
Extending UML To Visualize Design Patterns In Class Diagrams

Jing Dong and Sheng Yang
School of Engineering and Computer Science

University of Texas at Dallas, Richardson, TX 75083, USA
�jdong,syang�@utdallas.edu

Abstract

A design pattern describes a general solution to a de-
sign problem that recurs repeatedly in many projects. Soft-
ware designers adapt the pattern solution to their specific
project. Design patterns are usually modeled using UML.
However, UML does not keep track of pattern-related in-
formation when a design pattern is applied or composed
with other patterns. Thus, it is hard for a designer to iden-
tify design patterns in software system designs. The benefits
of design patterns are compromised because the designers
cannot communicate with each other in terms of the design
patterns they use and their design decisions and tradeoffs.
In this paper, we present the essential features of a new
member of the UML language family that supports working
with object-oriented design patterns. This UML extension
allows the explicit representation of design patterns in soft-
ware designs. We also discuss some of the relevant aspects
of the UML profile which is based on standard UML exten-
sion mechanisms. A case study shows how it can be used to
assist pattern-based software development.

1 Introduction

Design patterns [8] are commonly used in designing
large-scale software systems. They have become increas-
ingly popular among software developers since the early
1990s. A pattern is a recurring solution to a standard prob-
lem. It has a context in which it applies. Design patterns
help developers communicate architectural knowledge, help
people learn a new design paradigm, and help new devel-
opers ignore traps and pitfalls that have traditionally been
learned only by costly experience. Design patterns are usu-
ally modeled and documented in natural languages and vi-
sual languages, such as the Unified Modeling Language
(UML) [3, 13, 9]. UML is a general-purpose language for
specifying, constructing, visualizing, and documenting arti-
facts of software-intensive systems. It provides a collection
of visual notations to capture different aspects of the system

under development.

Graphical notations include diagrammatic, iconic, and
chart-based notations. A graphical notation can be benefi-
cial in many ways. First, it can be used for conveying com-
plex concepts and models, such as object-oriented design.
Notations like UML are very good at communicating soft-
ware designs. Second, it can help people grasp large amount
of information more quickly than straight text. Third, as
well as being easy to understand, it is normally easier to
learn drawing diagrams than writing text because diagrams
are more concrete and intuitive than text written in formal or
informal languages. Fourth, graphical notations cross lan-
guage boundary and can be used to communicate with peo-
ple with different nationalities.

The standardization efforts of the UML offer a chance
to harness UML as notational basis for visualizing design
patterns. However, the constructs provided by the standard
UML are not enough to visualize design patterns in their
applications and compositions. The model elements, such
as classes, operations, and attributes, in each design pat-
tern usually play certain roles that are manifested by their
names. The application of a design pattern may change the
names of its classes, operations, and attributes to the terms
in the application domain. Thus, the role information of the
pattern is lost. It is not obvious which model elements par-
ticipate in this pattern. UML does not track pattern-related
information when a pattern is applied in a software system.
Using an example, we have shown that it is difficult to iden-
tify design patterns in a system containing five patterns in
[6]. There are several problems when design patterns are
implicit in software system designs: first, software develop-
ers can only communicate at the class level instead of the
pattern level since they do not have pattern-related infor-
mation in system designs. Second, each pattern often doc-
uments some ways for future evolutions, which are buried
in system designs. Third, it may require considerable ef-
forts on reverse-engineering design patterns from software
system designs [11].

UML provides extension mechanisms that allow us to
define appropriate labels and markings for the UML model

1



elements. In order to retain the pattern-related information
even after the pattern is applied or composed, we define an
extension to UML. In this extension, pattern-related infor-
mation is explicit so that a design pattern can be easily iden-
tified when it is applied and composed. The extensions have
been defined mainly by applying the UML built-in extensi-
bility mechanisms, such as stereotypes, tagged values, and
constraints. A case study shows how it can be used to assist
pattern-based software development.

The remainder of this paper is organized as follows. In
the next section, we provide a brief introduction to the UML
built-in extensibility mechanisms. In Section 3, we present
our extensions to UML in terms of a profile and provide an
example. In Section 4, we use a case study to illustrate our
approach. In the last two sections, we discuss related work
and conclude this paper.

2 UML Extension Mechanisms

UML is a graphical language for visualizing, specifying,
constructing, and documenting the artifacts of a software-
intensive system. It is a multi-purpose language with many
notational constructs. UML provides extension mecha-
nisms to allow the user to model software systems if the
current UML technique is not semantically sufficient to ex-
press the systems. These extension mechanisms are stereo-
types, tagged values, and constraints.

Stereotypes allow the definition of extensions to the
UML vocabulary, denoted by��stereotype-name��. The
base class of a stereotype can be different model elements,
such as Class, Attribute, and Operation. A stereotype
groups tagged values and constraints under a meaningful
name. When a stereotype is branded to a model element, the
semantic meaning of the tagged values and the constraints
associated with the stereotype are attached to that model el-
ement implicitly. A number of possible uses of stereotypes
have been classified in [2].

Tagged values extend model elements with new kinds of
properties. Tagged values may be attached to a stereotype,
and this association will navigate to the model element to
which the stereotype is branded. Basically, the format of a
tagged value is a pair of name and an associated value, i.e.,
�name=value�. The tagged values attached to a stereotype
must be compatible with the constraints of the stereotype’s
base class.

Constraints add new semantic restrictions to a model el-
ement. Typically constrains are written in the Object Con-
straint Language (OCL) [16]. Constraints attached to a
stereotype imply that all model elements branded by that
stereotype must obey the semantic restrictions which con-
straints state. Note that the constraints attached to a stereo-
typed model element must be compatible with the con-
straints of the stereotype and the base class of the model

element.
A profile is a stereotyped package that contains model

elements that have been customized for a specific domain
or purpose by extending the metamodel using stereotypes,
tagged values, and constraints. A profile may specify model
libraries on which it depends and the metamodel subset that
it extends.

3 The Proposed Extensions

This section introduces the UML extensions through an
example. It summarizes the new stereotypes, tagged values
and constraints, and presents a general description of their
semantics. It also presents a description of how the UML
extensibility mechanisms have been applied in the defini-
tion of a UML profile for design patterns.

3.1 Motivating Example

Figure 1 shows a system design that manages the con-
nections to different types of databases, such as Oracle
and MySQL (www.mysql.com). This system provides a
connection pool for accessing each type of database. The
connection pool restricts a limit number of accesses to a
database and reuses connections to the database. The sys-
tem has the capability to handle different types of database
connections. The ConnectionPool class defines an interface
for the creation of a connection pool for the appropriate
type of database. The concrete classes, OracleConnection-
Pool and MySQLConnectionPool, use the createConnec-
tion operation to create the corresponding connections, Or-
acleConnection and MySQLConnection, respectively. All
connection instances have the same interface which is de-
fined in the Connection class.

ConnectionPool

createConnection()

OracleConnectionPool

OracleConnection

createConnection()

MySQLConnectionPool

MySQLConnection

createConnection()

OracleConnection MySQLConnection

Connection

creates creates

Figure 1. Connection Pool for Database

There are two design patterns, Abstract Factory and Sin-

2



gleton, applied in the system design�. The ConnectionPool,
OracleConnectionPool and MySQLConnectionPool classes
play the roles of abstract and concrete factories, whereas
the Connection, OracleConnection and MySQLConnection
classes play the roles of abstract and concrete products
in the Abstract Factory pattern, respectively. OracleCon-
nectionPool and MySQLConnectionPool are the Singleton
classes, which restrict only a limited number of connections
for each database.

While pattern-related information is not explicit in the
class diagrams, e.g., Figure 1, without further textual ex-
planation, several graphical notations have been proposed.
Vlissides [14] described a Venn diagram-style annotation
for identifying design pattern. Different patterns are differ-
entiated with different levels of shading. All classes that
participate in the same pattern are shaded with the same
color. Although this approach may allow visualizing a small
number of patterns, it is hard to scale up. Moreover, the
overlapping regions may become hard to distinguish when
some classes play several roles in different patterns. In ad-
dition, this notation cannot represent roles a model element,
e.g., a class, an operation, and an attribute, plays in a design
pattern.

UML Collaboration notation [9] has been proposed,
which uses dashed ellipses with pattern names inside to de-
note patterns and dashed lines with participant names to as-
sociate patterns with their participating classes. The short-
coming of this notation is pattern information is mixed with
class structure, making hard to distinguish both. The dashed
lines may also twist together when the number of patterns
increases. Furthermore, this notation can only represent
roles a class, not an operation or an attribute, plays in a
design pattern.

Vlissides [14] described a “pattern:role” annotation
which uses a shaded box containing the pattern and/or par-
ticipant name(s) to associate with the corresponding class.
The drawback of this notation is that it cannot represent
roles an operation (or attribute) plays in a design pattern.
Explicitly representing this kind of information is very im-
portant because many patterns are based on polymorphism,
delegation and aggregation, which are often presented based
on the relationships among operations and attributes. Ex-
plicit representation of the key operations and attributes can
not only help on the application (instantiation) of a pattern
because the pattern impose some restrictions through the
relationship among operations and attributes, but also assist
on the traceability of a pattern since it allows us to trace
back to the design pattern from a complex design diagram.

In [4], we have provided detailed descriptions of those

�To illustrate our approach, we use this small example. It may be not
hard, if not obvious, to discover the two design patterns used in this exam-
ple. We have shown that it is not easy to identify design patterns in a larger
system design with five patterns in [6].

previous notations and proposed the tagged pattern notation
by extending UML. This notation can visualize different
model elements. We have described the notation informally
in [4]. In this paper, we will provide a formal description of
the tagged pattern notation in terms of a UML profile.

3.2 UML Profile for Patterns

To explicitly visualize design patterns in class diagrams,
we define a UML profile which includes three stereotypes
(see Table 1): PatternClass, PatternAttribute and PatternOp-
eration, whose base classes are Class, Attribute and Opera-
tion, respectively. Each stereotype also defines one tagged
value as shown in Table 2. These tagged values define ex-
actly what role a class, an attribute or an operation plays
in a design pattern. The name of the tagged value is “pat-
tern” and the value of the tagged value is a tuple in the for-
mat of �name:string [instance:integer], role:string��. The
“name” in the tuple is the pattern name in which a model
element, such as Class, Attribute or Operation, participates.
The name fields of PatternAttribute and PatternOperation
can be omitted if the class plays a role only in one pattern,
and this omission will not create any ambiguity. But the
name fields of PatternClass is mandatory. Sometimes there
is more than one instance of a pattern in the system, and it is
useful to distinguish the instances. The “instance” in the tu-
ple indicates the instance of the pattern the model element
participates. The “role” in the tuple shows the role that a
model element plays in the pattern. For instance, the Ora-
cleConnectionPool class plays the role of ConcreteFactory
in the Abstract Factory pattern in the example shown in Sec-
tion 3.1. Then, the stereotype ��PatternClass��Abstract
Factory[1], ConcreteFactory���� is branded to the Ora-
cleConnectionPool class, where the branded class partic-
ipates in the first instance of the Abstract Factory pat-
tern and plays the role of ConcreteFactory in the pat-
tern. As another example, the OracleConnection at-
tribute plays the role of UniqueInstance in the Sin-
gleton pattern in the example shown in Section 3.1.
Then, the stereotype ��PatternAttribute��Singleton[1],
UniqueInstance���� is branded to the OracleConnection
attribute, which participates in the first instance of the Sin-
gleton pattern and plays the role of UniqueInstance in the
pattern.

A model element may simultaneously play different
roles in different patterns. In this case, a new tagged value
with the same format as “name[instance],role” is branded
to the model element for each additional pattern it par-
ticipates. For instance, the OracleConnectionPool class
also plays the role of Singleton in the Singleton pattern in

�For simplicity, we omit the name of the tagged value such that
each tagged value is represented by ��name[instance], role�� instead of
�pattern =�name[instance], role��.

3



Stereotype Applies To Definition
��PatternClass�� Class Indicate that this class is a part of a design pattern
��PatternAttribute�� Attribute Indicate that this attribute is a part of a design pattern
��PatternOperation�� Operation Indicate that this operation is a part of a design pattern

Table 1. Stereotypes

Tagged Value Applies To Definition
Name Value
pattern �name[instance],role� ��PatternClass�� Indicate that the attached class plays the role of ���� in the ���	
��� of a

design pattern named�
��

pattern �name[instance],role� ��PatternAttribute�� Indicate that the attached attribute plays the role of ���� in the ���	
��� of
a design pattern named�
��

pattern �name[instance],role� ��PatternOperation�� Indicate that the attached operation plays the role of ���� in the ���	
���
of a design pattern named�
��

Table 2. Tagged Values

the example shown in Section 3.1. Then, the stereotype
��PatternClass��Abstract Factory[1], ConcreteFactory�
�Singleton[1], Singleton���� is branded to the Oracle-
ConnectionPool class, where the branded class also partici-
pates in the first instance of the Singleton pattern and plays
the role of Singleton. As another example, the createCon-
nection operation also plays the role of Instance in the Sin-
gleton pattern in the example shown in Section 3.1. Then,
the stereotype ��PatternOperation��Abstract Factory[1],
CreateProduct�� Singleton[1], Instance���� is branded
to the createConnection operation, where the branded oper-
ation also participates in the first instance of the Singleton
pattern.

The PatternClass, PatternAttribute and PatternOperation
stereotypes and their tagged values are defined in Table 1
and Table 2, respectively. The constraints of these stereo-
types are defined formally in OCL as follows:

<<PatternClass>>:
self.baseClass = Class and self.taggedValue -> exists
(tv:taggedValue | tv.name = "pattern" and tv.value =
"tuple<name:string[instance:integer],role:string>")
<<PatternAttribute>>:
self.baseClass = Attribute and self.taggedValue ->
exists (tv:taggedValue | tv.name = "pattern" and
tv.value = "tuple <name:string[instance:integer],
role:string>")
<<PatternOperation>>:
self.baseClass = Operation and self.taggedValue ->
exists (tv:taggedValue | tv.name = "pattern" and
tv.value = "tuple <name:string[instance:integer],
role:string>")

where the base classes of the PatternClass, PatternAt-
tribute and PatternOperation stereotypes are Class, At-
tribute and Operation, respectively. Each stereotype has a
tagged value with the name of “pattern” and the value of
“name[instance],role”. The types of “name” and “role” are
string and the type of “instance” is integer. These stereo-
types, together with their tagged values and constraints,
form a new UML profile for design patterns.

3.3 Constraints

There are several constraints for the stereotypes and
tagged values we defined in the previous section. For
brevity, we only provide two constraints in this section. We
refer to [5] for other constraints.

1. All pattern names found in the �� PatternOperation
�� and �� PatternAttribute �� stereotypes should
also be in the �� PatternClass ��.

<<PatternOperation>>:
self.taggedValue->exists(tv:taggedValue,pc:PatternClass
| tv.value.name = pc.taggedValue.value.name)
<<PatternAttribute>>:
self.taggedValue->exists(tv:taggedValue,pc:PatternClass
| tv.value.name = pc.taggedValue.value.name)

2. In the tagged value with format as � name[instance],
role �, the “name” field of the tagged value in ��
PatternClass �� is mandatory.

<<PatternClass>>:
self.taggedValue.value.name -> notEmpty

After applying the new UML extensions to the pre-
vious example, the new class diagram of the system is
shown in Figure 2. Note that the instance fields of
the tagged values are omitted for all stereotypes except
in the Singleton pattern because there is only one in-
stance of the Abstract Factory pattern and two instances
of the Singleton pattern. From this diagram, we can
identify the two patterns and their participants. For ex-
ample, from the stereotype branded to the class Ora-
cleConnectionPool, i.e., ��PatternClass��Abstract Fac-
tory, ConcreteFactory� �Singleton[1], Singleton����,
we know that OracleConnectionPool participates in two de-
sign patterns, Abstract Factory and Singleton. It plays the

4



ConnectionPool

<<PatternOperation{<Abstract Factory,createProduct>}>> createConnection()

<<PatternClass{<Abstract Factory,AbstractFactory>}>>

OracleConnectionPool

<<PatternAttribute{<Singleton[1],UniqueInstance>}>> OracleConnection

<<PatternOperation{<Abstract Factory,createProduct><Singleton[1]:Instance>}>> createConnection()

<<PatternClass{<Abstract Factory,ConcreteFactory><Singleton[1],Singleton>}>>
MySQLConnectionPool

<<PatternAttribute{<Singleton[2],UniqueInstance>}>> MySQLConnection

<<PatternOperation{<Abstract Factory,createProduct><Singleton[2]:Instance>}>> createConnection()

<<PatternClass{<Abstract Factory,ConcreteFactory><Singleton[2],Singleton>}>>

OracleConnection
<<PatternClass{<Abstract Factory,ConcreteProduct>}>>

MySQLConnection
<<PatternClass{<Abstract Factory,ConcreteProduct>}>>

Connection
<<PatternClass{<Abstract Factory,AbstractProduct>}>>

creates creates

Figure 2. Connection Pool Modeled with the New Stereotypes

role of ConcreteFactory in the Abstract Factory pattern and
the role of Singleton in the Singleton pattern. There is only
one instance of the Abstract Factory pattern since the in-
stance fields are omitted.

3.4 Virtual Meta Model

A virtual meta model (VMM) is the UML expression of
a formal model with a set of UML extensions. A VMM
can graphically represent the relationship among the newly
defined elements, i.e., PatternClass, PatternAttribute and
PatternOperation, and those defined by UML specification.
The VMM for the newly defined extensions is represented
as a set of class diagrams in Figure 3. The VMM represents
a Stereotype as a Class stereotyped ��stereotype�� and
a TaggedValue associated with a Stereotype as an Attribute
of the Class that represents the Stereotype. The Attribute
is stereotyped ��TaggedValue��. The Attribute name is
the name of the tagged value. The value of a tagged value
is enclosed between “�” and “�” signs which means the
format of the value is �name[instrance],role�. The mul-
tiplicity following the Attribute name ([1..�]) indicate that
the tagged value may have one or more values.

4 Case Study

In this section, we describe a case study to illustrate how
to use the UML profile to visualize design patterns. This
case study considers a software system for the management
of student information in a school. The system allows the

Class

PatternClass

<<taggedvalue>> pattern[1..*]<name : string[instance:integer],role:string>

<<stereotype>>

Operation

PatternOperation

<<taggedvalue>> pattern[1..*]<name : string[instance:integer],role:string>

<<stereotype>>

Attribute

PatternAttribute

<<taggedvalue>> pattern[1..*]<name : string[instance:integer],role:string>

<<stereotype>>

Figure 3. Virtual Meta Model

5



instructor to search, review and update student information,
such as courses enrollment and grades anywhere in and out
of the campus. At the initial stage, the system needs to han-
dle limited number of students due to budget limitation. If
the student enrollment increases, the system is able to scale
up easily with increasing budget. There are three design
patterns used in this system: two instances of the Abstract
Factory pattern [8], two instance of the Singleton pattern [8]
and one instance of the Data Access Object pattern [1].

The Data Access Object (DAO) pattern encapsulates the
connection to a database so that the user is able to access
the database only through the DAO classes. The DAO pat-
tern provides the flexible and transparent accesses to differ-
ent database engines. Figure 4 shows the class diagram of
the DAO pattern. The BusinessObject defines the business
logic and uses the DataAccessObject to access any persis-
tent data in a database or a flat file system. The DataSource
represents a data source implementation, which can be a
database or a flat file system. The ValueObject is a data car-
rier. The DataAccessObject encapsulates the access to the
DataSource and the underlying data access implementation
for the BusinessObject, which enables transparent access to
the data source. The BusinessObject, as a client, requires
data from the DataSource by using the DataAccessObject
and does not know what the DataSource is. The DataAc-
cessObject then returns the required data to the client using
the data carrier, a value object. When the BusinessObject
requires updates in the DataSource, the DataAccessObject
will get the updated data from the client using the value ob-
ject and update data in the data source.

ValueObject

BusinessObject

dao : DataAccessObject
DataSource

DataAccessObject

valueObj : ValueObject
uses

creates/usesobtains/modifies

encapsulates

Figure 4. The Data Access Object Pattern

The DAO pattern is applied in this system for flexible
and transparent change of database engines. Business data
can be moved from an open-source database engine (e.g.
MySQL) with low capability and price to a commercial one
(e.g. Oracle) with high capability and price when the data
processing demand increases, and vice versa. In addition,
the application of this pattern prevents vender lock-in in that
business data is free to move from one database to another
transparently due to the merger or change of business and
organizations.

Figure 5 shows the detailed system design with two in-
stances of the Abstract Factory pattern, two instance of the
Singleton pattern and one instance of the Data Access Ob-
ject pattern. The QueryServlet and UpdateServlet classes

play the role of the BusinessObject in the DAO pattern and
define the business logic of searching and updating student
information. The StudentInfo plays role of the ValueOb-
ject in the DAO pattern. It defines the functions, such as
getStudInfo() and updateStudInfo(), and carries the student
information either as search results returned to the Query-
Servlet or as the data prepared by the UpdateServlet and to
be updated by the DAO class. The DAO class plays the role
of DataAccessObject in the DAO pattern. It defines all the
functions to manipulate the database, such as to get required
data from the database and to update the required data in the
database. To be able to move data between databases trans-
parently, the DataAccessObject needs to decide what type
of database to be accessed, and the Abstract Factory pat-
tern is used to generate the appropriate type of DAO ob-
jects according to the kind of database engine used, e.g.
MySQLDAO, OracleDAO and/or other database DAO ob-
jects, which provides the flexibility to add and delete a type
of database transparently. At the initial stage, the MySQL
database is used. The MySQLStudInfoDAO classes real-
izes the StudInfoDAO class to allow the access of student
information to the MySQL database. Later on, when the
database is changed to Oracle, OracleStudInfoDAO will be
implemented to allow the BusinessObject to access and ma-
nipulate data in the Oracle database.

The DataSource in the DAO pattern provides the connec-
tions to the corresponding database engine, e.g., initially the
MySQL database and later the Oracle database. To allow
dynamic creation of the connections to the corresponding
database engine, the Abstract Factory pattern is applied the
same way as shown in Figure 2. Similarly, the Singleton
pattern is applied the same way as shown in the example in
Section 3.1.

5 Related Work

UML extension mechanisms have been used to ex-
pand the expressive power of UML to model and repre-
sent object-oriented framework [7], software architecture
[12, 10, 17], and agent-oriented systems [15] when the orig-
inal UML is not sufficient to represent the semantic mean-
ing of the design.

Medvidovic et al. [12] applied the UML extension mech-
anism for modeling software architectures. They extended
the UML to model software architecture in UML. Kande
and Strohmeier [10] extended the UML by incorporating
key abstractions in ADLs, such as connectors, components
and configurations. They focus on how UML can be used
for modeling architectural viewpoints. Zarras et al. [17]
applied the UML extension mechanism for architecture de-
scription and provided a base UML profile for existing Ar-
chitecture Description Languages (ADLs).

Fontoura et al. [7] proposed a UML extension, called

6



OracleConnectionPool

<<PatternAttribute{<Singleton[1],UniqueInstance>}>> OracleConnection

<<PatternOperation{<Abstract Factory[2],createProduct><Singleton[1],Instance>}>> createConnection()

<<PatternClass{<Abstract Factory[2],ConcreteFactory><Singleton[1],Singleton>}>>

MySQLConnectionPool

<<PatternAttribute{<Singleton[2],UniqueInstance>}>> MySQLConnection

<<PatternOperation{<Abstract Factory[2],createProduct><Singleton[2],Instance>}>> createConnection()

<<PatternClass{<Abstract Factory[2],ConcreteFactory><Singleton[2],Singleton>}>>

OracleConnection

<<PatternClass{<Abstract Factory[2],ConcreteProduct>}>>

MySQLConnection

<<PatternClass{<Abstract Factory[2],ConcreteProduct>}>>

Connection

<<PatternClass{<Abstract Factory[2],AbstractProduct>}>>

creates
creates

OracleDAO

<<PatternOperation{<Abstract Factory[1],createProduct>}>> createDAO()

<<PatternClass{<Abstract Factory[1],ConcreteFactory>}>>

MySQLDAO

<<PatternOperation{<Abstract Factory[1],createProduct>}>> createDAO()

<<PatternClass{<Abstract Factory[1],ConcreteFactory>}>>

StudInfoDAO

<<PatternClass{<Abstract Factory[1],AbstractProduct>}>>

creates creates

obtains/modifies

obtains/modifies
creates

encapsulates

encapsulates

uses

uses

uses

uses

uses

uses

ConnectionPool

<<PatternOperation{<Abstract Factory[2],createProduct>}>> createConnection()

<<PatternClass{<DAO,DataSource><Abstract Factory[2],AbstractFactory>}>>

QueryServlet

<<PatternClass{<DAO,BusinessObject>}>>

StudentInfo

<<PatternClass{<DAO,ValueObject>}>>

DAO

<<PatternOperation{<Abstract Factory[1],createProduct>}>> createDAO()

<<PatternClass{<DAO,DataAccessObject><Abstract Factory[1],AbstractFactory>}>>

MySQLStudInfoDAO

<<PatternClass{<Abstract Factory[1],ConcreteProduct>}>>

OracleStudInfoDAO

<<PatternClass{<Abstract Factory[1],ConcreteProduct>}>>

UpdateServlet

<<PatternClass{<DAO,BusinessObject>}>>

Figure 5. The Student Information Management System

7



UML-F, to represent object-oriented frameworks. The au-
thors defined a set of new tagged values which can help to
represent an object-oriented framework more meaningfully
by UML. But the authors failed to give the complete UML
profiles for the newly defined stereotypes and tagged values.

Wagner [15] applied the UML extension mechanisms for
agent-oriented modeling. A set of new stereotypes are de-
fined to model agent-oriented systems.

Our work uses the UML profiles and extension mech-
anisms to visualize the pattern-related information hidden
in a class diagram. We defined new stereotypes, tagged
values and provided the constraints applied to these stereo-
types and tagged values. By using these new stereotypes
and tagged values, the user can easily identify the patterns
in a class diagram.

6 Conclusion

Standard UML is normally used to describe a design pat-
tern. However, UML does not keep track of pattern-related
information in system applications. In this paper, we in-
troduced a UML profile for the explicit visualization of de-
sign patterns in system designs. It is important for designers
to describe explicitly patterns in a design diagram because
the goals of design patterns are to reuse design experience,
to improve communication within and across software de-
velopment teams, to capture explicitly the design decisions
made by designers, and to record design tradeoffs and de-
sign alternatives in different applications. The application
of a design pattern may change the names of classes, opera-
tions, and attributes participating in this pattern to the terms
of the application domain. Thus, the roles that the classes,
operations, and attributes play in this pattern have lost. This
pattern-related information is important to accomplish the
goals of design pattern. Without explicitly representing this
information, the designers are force to communicate at the
class and object level, instead of the pattern level. The de-
sign decisions and tradeoffs captured in the pattern are lost
too. Therefore, the notations provided in this paper help
on the explicit representation of design patterns and accom-
plishing the goals of design patterns.

Our approach uses the UML extension mechanisms to
define a UML profile for visualizing design patterns. Three
new stereotypes, PatternClass, PatternAttribute and Pattern-
Operation, are defined. Each stereotype has a tagged value
with the name of “pattern” and the value of the format as
“name[instance],role”. Several constraints are also defined.
Using this new UML profile to model software system de-
sign in class diagrams, one can identify pattern-related in-
formation, such as how many design patterns are used in the
system, what is the role of each model element, how many
instances of a design pattern are applied, and where is each
instance of design pattern in the class diagram.

References

[1] D. Alur, J. Crupi, and D. Malks. Core J2EE Patterns: Best
Practices and Design Strategies. Sun Microsystems, 2001.

[2] S. Berner, M. Glinz, and S. Joos. A Classification of Stereo-
types for Object-Oriented Modeling Languages. Proceed-
ings of the Second International Conference on the Unified
Modeling Language (UML), LNCS1723, Springer-Verlag,
pages 249–264, October 1999.

[3] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language User Guide. Addison-Wesley, 1999.

[4] J. Dong. Representing the Applications and Compositions
of Design Pattern in UML. Proceedings of the ACM Sym-
posium on Applied Computing (SAC), Melbourne, Florida,
USA, pages 1092–1098, March 2003.

[5] J. Dong and S. Yang. Visualizing Design Patterns With A
UML Profile. Technical Report UTDCS-11-03, Computer
Science Department, University of Texas at Dallas, 2003.

[6] J. Dong and K. Zhang. Design Pattern Compositions in
UML. Software Visualization - From Theory to Practice,
Kluwer Academic Publishers, pages 287–308, 2003.

[7] M. Fontoura, W. Pree, and B. Rumpe. UML-F: A Model-
ing Language for Object-Oriented Frameworks. Proceed-
ings of the 14th European Conference on Object-Oriented
Programming (ECOOP), pages 63–82, July 2000.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns, Elements of Reusable Object-Oriented Software.
Addison-Wesley Publishing Company, 1995.

[9] Object Management Group. Unified Modeling Language
Specification, Version 1.4. http://www.omg.org, 2001.

[10] M. M. Kande and A. Strohmeier. Towards a UML Pro-
file for Software Architecture Descriptions. Proceedings of
the Third International Conference on the Unified Modeling
Language (UML), LNCS1939, Springer-Verlag, pages 513–
527, October 2000.

[11] R. K. Keller, R. Schauer, S. Robitalille, and P. Pagé. Pattern-
Based Reverse-Engineering of Design Components. Pro-
ceedings of the 21st International Conference on Software
Engineering, Los Angeles, USA, pages 226–235, May 1999.

[12] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E.
Robbins. Modeling Software Architectures in the Unified
Modeling Language. ACM Transactions on Software Engi-
neering and Methodology, 11(1):2–57, January 2002.

[13] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Mod-
eling Language Reference Manual. Addison-Wesley, 1999.

[14] J. Vlissides. Notation, Notation, Notation. C++ Report,
April 1998.

[15] G. Wagner. A UML Profile for Agent-Oriented Modeling.
Proceedings of the Third International Workshop on Agent-
Oriented Software Engineering, Bologna, Italy, July 2002.

[16] J. B. Warmer and A. G. Kleppe. The Object Constraint
Language: Precise Modeling with UML. Addison-Wesley,
1998.

[17] A. Zarras, V. Issarny, C. Kloukinas, and V. K. Nguyen. To-
wards a Base UML Profile for Architecture Description.
Proceedings of the ICSE Workshop on Architecture and
UML, 2001.

8


