The Role of Language Paradigms in Teaching Programming

Peter Van Roy (Moder.) Joe Armstrong
Univ. cath. Louvain SICS

Louvain-la-Neuve, Belgium Kista, Sweden

pvr@info.ucl.ac.be joe@sics.se

Abstract

The purpose of this panel is to confront the wide va-
riety of opinions on the role of language paradigms in
teaching programming. We have selected four divergent
opinions:

e Armstrong says that concurrent programming is con-
sidered difficult because it is taught in the wrong
paradigm, namely imperative or object-oriented pro-
gramming. Instead, concurrency should be taught
using a paradigm that makes it simple.

e Flatt says that everyone should be taught how to pro-
gram, not just computer science majors. Further,
programming should be taught as an extension of
what students already know, which is algebra. More
important than a particular paradigm, however, is
teaching students a design process.

e Magnusson says that object-oriented programming
must be the first and principal paradigm, because it is
best for teaching how to analyze problems and struc-
ture solutions. Other paradigms can be taught after
students have a solid understanding of OO.

e Van Roy says that programming should be taught
in terms of concepts, not paradigms. Common
paradigms (functional, OO, etc.) then appear nat-
urally, depending on the concepts used.

The panel will confront these opinions to enrich our un-
derstanding of how to teach programming.

Categories & Subject Descriptors

K.3.2 Computers and Education: Computer and Infor-
mation Science Education - computer science education,

Copyright is held by the author/owner(s). SIGCSE 2003,
February 19-23, 2003, Reno, Nevada, USA. ACM 1-58113-
648-X/03,/0002.

Matthew Flatt
University of Utah
Utah, USA
mflatt@cs.utah.edu

Boris Magnusson
Lund University
Lund, Sweden
boris@cs.lth.se

curriculum. D.3.2 Programming Languages: Language
Classifications.

General Terms

Languages

Keywords:

Programming Paradigms, Concepts, Concurrency
1 Joe Armstrong

Programs that model or interact with the real world
need to reflect the concurrency patterns that are ob-
served in the real world. The real world is concurrent—
and writing programs to interact with the real world
should be a simply a matter of identifying the concur-
rency in the problem, identifying the message channels
and mapping these 1:1 onto the code—the program then
almost writes itself.

Unfortunately, concurrent programming has acquired
a reputation of being “difficult” and something to be
avoided if possible. I believe this is a side-effect of the
problems of thread programming in conventional oper-
ating systems using languages like Java, C, or C++. In
a concurrent language like Erlang, concurrent program-
ming becomes “easy” and becomes the natural way of
solving a large class of problems [1].

Most conventional languages that have primitives for
concurrent programming provide only a thin layer to
whatever mechanisms are offered by the host operating
system. Thus Java uses the concurrency mechanisms
provided by the underlying operating system and the
inefficiency of concurrency in Java is merely a reflec-
tion of the fact that the concurrency mechanisms in the
operating system are inefficient.

I believe that concurrency should be a property of
the programming language and not something inher-
ited from the OS. Erlang is such a language. Erlang
processes are extremely lightweight: creating a parallel
process in Erlang is about 100 times faster than in Java

or C++. That’s because concurrency is designed into
the language and has nothing to do with the host OS.

Once you put concurrency into the language a lot of
things look very different—concurrent programing be-
comes easy. This is especially important in program-
ming high-availability real-time or distributed applica-
tions where concurrency is inescapable.

2 Matthew Flatt

Everyone should learn how to program! Programming
is not just a specialty discipline limited to computer
science majors. Programming is a way of thinking that
is useful to everyone. As Alan Perlis has remarked in
Epigrams of Programming:

It goes against the grain of modern education to
teach children to program. What fun is there in
making plans, acquiring discipline in organizing
thoughts, devoting attention to detail and learning
to be self-critical?

Programming teaches many of the same skills as math-
ematics and English. Programs have to be constructed
with precision. Reading and writing them has to be
done with care. But the reward for a correct program
is immediate and strong: it executes and gives a result.

The important part of programming is the design pro-
cess: how problem statements lead to well-organized
solutions. Learning this process is like learning to play
soccer: the first thing is to learn basic techniques such as
trapping a ball, dribbling, passing, and shooting. Only
afterwards does the player learn how to play a game.

We have used this approach to teach a first program-
ming course for liberal arts students [2]. We find that
very few concepts are needed. We use only six: function
definition and application, conditional, local definitions,
structure definitions, and destructive assignment. We
provide a custom programming environment tailored to
these concepts, not a professional environment. More
complex concepts, such as objects and classes, are in-
troduced only later when the student is ready for them.

3 Boris Magnusson

Object Orientation is sometimes regarded as an ad-
vanced topic that is hard to teach. This might be true
if you teach it to students who have a background in
another programming paradigm, but our experience is
that OO is ideal to use as a first paradigm. This means
that objects and classes are introduced from day one
and details of expressions, statements, parameters etc.,
come later as needed.

The order you teach things depends on what is consid-
ered important and central in a curriculum. We want

our students to understand mechanisms of how to ana-
lyze a problem and structure a solution. We thus start
with structuring mechanisms, classes, methods, and in-
heritance so the students get training in the use of these
mechanisms throughout the course. Other paradigms,
such as procedural, functional, and logic programming,
are better taught after a solid understanding of OO.

At our university we have over 10 years experience with
this method of introducing programming and our expe-
rience supports this view.

4 Peter Van Roy (moderator)

There exist many programming “paradigms”: styles of
programming based on particular mathematical theo-
ries or schools of thought. Some popular paradigms in-
clude object-oriented programming, logic programming,
and functional programming. Each has its own advan-
tages and disadvantages.

In today’s computing curricula, very few programming
paradigms are taught. Object-oriented programming
dominates by far, with minor attention given to func-
tional or logic programming. Students do not see how
the paradigms relate and how they can be used together.

This has a detrimental effect on programmer compe-
tence and thus on program quality. For example, stu-
dents who learn about concurrency only from Java con-
clude that it is always difficult and expensive. This is
false: there are paradigms of concurrent programming
that are almost as easy as sequential programming.

One way to solve this problem is to base programming
courses on concepts, not on single paradigms or lan-
guages. We have taught with this approach for two
years in four universities, in second-year through grad-
uate courses [3]. We find that it liberates students from
the tyranny of single paradigms. Students can reason
in a broad and deep way about their program’s design,
its correctness, and its complexity.

References

[1] Armstrong, J., Williams, M., Wikstrém, C., and
Virding, R. Concurrent Programming in Erlang.
Prentice-Hall, Englewood Cliffs, N.J., 1996.

[2] Felleisen, M., Findler, R. B., Flatt, M., and Krish-
namurthi, S. How to Design Programs: An Intro-
duction to Computing and Programming. The MIT
Press, 2001.

[3] Van Roy, P., and Haridi, S. Concepts,
Techniques, and Models of Computer Pro-
gramming. 2002. Draft available at

http://www.info.ucl.ac.be/people/PVR/book.html.

