 25% of the people doing maintenance are students and up to
61% are new hires. Pigoski [62] confirms that 60% to 80% of the maintenance staff is newly
hired personnel. Maintenance is still perceived by many organizations as a non strategic issue,
and this explain why it is staffed with students and new hired people. To compound the
problem there is the fact that most Universities do not teach software maintenance, and
maintenance is very rarely though in corporate training and education programs, too. As an
example, software maintenance is not listed within the 22 software courses of the software
engineering curriculum sketched in reference [61]. The lack of appraisal of maintenance
personnel generates other managerial problems, primarily high turnover and low morale.

11

8 Reverse engineering
Reverse engineering as been defined as “the process of analyzing a subject system to identify
the system’s components and their interrelationships and to create representations of the
system in another form or at a higher level of abstraction” [29]. Accordingly, reverse
engineering is a process of examination, not a process of change, and therefore it does not
involve changing the software under examination.

Although software reverse engineering originated in software maintenance, it is applicable to
many problem areas. Chikofsky and Cross II [29] identify six key objectives of reverse
engineering: coping with complexity, generating alternate views, recovering lost information,
detecting side effects, synthesizing higher abstractions, and facilitating reuse. The standard
IEEE-1219 [41] recommends reverse engineering as a key supporting technology to deal with
systems that have the source code as the only reliable representation. Examples of problem
areas where reverse engineering has been successfully applied include identifying reusable
assets [23], finding objects in procedural programs [24, 37], discovering architectures [49],
deriving conceptual data models [18], detecting duplications [47], transforming binary
programs into source code [30], renewing user interfaces [57], parallelizing sequential
programs [17], and translating [22], downsizing [70], migrating [27], and wrapping legacy
code [72]. Reverse engineering principles have also been applied to business process re-
engineering to create a model of an existing enterprise [45].

Reverse engineering as a process is difficult to define in rigorous terms because it is a new
and rapidly evolving field. Traditionally, reverse engineering has been viewed as a two step
process: information extraction and abstraction. Information extraction analyses the subject
system artifacts – primarily the source code – to gather row data, whereas information
abstraction creates user-oriented documents and views. Tilley and Paul [75] propose a
preliminary step that consists of constructing domain-specific models of the system using
conceptual modeling techniques.

The IEEE Standard for Software Maintenance [41] suggests that the process of reverse
engineering evolves though six steps: dissection of source code into formal units; semantic
description of formal units and creation of functional units; description of links for each unit
(input/output schematics of units); creation of a map of all units and successions of
consecutively connected units (linear circuits); declaration and semantic description of system
applications, and; creation of an anatomy of the system. The first three steps concern local
analysis on a unit level (in the small), while the other three steps are for global analysis on a
system level (in the large).

Benedusi et al. [12] advocate the need for a high-level organizational paradigm when setting
up complex processes in a field, such as reverse engineering, in which methodologies and
tools are not stable but continuously growing. The role of such a paradigm is not only to
define a framework in which available methods and tools can be used, but also to allow the
repetitions of processes and hence to learn from them. They propose a paradigm, called
Goals/Models/Tools, that divides the setting up of a reverse engineering process into the
following three sequential phases: Goals, Models, and Tools.

12

Goals: this is the phase in which the motivations for setting up the process are analyzed
so as to identify the information needs and the abstractions to be produced.
Models: this is the phase in which the abstractions identified in the previous phase are
analyzed so as to define representation models that capture the information needed for
their production.
Tools: this is the phase for defining, acquiring, enhancing, integrating, or constructing:
− extraction tools and procedures, for the extraction from the system’s artifacts of the

row data required for instantiating the models defined in the model phase; and
− abstraction tools and procedures, for the transformation of the program models into

the abstractions identified in the goal phase.

The Goals/Models/Tools paradigm has been extensively used to define and execute several
real-world reverse engineering processes [11, 12].

9 Re-engineering
The practice of re-engineering a software system to better understand and maintain it has long
been accepted within the software maintenance community. Chikofsky and Cross II taxonomy
paper [29] defines re-engineering as “the examination and alteration of a subject system to
reconstitute it in a new form and the subsequent implementation of the new form”. The same
paper indicates renovation and reclamation as possible synonyms; renewal is another
commonly used term. Arnold [5] gives a more comprehensive definition as follows:

“Software Re-engineering is any activity that: (1) improves one’s understanding of
software, or (2) prepares or improves the software itself, usually for increased
maintainability, reusability, or evolvability.”

it is evident hat re-engineering entails some form of reverse engineering to create a more
abstract view of a system, a regeneration of this abstract view followed by forward
engineering activities to realize the system in the new form. This process is illustrated in
figure 17. The presence of a reverse engineering step distinguishes re-engineering from
restructuring, the latter consisting of transforming an artifact from one form to another at the
same relative level of abstraction [29].

Software re-engineering has proven important for several reasons. Arnold [5] identifies seven
main reasons that demonstrate the relevance of re-engineering:

“Re-engineering can help reduce an organization’s evolution risk;
Re-engineering can help an organization recoup its investment in software;
Re-engineering can make software easier to change;
Re-engineering is a big business;
Re-engineering capability extends CASE toolsets;
Re-engineering is a catalyst for automatic software maintenance;
Re-engineering is a catalyst for applying artificial intelligence techniques to solve
software re-engineering problems.”

13

Examples of scenarios in which re-engineering has proven useful include migrating a system
from one platform to another [19], downsizing [70], translating [22, 31], reducing
maintenance costs [69], improving quality [4], and migrating and re-engineering data [3]. The
standard IEEE-1219 [41] highlights that re-engineering can not only revitalize a system, but
also provide reusable material for future development, including frameworks for object-
oriented environments.

Software re-engineering is a complex process that re-engineering tools can only support, not
completely automate. There is a good deal of human intervention with any software re-
engineering project. Re-engineering tools can provide help in moving a system to a new
maintenance environment, for example one based on a repository, but they cannot define such
an environment nor the optimal path along which to migrate the system to it. These are
activities that only human beings can perform. Another problem that re-engineering tools only
marginally tackle is the creation of an adequate testbed to prove that the end product of re-
engineering is fully equivalent to the original system. This still involves much hand-checking,
partially because very rarely an application is re-engineered without existing functions being
changed and new functions being added. Finally, re-engineering tools often fail to take into
account the unique aspects of a system, such as the use of a JCL or a TP-Monitor, the accesses
to a particular DBMS or the presence of embedded calls to modules in other languages.

Success in software re-engineering requires much more than just buying one or more re-
engineering tools. Defining the re-engineering goals and objectives, forming the team and
training it, preparing a testbed to validate the re-engineered system, evaluating the degree to
which the tools selected can be integrated and identifying the bridge technologies needed,
preparing the subject system for re-engineering tools (for example, by stubbing DBMS
accesses and calls to assembler routines) are only a few examples of activities that contribute
to determining the success of a re-engineering project. Sneed [71] suggests that five steps
should be considered when planning a re-engineering project: project justification, which
entails determining the degree to which the business value of the system will be enhanced;
portfolio analysis, that consists of prioritizing the applications to be re-engineered based on
their technical quality and business value; cost estimation, that is the estimation of the costs of
the project; cost-benefit analysis, in which costs and expected returns are compared, and;
contracting, which entails the identification of tasks and the distribution of effort.

10 Legacy systems
A scenario that highlights the high cost of software maintenance is legacy systems. These are
systems developed over the past 20/30 years (or even more) to meet a growing demand for
new products and services. They have typically been conceived in a mainframe environment
using non-standard development techniques and obsolete programming languages. The
structure has often been degraded by a long history of changes and adaptations and neither
consistent documentation nor adequate test suites are available. Nevertheless, these are crucial
systems to the business they support (most legacy systems hold terabytes of live data) and
encapsulate a great deal of knowledge and expertise of the application domain. Sometimes the
legacy code is the only place where domain knowledge and business rules are recorded, and
this entails that even the development of a new replacement system may have to rely on

14

knowledge which is encapsulated in the old system. In short, legacy systems have been
identified as “large software systems that we don’t know how to cope with but that are vital to
our organization” [14]. Similarly, Brodie and Stonebraker [20] define a legacy system as “an
information system that significantly resists modifications and evolution to meet new and
constantly changing business requirements.”

There are a number of options available to manage legacy systems. Typical solutions include:
discarding the legacy system and building a replacement system; freezing the system and
using it as a component of a new larger system; carrying on maintaining the system for
another period, and; modifying the system to give it another lease of life [15]. Modifications
may range from a simplification of the system (reduction of size and complexity) to ordinary
preventive maintenance (re-documentation, restructuring and re-engineering) or even to
extraordinary processes of adaptive maintenance (interface modification, wrapping and
migration). These possibilities are not alternative to each other and the decision on which
approach, or combination of approaches, is the most suitable for any particular legacy system
must be made based on an assessment of technical and business value of the system.

Four factors that have been successfully used to asses the value of a legacy system and make
informed decisions are: obsolescence, deterioration, decomposability, and business value.

Obsolescence measures the ageing of a system due to the progress of software and data
engineering and the evolution of hardware/software platforms. Obsolescence induces a cost
which results from not taking advantage of modern methods and technologies which reduce
the burden of maintaining a system.

Deterioration measures the decreases of the maintainability of a system (lack of analyzability,
modifiability, stability, testability, etc.) due to the maintenance operations the system has
undergone in its lifespan. Deterioration directly affects the cost of maintaining a system.

Decomposability measures the identifiability and independence of the main components of a
system. All systems can be considered as having three components: interfaces, domain
functions, and data management services. The decomposability of a system indicates how
well these components are reflected in its architecture.

Business Value measures the complexity of the business process and rules a system, or
system’s component, implements and their relevance to achieve efficiency and efficacy in the
business operation.

Reference [25] suggests how these factors can be measured and introduces a life cycle model
for legacy systems that uses these factors to drive decisions. Figure 18 gives an overview of
the life cycle model. The model stresses the fact that a system is constantly under
maintenance by means of the outermost maintenance loop; the figure also highlights three
more loops which refer to ordinary maintenance, extraordinary maintenance, and replacement.
Extraordinary maintenance differs from ordinary maintenance for the extent of the
modifications and the impact that they have on the underlying business processes. New and
replacement systems enter the ordinary maintenance loop; the decisions on whether or not a

15

running system needs to enter an extraordinary maintenance loop or a replacement loop
(decision points D1 and D2) requires that the system has been assessed based on the four
factors discussed above. Returning to the ordinary maintenance loop (decision points E1 and
E2) entails the evaluation of the progress/completion of the planned process.

Bennett et al. [15] stress the need to model the business strategy of an organization from a
top-down perspective, including many stakeholders, to make informed decisions about legacy
systems. They introduce a two-phase model, called SABA – Software as a Business Asset,
that use an organizational scenario tool to generate scenarios for the organization’s future and
a technology scenario tool to produce a prioritized set of solutions for the legacy system.
Prioritization of solutions is achieved by comparing the current (legacy) system with the
systems required by each scenario generated by the organizational scenario tool.

11 Conclusions
This article has overviewed software maintenance, its strategic problems, and the available
solutions. The underlying theme of the article has been to show that technical and managerial
solutions exist that can support the application of high standards of engineering in the
maintenance of software. Of course, there are open problems and more basic and applied
research is needed both to gain a better understanding of software maintenance and to find
better solutions.

Nowadays, the way in which software systems are designed and built is changing profoundly,
and this will surely have a major impact on tomorrow’s software maintenance. Object
technology, commercial-off-the-shelf products, computer supported cooperative work,
outsourcing and remote maintenance, Internet/Intranet enabled systems and infrastructures,
user enhanceable systems, are a few examples of areas that will impact software maintenance.

Object technology has become increasingly popular in recent years and a majority of the new
systems are currently being developed with an object-oriented approach. Among the main
reasons for using object technology is enhanced modifiability, and hence easier maintenance.
This is achieved through concepts such as classes, information hiding, inheritance,
polymorphism, and dynamic binding. However, there is no enough data that empirically show
the impact of object technology on maintenance [38, 68]. Wilde and Huitt [80] discuss some
of the problems that may be expected in the maintenance of software developed with object
technology and make recommendations for possible tool support. Among the recognized
problems are the fact that inheritance may make the dependencies among classes harder to
find and analyze [9, 33] and may cause an increase of rework [53]. Also, single changes may
be more difficult to implement with object-oriented software compared to procedural
software; however, object-oriented development typically results in fewer changes. In short,
these findings suggest that object technology does not necessarily improve maintainability
and more empirical studies are needed to understand its impact.

More and more organizations are replacing their in-house systems by acquiring and
integrating commercial products and components; the main drivers are quicker time to market
and lower development costs. However, commercial-off-the-shelf products have the effect of

16

reducing the malleability of software and will have a major impact on the maintenance
process [77, 78].

As software systems grow in size, complexity and age, their maintenance and evolution cease
to be an individual task to require the combined efforts of groups of software engineers. The
day-by-day work of these groups of software engineers produces a body of shared knowledge,
expertise and experiences, a sort of rationale for the design of the system, that is precious to
improve the productivity of the process of evolving the system over the time, and to reduce
the chances of introducing errors at each maintenance operation. Whenever this agreed
understanding is not available, software engineers have to develop it as a (preliminary) part of
their maintenance assignment. This is a costly and time consuming activity: available figures
indicate that 2/3 of the time of a software engineer in a maintenance team is spent looking at
the code and the available documents to (re-)discover and process information which had
probably been already derived several times during system lifetime [13]. Despite of its
importance, this knowledge is seldom recorded in any systematic manner; usually, it is in the
mind of engineers and is lost when engineers change their job (or duty). Hence, this is a great
potential for improvement in the productivity of maintenance teams.

Outsourcing of software maintenance has grown in the past decade and is now a well
established industry. The development of telecommunications, and the diffusion of
Internet/Intranet infrastructures, are now pushing in the direction of telecommuting and
remote maintenance; this will require a rethinking of the way in which maintenance
organizations are designed and set up and processes are enacted.

Currently there is a debate on the nature and the essence of software maintenance.
Indubitably, the traditional vision of software maintenance as a post-delivery activity dates
back to the seventies and is strictly related to the waterfall life cycle models. With the
emerging of the iterative and evolutionary life cycle models the fact that maintenance is both
a pre-delivery and a post-delivery activity has became apparent. However, there is still now a
widespread opinion that software maintenance is all about fixing bugs or mistakes. This is
why several authors prefer the term software evolution to refer to non-corrective maintenance.
Recently, Bennett and Rajlich [16] have proposed a staged model of the software life cycle
that partition the conventional maintenance phase of waterfall models in a more useful way.
They retain initial development and add an explicit evolution stage during which functionality
and capabilities are extended in a major way to meet user needs. Evolution is followed by a
stage of servicing, in which the system is subject to defect repairs and simple changes in
functions. Then, the system moves to a phase-out stage and finally to a close-down. The
authors claim that evolution is different from servicing, from phase-out, and from close-down,
and this difference has important technical and business consequences.

12 Resources
The Journal of Software Maintenance, published by John Wiley & Sons is the only periodical
completely dedicated to software maintenance. Articles on software maintenance appear
regularly also in The Journal of Systems and Software, published by Elsevier Science. Other
journals that deliver software maintenance articles are: the IEEE Transactions on Software

17

Engineering, the International Journal of Software Engineering and Knowledge Engineering,
published by World Scientific, Software Practice and Experience, published by John Wiley &
Sons, Information and Software Technology, published by Elsevier Science, Empirical
Software Engineering, published by Kluwer Academic Publishers, and the Journal of
Automated Software Engineering, published by Kluwer Academic Publishers.

The International Conference on Software Maintenance is the major annual venue in the area
of software maintenance and evolution. Other conferences that address the theme of software
maintenance are: the Conference on Software Maintenance and Reengineering, the
International Workshop on Program Comprehension, the Working Conference on Reverse
Engineering, the conference on Software Engineering and Knowledge Engineering, the
Workshop on Software Change and Evolution, and the International Conference on Software
Engineering.

Pointers for further readings on software maintenance can be found in the Chapter 6 of the
Guide to the Software Engineering Body of Knowledge (www.swebok.org), whose purpose is
to provide a consensually-validated characterization of the bounds of the software engineering
discipline and to provide a topical access to the body of knowledge supporting that discipline.
The chapter presents an overview of the knowledge area of software maintenance. Brief
descriptions of the topics are provided so that the reader can select the appropriate reference
material according to his/her needs.

References
[1] Abran, A., Nguyemkim, H., “Analysis of Maintenance Work Categories Tough

Measurement”, Proceedings of the Conference on Software Maintenance, Sorrento,
Italy, IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 104-113.

[2] Alkhatib, G., “The Maintenance Problem of Application Software: An Empirical
Analysis”, Journal of Software Maintenance – Research and Practice, 4(2):83-104,
1992.

[3] Andrusiewicz, A. Berglas, A., Harrison, J., Ming Lim, W., “Evalution of the ITOC
Information Systems Design Recovery Tool”, The Journal of Systems and Software,
44(3):229-240, 1999.

[4] Antonini, P., Canfora, G., Cimitile, A., “Re-engineering Legacy Systems to Meet
Quality Requirements: An Experience Report”, Proceedings of the International
Conference on Software Maintenance, Victoria, British Columbia, Canada, IEEE
Computer Society Press, Los Alamitos, CA, 1994, pp. 146-153.

[5] Arnold, R. S., “A Road Map to Software Re-engineering Technology”, Software Re-
engineering - a tutorial, IEEE Computer Society Press, Los Alamitos, CA, 1993, pp.
3-22.

[6] Arnold, R. S., Bohner, S. A., “Impact Analysis – Toward a Framework for
Comparison”, Proceedings of the Conference on Software Maintenance, Montreal,
Canada, IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 292-301.

18

[7] Artur, L. J., “Software Evolution: The Software Maintenance Challenge”, John
Wiley & Sons, New York, NY, 1988.

[8] Basili, V. R., “Viewing Maintenance as Reuse-Oriented Software Development”,
IEEE Software, 7(1):19-25, 1990.

[9] Basili, V. R., Briand, L. C., Melo, W. L., “A Validation of Object-Oriented Design
Metrics as Quality Indicators”, IEEE Transactions on Software Engineering,
22(10):651-661, 1996.

[10] Beath, C. N., Swanson, E. B., “Maintaining Information Systems in Organizations”,
John Wiley & Sons, New York, NY, 1989.

[11] Benedusi, P., Cimitile, A., De Carlini, U., “A Reverse Engineering Methodology to
Reconstruct Hierarchical Data Flow Diagrams”, Proceedings of the Conference on
Software Maintenance, Miami, FL, IEEE Computer Society Press, Los Alamitos,
CA, 1989, pp. 180-189.

[12] Benedusi, P., Cimitile, A., De Carlini, U., “Reverse Engineering Processes,
Document Production and Structure Charts”, The Journal of Systems and Software,
16:225-245, 1992.

[13] Bennett, K. H., Younger, E. J., “Model-Based Tools to Record Program
Understanding”, Proceedings of the 2nd Workshop on Program Comprehension,
Capri, Napoli, Italy, IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 87-
95.

[14] Bennett, K. H., “Legacy Systems: Coping with Success”, IEEE Software, 12(1):19-
23, 1995.

[15] Bennett, K. H., Ramage, M., Munro, M.,“Decision Model for Legacy Systems”, IEE
Proceedings on Software, 146(3):153-159, 1999.

[16] Bennett, K. H., Rajlich, V., “The Staged Model of the Software Lifetime: A New
Perspective on Software Maintenance”, IEEE Computer, to appear, 2000.

[17] Bhansali, S., Hagemeister, J. R., Raghavendra, C. S., Sivaraman, H., “Parallelizing
Sequential Programs by Algorithm-Level Transformations”, Proceedings of the 3rd
Workshop on Program Comprehension, Washington, DC, IEEE Computer Society
Press, Los Alamitos, CA, 1994, pp. 100-107.

[18] Blaha, M. R., Premerlani, W. J., “An Approach for Reverse Engineering of
Relational Databases”, Communications of the ACM, 37(5):42-49, 1994.

[19] Britcher, R. N., “Re-engineering Software: A Case Study”, IBM System Journal,
29(4):551-567, 1990.

[20] Brodie, M. L., Stonebraker, M.,“Migrating Legacy Systems”, Morgan Kaufmann
Publishers, San Mateo, CA, 1995.

[21] Brooks, F. P. Jr., “No Silver Bullet”, IEEE Computer, 20(4):10-19, 1987.

[22] Byrne, E. J., “Software Reverse Engineering: A Case Study”, Software – Practice
and Experience, 21(12):1349-1364, 1991.

[23] Canfora, G., Cimitile, A., Munro, M., “RE2: Reverse Engineering and Reuse Re-
Engineering”, Journal of Software Maintenance – Research and Practice, 6(2):53-72,
1994.

19

[24] Canfora, G., Cimitile, A., Munro, M., “An Improved Algorithm for Identifying
Objects in Code”, Software – Practice and Experience, 26(1):25-48, 1996.

[25] Canfora, G., Cimitile, A., “A Reference Life Cycle for Legacy Systems”,
Proceedings of ICSE’97 Workshop on Migration Strategies for Legacy Systems,
Technical Report TUV-1841-97-06, Cimitile, A., Muller, H., Klosch, R. R., eds.,
1997.

[26] Canfora, G., Cimitile, A., “Program Comprehension”, Encyclopedia of Library and
Information Science, volume 66, supplement 29, 1999.

[27] Canfora, G., De Lucia, A., Di Lucca, G. A., “An Incremental Object-Oriented
Migration Strategy for RPG legacy Systems”, International Journal of Software
Engineering and Knowledge Engineering, 9(1):5-25, 1999.

[28] Canning, R., “The Maintenance Iceberg”, EDP Analyzer, 10(10), 1972.

[29] Chikofsky, E. J., Cross II, J. H., “Reverse Engineering and Design Recovery: A
Taxonomy”, IEEE Software, 7(1):13-17, 1990.

[30] Cifuentes, C., Gough, K. J., “Decompilation of Binary Programs”, Software –
Practice and Experience, 25(7):811-829, 1995.

[31] Cifuentes, C., Simon, D., Fraboulet, A., “Assembly to High-Level Language
Translation”, Proceedings of the International Conference on Software Maintenance,
Bethesda, Maryland, IEEE Computer Society Press, 1998, pp. 228-237.

[32] Corbi, T. A., “Program Understanding: Challenge for the 1990s”, IBM System
Journal, 28(2):294-306, 1989.

[33] Daly, J., Brooks, A., Miller, J., Roper, M., Wood, M., “Evaluating Inheritance Depth
on the Maintainability of Object-Oriented Software”, Empirical Software
Engineering, an International Journal, 1(2):109-132, 1996.

[34] Foster, J. R., “Cost Factors in Software Maintenance”, Ph.D. Thesis, Computer
Science Department, University of Durham, Durham, UK, 1993.

[35] Fyson, M. J., Boldyreff, C., “Using Application Understanding to Support Impact
Analysis”, Journal of Software Maintenance – Research and Practice, 10(2):93-110,
1998.

[36] Gilb, T., “Principles of Software Engineering Management”, Addison-Wesley,
Reading, MA, 1988.

[37] Girard, J. F., Koschke, R.,“A Comparison of Abstract Data Types and Objects
Recovery Techniques”, Science of Computer Programming, 36(2-3), 2000.

[38] Glass, R. L., “The Software Research Crisis”, IEEE Software, 11(6):42-47, 1994.

[39] Hartmann, J., Robson, D. J., “Techniques for Selective Revalidation”, IEEE
Software, 16(1):31-38, 1990.

[40] IEEE Std. 610.12, “Standard Glossary of Software Engineering Terminology”, IEEE
Computer Society Press, Los Alamitos, CA, 1990.

[41] IEEE Std. 1219-1998, “Standard for Software Maintenance”, IEEE Computer
Society Press, Los Alamitos, CA, 1998.

[42] ISO/IEC 9126, “Information Technology – Software Product Evaluation – Quality
Characteristics and Guidelines for Their Use”, Geneva, Switzerland, 1991.

20

[43] ISO/IEC 9000-3, “Quality Management and Quality Assurance Standards – Part 3:
Guidelines for the Application of ISO 9001 to the Development, Supply and
Maintenance of Software”, Geneva, Switzerland, 1991.

[44] ISO/IEC 12207, “Information Technology – Software Life Cycle Processes”,
Geneva, Switzerland, 1995.

[45] Jacobson, I., Ericsson, M., Jacobson, A., “The Object Advantage – Business Process
Re-engineering with Object Technology”, Addison-Wesley, Reading, MA, 1995.

[46] Jones, C., “Assessment and Control of Software Risks”, Prentice Hall, Englewood
Cliffs, NJ, 1994.

[47] Kontogiannis, K., De Mori, R., Merlo, E., Galler, M., Bernstein, M., “Pattern
Matching for Clone and Concept Detection”, Journal of Automated Software
Engineering, 3:77-108, 1996.

[48] Koontz, H., O’Donnell, C., “Principles of Management: An Analysis of Managerial
Functions”, fifth edition, McGraw-Hill, New York, NY, 1972.

[49] Lakhotia, A., “A Unified Framework for Expressing Software Subsystem
Classification Techniques”, The Journal of Systems and Software, 36:211-231, 1997.

[50] Lehman, M. M., “Lifecycles and the Laws of Software Evolution”, Proceedings of
the IEEE, Special Issue on Software Engineering, 19:1060-1076, 1980.

[51] Lehman, M. M., “Program Evolution”, Journal of Information Processing
Management, 19(1):19-36, 1984.

[52] Leung, H. K. N., White, L. J., “Insights into Regression Testing”, Proceedings of the
Conference on Software Maintenance, Miami, Florida, IEEE Computer Society
Press, 1990, pp. 60-69.

[53] Leung, H. K. N., “The Dark Side of Object-Oriented Software Development”,
Proceedings of the International Conference on Software Maintenance, Victoria,
British Columbia, Canada, IEEE Computer Society Press, Los Alamitos, CA, 1994,
pp. 438.

[54] Lientz, B. P., Swanson, B. E., “Software Maintenance Management”, Addison-
Wesley, Reading, MA, 1980.

[55] Livadas, P. E., Small, D. T., “Understanding Code Containing Preprocessor
Constructs”, Proceedings of the 3rd Workshop on Program Comprehension,
Washington, DC, IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 89-97.

[56] Martin, J., Mc Clure, C., “Software Maintenance – the Problem and its Solutions”,
Prentice Hall, Englewood Cliffs, NJ, 1983.

[57] Merlo, E., Gagne, P.-Y., Girard, J.-F., Kontogiannis, K., Hendren, L., Panangaden, P.,
De Mori, R., “Re-engineering User Interfaces”, IEEE Software, 12(1):64-73, 1995.

[58] Nosek, J. T., Prashant, P., “Software Maintenance Management: The Changes in the
Last Decade”, Journal of Software Maintenance – Research and Practice, 2(3):157-
174, 1990.

[59] Osborne, W. M., Chikofsky, E. J., “Fitting Pieces to the Maintenance Puzzle”, IEEE
Software, 7(1):11-12, 1990.

21

[60] Parnas, D. L., “Software Aging”, Proceedings of the 16th International Conference on
Software Engineering, Sorrento, Italy, IEEE Computer Society Press, Los Alamitos,
CA, 1994, pp. 279-287.

[61] Parnas, D. L., “Software Engineering Programs are not Computer Science
Programs”, IEEE Software, 16(6):19-30, 1999.

[62] Pigoski, T. M., “Practical Software Maintenance – Best Practices for Managing Your
Software Investment”, John Wiley & Sons, New York, NY, 1997.

[63] Pressman, R. S., “Software Engineering – A Practitioner’s Approach”, McGraw-Hill,
New York, NY, 1992.

[64] Queille, J. P., Voidrot, J. F., Wilde, N., Munro M. “The Impact Analysis Task in
Software Maintenance: A Model and a Case Study”, Proceedings of the International
Conference on Software Maintenance, Victoria, Canada, IEEE Computer Society
Press, Los Alamitos, CA, 1994, pp. 234-242.

[65] Rajlich, V., “Program Reading and Comprehension”, Proceedings of the Summer
School on Engineering of Existing Software, Monopoli, Bari, Italy, Giuseppe Laterza
Editore, Bari, Italy, 1994, pp. 161-178.

[66] Rothermel, G., Harrold, M. J., “A Framework for Evaluating Regression Test
Selection Techniques”, Proceedings of the 16th International Conference on Software
Engineering, Sorrento, Italy, IEEE Computer Society Press, CA, 1994, pp. 201-210.

[67] Schneidewind, N. F., “The State of Software Maintenance”, IEEE Transactions on
Software Engineering, SE-13(3):303-310, 1987.

[68] Slonim, J., “Challenges and Opportunities of Maintaining Object-Oriented Systems”,
Proceedings of the International Conference on Software Maintenance, Victoria,
British Columbia, Canada, IEEE Computer Society Press, Los Alamitos, CA, 1994,
pp. 440-441.

[69] Slovin, M., Malik, S., “Re-engineering to Reduce System Maintenance: A Case
Study”, Software Engineering, Research Institute of America, Inc., 1991, pp. 14-24.

[70] Sneed, H., Nyary, E., “Downsizing Large Application Programs”, Proceedings of the
International Conference on Software Maintenance, Montreal, Quebec, Canada,
IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 110-119.

[71] Sneed, H., “Planning the Re-engineering of Legcy Systems”, IEEE Software,
12(1):24-34, 1995.

[72] Sneed, H., “Encapsulating Legacy Software for Use in Client/Server Systems”,
Proceedings of the 3rd Working Conference on Reverse Engineering, Monterey, CA,
IEEE Computer Society Press, Los Alamitos, CA, 1996, pp. 104-119.

[73] Standish, T. A., “An Essay on Software Reuse”, IEEE Transactions on Software
Engineering, SE-10(5):494-497, 1984.

[74] Thayer, R. H., “Software Engineering Project Management”, Software Engineering
Project Management, Second Edition, Thayer, R. H., ed., IEEE Computer Society
Press, Los Alamitos, CA, 1997, pp. 72-104.

[75] Tilley, S. R., Paul, S., “Towards a Framework for Program Understanding ”,
Proceedings of the 4th Workshop on Program Comprehension, Berlin, Germany,
IEEE Computer Society Press, Los Alamitos, CA, 1996, pp. 19-28.

22

[76] Visaggio, G., “Assessing the Maintenance Process through Replicated Controlled
Experiments”, The Journal of Systems and Software, 44(3):187-197, 1999.

[77] Voas, J., “Are COTS Products and Component Packaging Killing Software
Malleability ?”, Proceedings of the International Conference on Software
Maintenance, Bethesda, Maryland, IEEE Computer Society Press, 1998, pp. 156-
157.

[78] Voas, J., “Maintaining Component-based Systems”, IEEE Software, 15(4):22-27,
1998.

[79] Weihrich, H., “Management: Science, Theory, and Practice”, Software Engineering
Project Management, Second Edition, Thayer, R. H., ed., IEEE Computer Society
Press, Los Alamitos, CA, 1997, pp. 4-13.

[80] Wilde, N., Huitt, R., “Maintenance Support for Object-Oriented Programs”, IEEE
Transactions on Software Engineering, 18(12):1038-1044, 1992.

[81] Yau, S. S., Colleferro, J. S., “Some Stability Measures for Software Maintenance”,
IEEE Transactions on Software Engineering, SE-6(6):545-552, 1980.

[82] Yau, S. S., Nicholl, R. A., Tsai, J. J.P., Liu, S.-S., “An Integrated Life Cycle Model
for Software Maintenance”, IEEE Transactions on Software Engineering, SE-
14(8):1128-1144, 1988.

[83] Youker, R., “Organization Alternatives for Project Managers”, Project Management
Quarterly, 8(1), The Project Management Institute, 1997.

23

Figure 1: Waterfall model.

 Unscheduled Scheduled

Reactive
Emergency Corrective

Adaptive

Proactive Perfective

Figure 2: IEEE categories of software maintenance.

Software plans
and requirements

Specification

Integration and
testing

Design

Coding

Operation and
maintenance

24

Figure 3: Correspondences between ISO and IEEE maintenance categories.

Figure 4: The quick-fix model [8].

ISO categories IEEE categories

 emergency maintenance

problem resolution

 corrective maintenance

interface modification

 adaptive maintenance

functional expansion or
performance improvement

 perfective maintenance

Old System New System

Requirements Requirements

Design Design

Code Code

Test Test

25

Figure 5: The iterative-enhancement model [8].

Figure 6: The full-reuse model [8].

Old System New System

Requirements Requirements

Design Design

Code Code

Test Test

Analysis Analysis

Old System Repository New System

Requirements {Ri} Requirements

Design {Di} Design

Code {Ci} Code

Test {Ti} Test

26

Figure 7: An example of maintenance process [82].

Figure 8: The IEEE maintenance process.

Determining maintenance
objectives

Understanding
program

Generating maintenance
proposals

Accounting for
ripple effects

Revalidation

Problem/modification
identification/classification Analysis

Design

Implementation

Regression/system testing Acceptance testing

Delivery

Modification
request

27

Figure 9: The ISO life cycle processes.

Figure 10: The ISO maintenance process.

Primary processes

Acquisition
Supply
Development
Operation
Maintenance

Supporting processes

Documentation
Configuration Management
Quality Assurance
Verification
Validation
Joint Review
Audit
Problem Resolution

Organizational processes

Management
Infrastructure
Improvement
Training

Life Cycle Processes

Process Implementation

Problem and modification analysis

Modification implementation

Maintenance review/acceptance

Migration

Software retirement

Maintenance
process

28

Figure 11: The functions of project management.

Management

Controlling Leading Staffing Organizing Planning

29

Figure 12: An example of a maintenance plan [41].

1. Introduction
Describes the purpose, goals, and scope of the software maintenance effort;
determines deviations from the standard.

2. References
Identifies the documents that pose constraints on the maintenance effort and any
other supporting documents.

3. Definitions
Defines or references all terms required to understand the plan.

4. Software Maintenance Overview
Describes organization, scheduling priorities, resources, responsibilities, tools,
techniques, and methods used in the maintenance process.

4.1 Organization
4.2 Scheduling Priorities
4.3 Resource Summary
4.4 Responsibilities
4.5 Tools, Techniques, and Methods

5. Software Maintenance Process
Identifies the actions to perform for each phase of the maintenance process;
actions are to be defined in terms of input, output, process, and control.

5.1 Problem/modification identification/classification and prioritization
5.2 Analysis
5.3 Design
5.4 Implementation
5.5 System Testing
5.6 Acceptance Testing
5.7 Delivery

6. Software Maintenance Reporting Requirements
Describes how information will be collected and provided to members of the
maintenance organization.

7. Software Maintenance Administrative Requirements
Describes the standards, practices and rules for anomaly resolution and reporting.

7.1 Anomaly Resolution and Reporting
7.2 Deviation Policy
7.3 Control Procedures
7.4 Standards, Practices, and Conventions
7.5 Performance Tracking
7.6 Quality Control of Plan

8. Software Maintenance Documentation Requirements
Describes the procedures to be followed in recording and presenting the outputs of
the maintenance process.

30

Figure 13: A functional organization.

Figure 14: A project organization.

Maintenance
organization

manager

User
liaison

and
help
desk

Software
configuration
management

Software
modification

Integration
support

Quality
assurance

...

Maintenance
organization

manager

User

liaison
and
help
desk

Software

configuration
management

Software

modification

Integration

support

Quality

assurance
...

Project 1
manager

Project n
manager

... ...

Regular
functional

departments

31

Figure 15: A matrix organization.

 Manager
Decision Functional Project

Change the budget Approves Proposes
Commit resources Approves Proposes

Change requirements Advises Decides
Change release plan Advises Decides

Figure 16: An example of conflict resolution table.

Maintenance
organization

manager

User
liaison

and
help
desk

Software
configuration
management

Software
modification

Integration
support

Quality
assurance

...

Project 1
manager

Project n
manager

.

.

.

32

Figure 17: Reverse engineering and re-engineering.

Existing
System

Abstract
views

Re-engineered
System

Forward
Engineering

Reverse
Engineering

Analysis, re-design,
enhancement, re-
architecting, etc.

33

Figure 18: A life cycle model for legacy systems.

Simplification

Ordinary reactive and
preventive maintenance

 D2

E1

Ordinary
maintenance
loop

Freezing and ordinary
reactive maintenance

Development and
replacement

Extraordinary adaptive
maintenance

 D1

 E2

High obsolescence
Low deterioration
High business value

Extraordinary
maintenance

loop

Replacement
loop

