
Pseudo Vector Processor based on
Register-Windowed Superscalar Pipeline

NAKAZAWA, Kisaburo NAKAMURA, Hiroshi
IMORI, Hiromitsu KAWABE, Shun*

Institute of Information Sciences and Electronics, University of Tsukuba
1-1-1, Tennodai, Tsukuba, Ibaraki, 305, Japan

 * Kanagawa Works, HITACHI Ltd.
1, Horiyamashita, Hadano, Kanagawa, 259-13, Japan

Abstract
In this paper, we present a new architecture for high-

speed pseudo vector processor based on a superscalar
pipeline. Without using cache memory, the proposed
architecture is able to overcome penalty of memory access
latency by introducing register windows with register
preloading and pipelined memory. One outstanding feature
of the proposed architecture is that it is upward compatible
with existing scalar architectures. Performance evaluation of
the proposed architecture using the Livermore Loop Kernels
shows over 6 times higher performance than a usual
superscalar processor and 1.2 times higher performance than
a hypothetical extended model with cache prefetching
technique with a memory access latency of 20 CPU clock
cycles. List vectors are also effectively handled in a similar
architecture.

1. Introduction
Motivation

Over the past several years, technological and
architectural advances have realized dramatic improvements
in microprocessor performance with peak performances
becoming comparable to mini-supercomputers. To realize
high end supercomputing, much attention has been paid
recently to massively parallel systems which consist of
over thousands such advanced scalar processors [Zor92].
However, performance of such massively parallel systems
cannot be very high unless each node processor achieves
high performance. This is difficult because the speed of the
attached memory system has not increased as fast as
processor speed [HJ91]. The growing gap between processor
and memory speed is a serious problem.

Caches [Smi82a] are widely utilized in order to reduce
the penalty of memory access latency and close the growing
gap. Advanced processors can realize their potential high
performance only when their caches work effectively
[CP90] [Jou90]. However, especially in engineering/
scientific applications with large amount of data, data
caches are not effective because such applications may have
some spatial locality but little temporal locality and caches
cannot keep all the data to be used. Although tremendously
large data are usually accessed in fairly regular patterns,
caches contribute little except for the prefetch of
continuously allocated data. This problem is reported, for

example, in [SW90]. The same problem arises in massively
parallel supercomputers [Moy91].

Enhanced caches such as prefetched caches or lock-up free
caches [Kro81] [SF91] have been proposed to reduce
memory access penalties. In cache prefetching, cache blocks
are prefetched before they are needed by hardware [BC91]
[Smi82a] [Jou90] or software [KL91]. However, there still
exist the serious problems of extra main memory traffic and
increased cache traffic. Fetching unnecessary data causes
extra memory traffic. Furthermore, in the worst case, cache
traffic can become twice as much as memory traffic. This is
due to the prefetch of extra data from lower level memory to
cache, the read/write for internal processor execution, and
the write back to lower memory. Therefore, expensive
multi-ported caches have to be provided to match the
required throughput, as described in [KL91].

Strategy
We propose a new architecture, pseudo vector processor,

which reduces the penalty of memory access latency and
realizes high-speed vector processing on advanced
superscalar processors.

The problem of extra cache traffic is inevitable if caches
are used only as prefetch data buffers. Vector processors
avoid this problem by bringing data into vector registers
directly without going through data caches, and by
implementing the effective technique of chaining.

Comparisons between vector processors and superscalar
processors indicate that there are some similarities in their
execution of arithmetic operations. Both provide multiple
pipelined functional units which can be scheduled to be
fully utilized. Several vector instructions are executed
simultaneously by chaining in vector processors, while
several scalar instructions are also pipelined and executed
simultaneously in multi-functional and arithmetic pipelined
superscalar processors. Therefore, superscalar processors
have ability to do simple vector processing if each scalar
instruction is regarded as a vertical micro-instruction for
vector processing. The technique of concurrent execution
and data forwarding in superscalar processors can realize
naturally chaining which is one of the most effective
mechanism in vector processors.

However, the essential difference between two processors
lies in the ability to supply data. In vector processors, data
transfers between main memory and vector registers are
realized in a pipelined fashion. Memory accesses are
overlapped with processor arithmetic operations, which

exhibit preload features. Since sufficient vector registers and
multiple load/store pipelines are provided, memory
throughput is extremely high and the penalty of memory
access latency is well hidden in vector processors. On the
contrary, data transfers from/to main memory are not
pipelined in most of the recent superscalar processors. As
their cache systems are not effective in scientific
/engineering applications, memory throughput is low while
data access latency is high. The heavy penalty of data
accesses seriously degrades the performance of superscalar
processors.

Therefore, if the following three mechanisms are
implemented, superscalar processors will be able to do
economical vector processing.
- large number of floating-point registers
- enhanced data preload feature
- pipelined memory

Our strategy is to satisfy these requirements without
serious changes in the instruction set architectures. It is
difficult to increase the number of registers without
changing the instruction formats because the register fields
in instructions are limited. We have overcome this
difficulty by providing sufficient physical floating point
registers and splitting them into several sets, or register-
windows. This extension requires only a few additional
instructions. In order to implement register preloading, a
few instructions are introduced and software-based
preloading becomes available. Though pseudo pipelined
memory with multiple interleaved memory banks is
expensive, this is necessary for high speed vector
processing. As a result, the proposed architecture holds
upward compatibility with non-enhanced processors. This
distinguishes it from other works. Although the idea of
register windows is not new [Sit79] [Lam82] and has been
already implemented in RISC-I [PS81] and the SPARC
processor [Sun89], their register windows were introduced
for the purpose of reducing the overhead of procedure calls
and returns. Our purpose is entirely different, and we
provide different mechanisms from theirs.

2. Principle of Pseudo Vector Processing
Register Extension with Upward Compatibility

The proposed architecture can be implemented as an
extension of existing scalar architectures. The key ideas are
to provide sufficient physical floating point registers which
are divided into several windows and to introduce new
instructions for window-change, preload, and poststore.
Among the windows, just one window is allowed to be
active for usual instruction execution and this active
window (current window) is changed by the window-change
instruction. Each window has a full set of logical floating
point registers identified by the register specifiers in the
instructions. Physical floating point registers are identified
by the active window pointer in PSW and the register
specifier in the instructions. Therefore, ordinary instructions
need not specify which window to use. While ordinary
arithmetic instructions can only use registers in the active
window, preload instructions load data into registers of the
window next to the active one (hidden window) and

poststore instructions store data from registers of the
previous window. Since the length of the register field in
the instruction format can specify registers in just one
window, the number of registers in a single window is the
same as that in the original scalar architecture. Therefore,
multiple sets of windows can be provided without changing
the instruction formats. In this way, more scalar registers
are introduced while keeping upward compatibility with
existing scalar architectures.

Phase Pipelining on Register Window
The most time consuming parts in engineering/scientific

applications are usually in the form of loop iterations.
By providing pipelined memory, memory requests can be

issued continuously without waiting for the return of the
requested data. Each iteration loop is conceptually divided
into three phases: data load, calculation, and result store. As
shown in Figure 1-(a), these phases are usually executed
sequentially, that is, the load phase for (i+1)-th iteration
begins after the store phase of i-th iteration has finished. By
using the well-known software pipelining technique,
instructions from different loop iterations are interleaved and
the three phases of different iterations are executed in
parallel as shown in Figure 1-(b). However, in executions
like that of Figure 1-(b), the register space is too limited by
the register fields in the instructions and is common to all
the phases executed in parallel, which leads to the
interference between phases. A single phase cannot utilize
full set of registers independently from other phases, and
therefore, the efficiency of loop unrolling is suppressed.

In the proposed phase pipelining technique, preload,
calculation, and poststore phases are executed concurrently.
The registers used in each phase belong to different register
spaces as shown in Figure 1-(c). This is different point
from the usual software pipelining. Therefore, we can make
the best use of loop unrolling within a single window.

In Figure 1-(c), suppose that the active window is
'window j' in the i-th iteration. Three phases are executed
in parallel as follows. In the preload phase, data for the next
iteration 'data(i+1)' are preloaded into the registers in the
next window 'window j+1'. In the calculation phase,
arithmetic operations use the registers in the current active
window 'window j'. In the poststore phase, the calculated
data in the previous iteration 'data(i-1)' are stored from the
registers in the previous window 'window j-1'. From the
view point of register space, the data required for i-th
iteration are preloaded into registers of 'window j' when the
active window is j-1. Next, the active window is changed
into 'window j' and the preloaded data in 'window j' are used
for the calculation. After that, the active window is changed
into 'window j+1' and the calculated results in 'window j'
are stored by poststore instructions from 'window j'.

Real performance, of course, depends on the detail
implementation of the processor and the nature of the target
program. For example, if memory access latency is too
large, preloaded data in the i-th iteration may not be
available when the calculation of the (i+1)-th iteration
requires them. In such a case, calculation must wait for the
arrival of the requested data.

In order to avoid this, it is necessary to make the
calculation phase longer. As seen from Figure 1-(c), a
longer calculation phase (for example, calculation of data(i))
means a longer allowable memory latency in the next
preload phase (preload of data(i+1)). Thus, longer
calculation phases can alleviate the situation. Loop
unrolling can be utilized to make the calculation phase be
longer.

time

(i+1)-th
iteration

i-th
iteration

calculation
of data (i)

load of
data(i)

store of
data (i)

calculation
of data (i+1)

load of
data(i+1)

(a) Usual Execution of Iteration
time

calculation
of data (i)

load of
data(i)

store of
data (i)

calculation
of data (i-1)

load of
data(i-1)

store of
data (i-1)

calculation
of data (i+1)

load of
data(i+1)

(i-1)-th
iteration

i-th
iteration

(i+1)-th
iteration

(i-2)-th
iteration

(b) Usual Software Pipelining

window
j

window
j - 1

time

register
space

window
j + 1

active window
j - 2

active window
j - 1

active window
j

active window
j +1

change of
active window

change of
active window

change of
active window

change of
active window

change of
active window

calculation
of data (i)

preload of
data(i)

poststore
of data (i)

calculation
of data (i-1)

preload of
data(i-1)

poststore of
data (i-1)

calculation
of data (i+1)

preload of
data(i+1)

(i-1)-th
iteration

i-th
iteration

(i+1)-th
iteration

(i-2)-th
iteration

(c) Phase Pipelining
Figure 1. Concept of Phase Pipelining

3. Architectural Extension for Register-
Windowed Pseudo Vector Processor

In this section, by using an example, we describe how
we extend an existing scalar architectures for register-
windowed pseudo vector processor. The new architecture is
upward compatible with the basic architecture.

3.1. Overview of Basic Scalar
Architecture

The Hewlett-Packard PA-RISC 1.1 Architecture [Hew90]
is selected as an example of the basic scalar architecture. We
emphasize that similar extensions are possible for other
commercially available RISC architectures and superscalar
implementations. First, the PA-RISC 1.1 Architecture is
overviewed. The extension of the architecture is explained
in the next section.
- 32 thirty-two bit general registers and 32 sixty-four bit

floating registers are provided. Among the floating
registers, registers #0-#3 contain the floating point

program status register and the exception registers. The
remaining twenty-eight registers (Register #4-#31) are
floating-point data registers.

- All instructions are one word (32-bits) in length. A 6-bit
major opcode and several bits for extending the opcode are
provided. Source and target registers are specified in 5-bit
register field. Therefore, no instructions can identify over
thirty-two registers.

- Memory Reference Instructions: 32-bit data is transferred
between general registers and memory only by means of
integer load/store instructions. Also 32 or 64-bit data are
transferred between floating point registers and memory
only by floating load/store instructions.

- Floating Point Operation Instructions: Besides the
conventional add, subtract, multiply, and divide
instructions, multiple-operation instructions are provided.
For example, the operation of "FMPYADD
rm1,rm2,tm,ra,ta" is "FPR[tm] <- FPR[m1] * FPR[m2];
FPR[ta] <- FPR[ta] + FPR[ra]" under the constraint that
ra ≠ tm and ta ≠ rm1, rm2, tm.

- All branch instructions are delayed branches.

3.2. Architecture for Register-Windowed
Pseudo Vector Processing

Floating-Point Registers and Active Window
First, the structure of floating-point registers is extended.

88 sixty-four-bit floating-point registers are provided
physically and divided into four windows as shown in
Figure 2. Each window consists of 32 registers and these
registers are specified logically in the same manner as in the
original PA-RISC architecture. As seen from Figure 2,
registers are categorized into global registers, overlap
registers and local registers. This structure is similar to
SPARC's register windows [Sun89]. The floating point
program status and exception registers are located in four
global registers. The other four global registers are open to
general usage. Four registers overlap each window. For
example, register #28 in a window (say, window #1) is the
same as register #8 in the next window (window #2) and is
physical register #48. The overlap registers are able to
deliver data of a window to the next window, which results
in an efficient support for software pipelining. The window
structure illustrated here is just an example. It is possible to
extend the structure of floating-point registers in ways
different from that of Figure 2.

The number of windows, global registers, or overlap
registers may be selected suitably. In the following
sections, performance of the proposed architecture is
evaluated with this extension and remarkable effectiveness
is achieved.

The current active window is pointed to by a newly
introduced CFRWP (Current Floating Register Window
Pointer). Since the number of windows is four in this case,
two bits for the CFRWP is assigned in the program status
word(PSW). The physical register number is obtained from
the logical register number specified by the instruction and
the value of CFRWP when the instruction is issued.

logical register number

87

72
71
68
67

52
51
48
47

32
31
28
27

12
11

7

0 0 0 0 0
7

12
11

28
27

31

28
27

28
27

31

31

31
28
7

8

12
11

27

local
register

overlap
register

global
register

local
register

overlap
register

local
register

overlap
register

local
register

overlap
register

12
11

12
11
8

8

8 8

window #0 window #1 window #2 window #3physical register
number

7 7

Figure 2. Structure of Floating Point Register
Window

Do 1 K = 1, n
1 X(K) = Q + Y(K) * (R * Z(K+10) + T * Z(K+11))

(a) Lawrence Livermore Loop #1

Loop: FMPYADD r8, r5, r13, r4, r10
: r13 <- Z(K+10) * R
: r10 <- X(K-1) = ((Z(K+9) * R + Z(K+10) * T) * Y(K)) +

Q
FRPreload r28 Z(K+12) : r28 <- Z(K+12)
FMULT r28, r6, r14 : r14 <- Z(K+11) * T
FRPreload r27 Y(K+1) : r27 <- Y(K+1)
FADD r13, r14, r13 : r13 <- Z(K+10) * R + Z(K+11) * T
FRPoststore r30 X(K-1) : store X(K-1) from r30
FMULT r13, r27, r30 : r30<-(Z(K+10)*R+Z(K+11)*T) *Y(K)
CFRWPinc : increment CFRWP
Branch : Branch to Loop

(b) Object Code on Extended Architecture

multiply add preload / poststore
--

% (i-1)-th iteration, active window is (j-1)
1: r13 <- Z(i+9) * R r10 <- X(i-2) FRPreload Z(i+11)
2: r14 <- Z(i+10) * T FRPreload Y(i)
3: r13<-Z(i+9)*R+Z(i+10)*T FRPoststore X(i-2)
4: r30<-(Z(i+9)*R+Z(i+10)*T)*Y(i) {CFRWPinc} and {Branch)
--

% i-th iteration, active window is j
5: r13 <- Z(i+10) * R r10 <- X(i-1) FRPreload Z(i+12)
6: r14 <- Z(i+11) * T FRPreload Y(i+1)
7: r13<-Z(i+10)*R+Z(i+11)*T FRPoststore X(i-1)
8: r30<-(Z(i+10)*R+Z(i+11)*T)*Y(i) {CFRWPinc} and {Branch)

--
% (i+1)-th iteration, active window is (j+1)

9: r13 <- Z(i+11) * R r10 <- X(i) FRPreload Z(i+13)
10: r14 <- Z(i+12) * T FRPreload Y(i+2)
11: r13<-Z(i+11)*R+Z(i+12)*T FRPoststore X(i)
12: r30<-(Z(i+11)*R+Z(i+12)*T)*Y(i) {CFRWPinc} and {Branch)
--

(c) Timing of Compiled Code Execution

Figure 3. Compiled Code of Lawrence Livermore
Loop #1 on Register Window

Additional Instructions
Only the following four new instructions need to be

introduced. The first two instructions manage the register
window while the other two instructions of preload and
poststore support data transfer between main memory and
floating-point registers. We need not change any
instructions in the basic architecture.
- CFRWPenable: This is a privileged instruction which

enable or disable the register window feature. If register
window is disabled, only the registers in the window #0
are available, and the proposed new architecture becomes
fully compatible with the non-windowed architecture.
When the register window is enabled by this instruction,
CFRWP is initially set to 0 and the current active
window is 'window #0'. One bit field in PSW is assigned
to indicate the status of enable/disable.

- CFRWPinc: This is a non-privileged instruction and
changes the active window. CFRWP is incremented in
modulo of 'the number of windows' by this instruction.
No window overflow / underflow interruption is required.

- FRPreload: This instruction loads a data from memory
into the specified register of the next window. For
example, when CFRWP is set to 2, 'FRPreload r10, (m)'
transfers the data into register #10 of the window #3
whose physical register number is #70. On a cache hit,
the data are loaded from cache. Unlike the usual load
instructions, however, on a cache miss this instruction
load the data from main memory into the floating point
register directly without replacing any block of data cache.

- FRPoststore: This instruction stores a data into memory
from the specified register of the previous window. This
instruction also does not replace any block of data cache
on a cache miss.

4. Example of Pseudo Vector Processing
Compiled Code

Figure 3-(a) is an essential part of Lawrence Livermore
Loops #1 and Figure 3-(b) is a compiled object code onto
the extended architecture. For clarity of explanation, loop
unrolling is not utilized and instructions for index
modification and count decrement are omitted. In the PA-
RISC 1.1 architecture, load/store instructions can modify
index registers. Some startup codes before the loop and
finishing up codes after the loop are also ignored in Figure
3-(b).

As seen from Figure 3-(b), Z(K+12) and Y(K+1) are
preloaded into the next window while X(K-1) is poststored
from the previous window. Calculation of X(K-1) which is
a part of the previous iteration is moved into this iteration
by software pipelining. Figure 3-(c) illustrates the timing
of instruction execution where parallel issues and parallel
executions of the memory accesses and floating-point
arithmetic instructions are supported by a superscalar
scheme. In Figure 3-(c), instructions using window j are
underlined. This indicates that the FRPreload in the (i-1)-th

Q

Q

Q

R T

R

R

R

T

T

T

Z(i+10)

Z(i+9) * R

Z(i+10)
 * T

(Z(i+8)*R +
Z(i+9)*T)
*Y(i-2)

(Z(i+9)*R+
Z(i+10)*T)

(Z(i+9)*R+
Z(i+10)*T)
*Y(i-1)

((Z(i+8)*R
+Z(i+9)*T)
*Y(k-2))+Q

Z(i+9)

Z(i+11)

Z(i+10)*R

Z(i+11)
* T

(Z(i+10)*R +
Z(i+11)*T)

(Z(i+10)*R +
Z(i+11)*T)

*Y(i)

((Z(i+9)*R
+Z(i+10)*T)
*Y(i-1))+Q

Z(i+12)

Z(i+11)*R

Z(i+12)

* T

(Z(i+11)*R +
Z(i+12)*T)

((Z(i+10)*R+
Z(i+11)*T) *
Y(i))+Q

Z(i+10)

Z(i+11)

Z(i+12)

window #(j-1)

window #j

window #(j+1)

global
register

local
register

overlap
register

overlap
register

local
register

overlap
register

8 11 12740 3

4 730

27 28 31

8 11 12 27 28 31

4 730 8 11 12 27 28 31

local
register

overlap
register

Z(i+9)

 * R

=>r13

Z(i+10)

 * T

=>r14

(Z(i+9)*R +

Z(i+10) * T)*

Y(i-1) =>r30

Z(i+10) * R

=> r13

Z(i+11) * T

=> r14

(Z(i+10)*R+

Z(i+11) * T)*

Y(i)=>r30

Z(i+11) * R

=> r13

Z(i+12) * T

=> r14

(Z(i+11) *R+

Z(i+12) *T)*

Y(i+1)=>r30

multiply add
preload/
poststore

((Z(i+8)*R +

Z(i+9)*T) *Y(i-2))

 + Q => r10

(Z(i+9)*R +

Z(i+10)*T)

=> r13

((Z(i+9)*R +

Z(i+10)*T)*Y(i-1))

 + Q => r10

(Z(i+10)*R +

Z(i+11)*T)

=> r13

((Z(i+10)*R +

Z(i+11)*T)*Y(i))

 + Q => r10

(Z(i+11)*R +

Z(i+12)*T)

=> r13

1

2

3

4

5

6

7

8

9

10

11

12

FRPreload

 Z(i+11)

 => r28

FRPreload

Y(i)

 => r27

FRPoststore

X(i-2)

 from r30

FRPreload

 Z(i+12)

 => r28

FRPreload

Y(i+1)

 => r27

FRPoststore

X(i-1)

 from r30

FRPreload

 Z(i+13)

 => r28

FRPreload

Y(i+2)

 => r27

FRPoststore

X(i)

 from r30

Q

Y(i)

Y(i-1)

Y(i+1)

i-t
h

ite
ra

tio
n

i-1
 th

 it
er

at
io

n
i+

1
th

 it
er

at
io

n

Figure 4. Register Allocation of Lawrence Livermore
Loop #1 on Register Window

iteration, arithmetic instructions in the i-th iteration, and
the FRPoststore in the (i+1)-th iteration always use the
registers in window j.

Permitted Memory Access Latency
We now consider the minimum allowable latency time

from the request of the preload instruction to the use of the
requested data. This time interval is called the permitted
memory access latency or the permitted latency in short. If
the actual memory access latency is shorter than this
permitted latency, no extra waiting cycles occur and
processor performance is not degraded by memory access
penalty. As seen from Figure 3-(c), the permitted latency is
5 in this code because Z(i+11) is requested in the first cycle
and used in the sixth cycle. If loop unrolling is utilized, the
cycle time for single iteration becomes longer and the
permitted latency also becomes longer. Of course, the
longer is the permitted latency, the less severe is the
requirement for memory access penalty. The other way to
alleviate the severe requirement of the permitted latency is
to introduce of an extended preload instruction which loads a
data into the next to the next window. We will also
evaluate this extension.

Register Allocation
There are some data which are used in more than two

iterations. For example, Z(i+11) is used both in the i-th and
the (i+1)-th iteration. The same is true for X(i) because the
calculation of X(i) is moved into the next iteration. The

proposed architecture can handle such data effectively by
allocating them in the overlap registers. Data used in all the
iterations such as Q, R, and T are also handled effectively if
they are allocated on the global registers. Figure 4 shows
the register allocation of the register window of Figure 3.

5. Evaluation Framework
5.1. Evaluated Model

In addition to the proposed hardware architecture model,
we have evaluated the following types of processor models
for comparison. All of these models have a similar
superscalar pipeline scheme.
<Original> Original PA-RISC 1.1 Architecture with an

Ordinary Cache
<Cache-Prefetch> PA-RISC 1.1 Architecture with

Pipelined Memory and Prefetch to Cache Instruction
<Proposed>Proposed Extended PA-RISC 1.1 Architecture
<Proposed-E>Proposed Extended PA-RISC 1.1

Architecture with Extended Preload Instructions
<Ideal> Hypothetical PA-RISC 1.1 Architecture without

any Cache Miss
Here, <Proposed> and <Proposed-E> are the proposed

architectures for pseudo vector processing. Extended preload
instruction is available in <Proposed-E>. <Original> is the
original PA-RISC 1.1 model with a conventional demand-
fetch data cache. In this model executions are stalled when
cache misses occur. <Cache-Prefetch> is chosen as a typical
model with cache prefetch feature. In this model, a prefetch
to cache instruction is introduced and memory is pipelined.
Prefetch instructions are performed in pipeline and cause no
stalls in processor operations. The cache is assumed to be
fully associative. <Ideal> is a hypothetical processor which
is the ideal case of <Original> such that no cache miss
occurs in the processor. The characteristics of these
processors are summarized in Table 1.

5.2. Benchmarks
We have tested these models on several vector

computations. In this paper, the evaluation results using
the Livermore Loop Kernels #1 ~ #14 of 64 bit data are
reported. We have increased the number of iterations in
order to make the problem size closer to real
engineering/scientific applications. Therefore, the data size
becomes much larger than data cache size and conventional
caches contribute little except for block transfers of
multiple data in a block.

5.3. Assumptions for Evaluation
We have made the following assumptions. These

assumptions are common to all the processor models unless
otherwise specified.
- Parallel Instruction Issue:

Two instructions are issued in every clock cycle. All
instructions are divided into three categories and the two
issued instructions must be selected from different
categories. The first category consists of load and store

Model Original Cache-Prefetch Proposed Proposed-E Ideal

Architecture PA-RISC 1.1 PA-RISC 1.1 with
cache prefetch

extended
PA-RISC 1.1

extended
PA-RISC 1.1

PA-RISC 1.1

Register no change no change register window register window no change
Memory not available pipelined pipelined pipelined no access

Preload / Prefetch
Feature

not available prefetch to cache
instruction

preload and
poststore

preload, poststore,
and extended preload

not available

Cache conventional multi-ported and
fully associative

conventional conventional always
cache hit

Table 1. Summary of Evaluated Processor Model

instructions. Preload and poststore in <Proposed> and
<Proposed-E>, and prefetch in <Cache-Prefetch> also
belong to this category. The second category consists of
floating point arithmetic operations, and the last category
consists of branch and integer ALU operations. CFRWPinc
of <Proposed> and <Proposed-E> belongs to the last
category.
- In Order Instruction Issue:

 All instructions are issued in order except simultaneous
issues of allowable two instructions. If an instruction is
stalled, all the following instructions are interlocked.
- Data Cache:

The block size of the data cache is 16B and continuous
two double-precision floating-point data reside in the same
block. No line conflict (collision) miss is assumed to
occur. This assumption is equivalent to a fully associative
cache. The capacity of cache is assumed to be insufficient to
keep all the data. In other words, cold start of data cache is
assumed. In <Cache-Prefetch>, data cache is multi-ported.
- Main Memory:

In <Proposed>, <Proposed-E>, and <Cache-Prefetch>,
main memory access is pipelined by a single load/store
pipeline and one preload/poststore instruction or prefetch to
cache instruction can be issued every clock cycle. This
feature is implemented, for example, on a pseudo pipelined
memory with multi-interleaved banks. It is assumed that all
the required data are allocated optimally in main memory so
as not to cause memory bank conflicts. In <Original>,
memory access is not pipelined. The memory access latency
is altered during the evaluation. This latency includes the
transfer time between processor and storage control unit,
bank control logic, and error code corrections.
- Penalty of Data Dependency:

Since in-order issue is guaranteed, only RAW (read after
write) dependency need to be considered. If an instruction
(instrB) tries to read a source operand which is a result of a
preceding instruction (instrA), instrB should be issued
several machine cycles later than instrA. If instrA is a
floating-point operation, instrB should be issued 5 cycles or
more later than instrA. If instrA is a usual load instruction,
instrB should be issued 2 cycles or more later than instrA
on a cache hit and 'memory access latency' cycles or more
later on a cache miss. If instrA is a prefetch instruction in
<Cache-Prefetch> or a preload instruction in <Proposed> or
<Proposed-E>, the penalty is the same as a load. In
<Proposed> or <Proposed-E>, some hardware mechanisms

have to be provided to synchronize arithmetic instructions
with preload instructions because they operate independently
and concurrently. However, this can be done by an easy
extension of already available hardware logic for resolving
usual data dependencies.
- Penalty of Control Dependency:

Branch instructions are delayed branches in this
architecture. If a delay slot is filled by an effective
instruction, then there is no penalty caused by control
dependency.
- Instruction Cache:

All the required instructions are brought into the
instruction cache in advance. Warm start is assumed in the
instruction cache. This assumption is appropriate for the
benchmark because it is a collection of simple loops.

5.4. Evaluation Methodology
We have optimized the codes for the Livermore Loop

Kernels by hand and estimated the performance by
simulating the execution in instruction pipeline. Estimated
performances are given in FLOPS (floating point
operations per second). In the optimization, the codes are
unrolled as many times as possible with the available
registers.

Optimized codes for different processor models differ
from one another. Only the codes for <Ideal> and
<Original> are the same. The code for <Cache-Prefetch> is
obtained by inserting prefetch instructions into the code for
<Ideal>. Since cache memory has more space than registers,
prefetch to cache instructions are moved ahead enough so as
not to cause data waiting delays. In the codes for
<Proposed> and <Proposed-E>, although the codes are
scheduled so as not to cause any data dependency, data
waiting delays can still occur if memory access latency is
larger than the permitted latency, because preload to register
instructions and extended preload instructions cannot be
moved ahead without limitation as is the case for prefetch
instructions.

6. Evaluation Results
Figure 5 shows the performance (MFLOPS) of each

processor model on the individual Livermore Loops under
the conditions that the clock-rate is 100MHz, 2 instruction
issue per cycle, and a memory access latency is 20 cycle
(200nsec).

We have also evaluated the performance of each
processor model with different the memory access latencies.

Figure 6 shows the relative performance of each model
compared with <Ideal>. Here, the performance reported is
the harmonic mean of Livermore Loop Kernels. Since no
cache misses occur in <Ideal>, its performance is not
influenced by memory access latency at all.

Figure 6-(a) shows the performance for Livermore Loop
#1 ~ #12. These loops are selected because they can be
vectorized in recent vector supercomputers. When memory
access latency is equal to 0, the relative performance of
<Cache-Prefetch> is 0.84. This degradation arises because
prefetch instructions are inserted and the total cycles required
is increased. The relative performance of <Proposed> and
<Proposed-E> is 0.99. In the proposed structure of register
window, some registers are shared by multiple windows.
Therefore, in these processors, loops are occasionally not
unrolled as many times as in the other models. This is the
reason of this slight performance degradation.

Performance of <Original> decreases seriously when
memory access latency is increased. When memory access
latency is 20 CPU cycles (200nsec), which is a practical
value if DRAM is used, the relative performance of
<Original> falls to 0.15. <Cache-Prefetch> is 5.6 times
faster than <Original>. This speed-up is due to the
pipelined memory, the multi-ported cache and the

sufficiently high memory/cache throughput. <Proposed>
and <Proposed-E> are 6.3 times and 6.6 times faster than
<Original> respectively. Furthermore, they are 1.1 times
and 1.2 times faster than <Cache-Prefetch> respectively.

The next interesting observation is the performance
degradation when memory access latency is increased
further. As seen from Figure 6-(a), performance of
<Original> is very low. In Livermore Loop #1~#12, the
array element references are not dependent on the run time
data. Therefore, we assume that the compiler can move
prefetch instructions far ahead enough without cache
pollution. This is the reason why the performance of
<Cache-Prefetch> does not seem to be affected by
increasing access latency. However, this assumption is not
practical. Moving prefetch instructions too early is
accompanied with the danger of cache pollution. Fully
associative caches are also assumed in this evaluation. If
caches are not fully associative, however, early prefetch
may cause line conflicts. In <Proposed> and <Proposed-E>,
performance degrades if memory access latency is larger
than the permitted latency. However, the relative perfor-
mance of <Proposed-E> remains at 0.99 when memory
access latency reached 30. <Proposed-E> is superior to the
others until memory access latency reaches 50.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14
0

100

200

Original

Cache-Prefetch

Proposed

Proposed-E

Ideal

Livermore Loop Kernel

MFLOPS
Clock-rate: 100MHz, 2 instruction / cycle
Memory Access Latency: 20 CPU Cycle (200nsec)

Figure 5. Performance on Livermore Loop Kernel

50403020100
0.0

0.2

0.4

0.6

0.8

1.0

memory access latency (CPU Cycle)

relative performance

50403020100
0.0

0.2

0.4

0.6

0.8

1.0

Original

Cache-Prefetch

Proposed

Proposed-E

Ideal

memory access latency (CPU Cycle)

relative performance

(a) Performance for Livermore #1 ~#12 (b) Performance for Livermore #1 ~#14

Figure 6. Relative Performance under Variable Memory Access Latency

Figure 6-(b) shows the relative performance for
Livermore Loop #1~#14. In this figure, the performance
reported is also the harmonic mean. Compared with Figure
6-(a), the performance of <Cache-Prefetch> degrades as
memory access latency increases because the array element
references in Livermore #13 and #14 are dependent on the
run time data and consequently the compiler cannot move
prefetch instructions ahead enough to cover the memory
access latency. Due to the same reason, the permitted
latencies in <Proposed> and <Proposed-E> are rather short
in Livermore #13 and #14, which leads to the performance
degradations. However, as seen from Figure 6-(b), the
degradation rate of <Proposed> and <Proposed-E> is less
than that of <Cache-Prefetch>. When the latency is 20
CPU cycle, <Proposed> and <Proposed-E> are 1.7 times
and 1.8 times faster than <Cache-Prefetch>. In the case of
50 CPU cycle latency, they are 1.8 times and 2.2 times
faster than <Cache-Prefetch> respectively. These results
indicate that the proposed processor can cover the penalty of
memory access very effectively.

7. Discussions

7.1. Effectiveness of Proposed
Architecture

As seen from the evaluation results, the proposed
architecture extended with preload, register window, and
pipelined memory realize extremely effective vector
processing on superscalar processors. Because of this, we
called the proposed architecture as pseudo vector processor.

The proposed architecture may seem equivalent to an
architecture with pipelined memory and non-windowed
eighty-eight floating-registers. However, without
sufficiently long register specifier fields in the instructions,
such a large number of registers cannot be used. Our
architecture have overcome this difficulty by adopting the
register windows. The important point is that the physical
register space is enlarged in keeping upward compatibility
with existing scalar architectures. The proposed architecture
can make the best possible use of proven scheduling
techniques such as loop unrolling and software pipelining
by using non active (hidden window) registers.

Register Preloading vs. Cache Prefetching
In Figure 6, the performance of <Cache-Prefetch>

degrades by the insertion of extra prefetch instructions.
However, this problem may be avoided by hardware-based
cache prefetch technique [Smi82a] [Jou90] [BC91].

One block look-ahead policy was described in [Smi82a].
In that policy, upon referencing block i, the only potential
prefetch is of block i+1. The use of stream buffers which
provide automatic sequential prefetching was proposed in
[Jou90]. These schemes are limited to continuous data
accesses or where there is good program locality. If data
access patterns differ from that assumed, extra cache /
memory traffic is generated. In [BC91], a hardware-based
prefetch with prediction was proposed. In this technique,
not only continuous data references but also constant stride
references are handled well. However, random accesses are
not handled effectively.

Ideally, hardware-based prefetch technique may prefetch
all the required data into a data cache without extra prefetch
instructions. However, cache prefetching techniques still
have the following disadvantages.
- Fully random accesses are not handled effectively.
- Extra cache traffic is generated as mentioned in Section 1.

Expensive multi-ported data cache is required.
- Unnecessary data may be fetched into the block in the

cache. Extra cache / memory traffic is generated.
- Early prefetch may cause cache pollution.
- Collision (line conflict) misses may increase unless data

cache is fully associative.
These problems do not arise in the proposed register

preloading architecture because the requested data are
transferred directly into the specified registers.

Proposed Processor vs. Vector Processors
The performance of the proposed architecture is lower

than that of vector processors because of the lesser number
of load/store and arithmetic pipelines. However, the
proposed architecture has the following advantages when
compared with vector processors.
- In the proposed architecture, the technique of strip-mining

is not required because vector registers are not utilized.
- When virtual memory is supported in vector processors,

dynamic address translation and the handling of page-fault
are difficult because multiple data are transferred by several
vector load/store instructions concurrently. In the
proposed architecture, virtual memory is supported as
easily as in ordinary scalar processors.

- Some advantages of unified scalar/vector floating-point
operation proposed in [JBW89] are available.

- List vectors are processed effectively. Traditional vector
processors cannot handle list vectors efficiently without
expensive hardware resources. However, the proposed
architecture has some possibility for list vector handling.
This will be discussed in section 7.5.

- The overhead for start-up is relatively large in vector
processors. Since set-up of vector control registers is not
needed on the proposed architecture, the overhead for start-

up is less and N1

2
(the half-performance length) [HJ88] is

shorter than usual vector processors. In the proposed
architecture, the start-up overhead includes only preloads
for the first execution and initializations of index/base
registers.

7.2. Hardware Implementation
Additional hardware for register windows includes tens of

floating-point registers, several bits of the PSW, translation
logic to generate a physical register number from CFRWP
and a logical register number in an instruction, and some
extensions of the dependency managing logic. These are
small in space and easily implemented on CPU chip. The
clock rate is not affected. Compared with traditional vector
registers, much fewer registers (only one tenth to one
hundredth) are required to play the same role in the proposed
architecture. Moreover, the required number of input/output
ports of the registers is almost the same as in ordinary
superscalar processors.

The pipelined memory is implemented using memory
banks and interleaving technique as in ordinary vector
processors. Although implementing a pipelined memory is
expensive, a pipelined memory is still cost-effective
because sufficient memory throughput is essential in vector
processing where caches are not effective.

7.3. Compiler Related Issue
We have obtained the performance results by hand-

compiled codes. To develop an effective compiler is our
next goal.

One direction of efficient compilation is the extension of
the modulo scheduling on rotating register files proposed in
[RLTS92]. First, optimized code is generated by software
pipelining under the assumption that all the physical
registers are available. Then, the generated code is scheduled
so as to match the register window scheme.

Another direction of compilation is suggested from our
experiences of hand compilation, where codes for the
proposed architecture is obtained as follows. First optimized
code under windowed register is generated without preload
instructions. The algorithm of register allocation is the
most important in this step. Next, load instructions are
changed to preload instructions and moved ahead into the
previous iteration. Handling of index registers which address
the data to be preloaded is the most important point in this
step.

7.4. Related Works
The idea of register windows is not new [Sit79] [Lam82]

and has been already introduced in RISC-I [PS81] and the
SPARC processor [Sun89]. Our purpose and
implementation is entirely different from these. We have
introduced the register windows for the purpose of
increasing the number of registers and reducing the penalty
of memory access. The register window does not play the
role of a stack in our architecture. Therefore, in our
architecture, window overflow/underflow interrupt is not
required when window circulation occurs.

A unified approach to vector and scalar computation was
proposed in [JBW89] and adopted as the floating-point
architecture in MultiTitan [JDBN88]. Their purpose is
similar to ours. However, we did not introduce vector
instructions or vector registers, and therefore, our
architecture can be upward compatible with existing
load/store scalar architectures.

Decoupled architecture [Smi82b] was also proposed for
the purpose of reducing the penalty of off-chip memory
access. Its performance evaluation is described in [SWP86].
The difference between the decoupled architecture and our
register windows architecture is that the former transfers
data into a queue whereas the latter transfers the requested
data directly into the specified register of the hidden
window. Thus, the decoupled architecture requires additional
load/move instructions for data transfers between the queue
and registers.

A pipelined floating-point load instruction (pfld) was
introduced in i860 processor [Int89]. The load pipeline has
three stages. A pfld returns the data from the address referred

by the third previous pfld and the pipelined pfld instruction
does not place the data in the data cache on a cache miss.
This instruction also hides memory access latency.
However, for a data load, the destination register and the
source location in the memory are defined in different
instructions. Therefore the number of the stages in load
pipeline strictly affects the object codes. That is, if the
number of the load pipeline stages is changed, the object
codes must also be changed in order to obtain the correct
computation results. Compared with i860 architecture, our
architecture includes the usual waiting mechanism for
requested data and successfully closes the growing gap
between processor and memory speed without serious
changes in the architecture.

7.5. Further Extension to Register
Windows

Structure of Register Window
The number of register windows is fixed in the

evaluations in this report. The number of global, overlap,
and local registers are also fixed. However, the optimal
structure of these registers must depend on the nature of the
program to be executed. Therefore, the following extension
is also worth discussing. Namely, fixed the number of
physical registers but allow the compiler to arbitrarily form
the logical structure of registers within the physical register
space. The number of global, overlap, and local registers is
changeable under the constraint that the number of total
registers in one window is fixed. To implement this
extension, each compiled code must reflect what logical
register structure is assumed in the compilation.

Effective Handling of List Vector
The access of the list vector A(B(i)) is basically an

indirect addressing of vectors. If the value of B(i) is
available before the access of A(B(i)), there is no problem.
Therefore, a mechanism of the advanced fetch of B(i) is
necessary. This is enabled by introducing register windows
into general registers.

Figure 7 illustrates the principle of list vector handling.
Suppose the CFRWP is 'j' in the i-th iteration and the
execution in the i-th iteration is "A(B(i)) = A(B(i)) +
const.". This kind of execution are effectively handled in the
following way. When CFRWP is 'j', the calculated A(B(i-
1)) is poststored from the previous floating-point register
window 'j-1'. Ordinary floating operations use the active
floating-point register window 'j'. A(B(i+1)) is preloaded
into the next floating-register register window 'j+1', and the
pointer (indirect address) of B(i+2) is preloaded into the next
to the next general register window 'j+2'. As a result, B(i)
was preloaded into the general register window 'j' in the (i-
2)-th iteration at first. Next, A(B(i)) was preloaded into the
floating-point register window 'j' in the (i-1)-th iteration.
A(B(i)) is calculated in the i-th iteration. Finally the
calculated A(B(i)) is poststored from the floating-point
register window 'j' in the (i+1)-th iteration. The key point
in this scheme is that the preload of A(B(i)) and the
poststore of A(B(i)) can utilize the value of B(i) as indirect

address which was already preloaded into the general register
window 'j'.

change of
active window

preload
of B(i)

window
j - 1

window
j

window
j + 1

general
register
space

preload
of B(i+1)

active window
j -2

active window
j-1

active window
j

active window
j + 1

change of
active window

change of
active window

change of
active window

change of
active window

calculation
of A(B(i))

time

preload
of (A(B(i-1))

calculation
of A(B(i-1))

preload
of A(B(i))

window
j - 1

window
j

window
j + 1

floating-
point

register
space

preload
of A(B(i+1))

calculation
of A(B(i+1))

window
j + 2

preload
of B(i+2)

window
j + 2

preload
of A(B(i+2))

poststore
of A(B(i-1))

poststore
of A(B(i))

(i-1)-th
iteration

i-th
iteration

(i+1)-th
iteration

(i-2)-th
iteration

Figure 7. Principle of List Vector Handling

8. Conclusions
We have presented and discussed a new architecture for

high-speed pseudo vector processing with a superscalar
processor. The proposed architecture is able to minimize the
penalty of memory access by introducing register window
with register preloading and pipelined memory. The
proposed architecture holds upward compatibility with
existing scalar architectures. This is one of the outstanding
points of this work. The performance evaluation shows that
this architecture hides the penalty of memory access well.
The performance of the proposed architecture is over 6
times higher than the original PA-RISC 1.1 Architecture
and 1.2 times higher than the hypothetical extended model
with cache prefetching technique when the penalty of
memory access is 20 CPU clock cycles. We also described
extensions to effectively manage list vectors.

Acknowledgements
We appreciate the valuable comments of Prof. E.Goto at

Kanagawa Univ., Prof. Y.Oyanagi at Univ. of Tokyo, and
Prof. I.Nakata and Prof. T.Boku at Univ. of Tsukuba. We
would like to thank all the members of the GNOH group
and the CP-PACS group for the many fruitful discussions.
Finally, many thanks go to W.F.Wong for his helpful
comments and careful revision of the manuscript.

References
[BC91] J.L.Baer and T.F.Chen, "An Effective On-Chip

Preloading Scheme To Reduce Data Access Penalty", Proc.
Supercomputing '91, pp176-186, 1991

[CP90] D.Callahan and A. Porterfield, "Data Cache Performance
of Supercomputer Applications", Proc. Supercomputing '90,
pp564-572, 1990

[HJ91] J.L.Hennessy and N.P.Jouppi, "Computer Technology
and Architecture: An Evolving Interaction", IEEE Computer,
Vol.24, No,9, pp18-29, 1991

[Hew90] Hewlett-Packard Company, "PA-RISC 1.1 Architecture
and Instruction Set Reference Manual", Manual Part Number
09740-90039, 1990

[HJ88] R.W.Hockney, C.R.Jesshope, "Parallel Computers 2",
Adam Hilger, 1988

[Int89] Intel Corp., "i860 64-Bit Microprocessor Programmer's
Reference Manual", ISBN 1-55523-080-6, 1989

[Jou90] N.P.Jouppi, "Improving Direct-Mapped Cache
Performance by the Addition of a Small Fully-Associative
Cache and Prefetch Buffers", Proc. 17th Int'l Symp. on
Computer Architecture, pp364-373, 1990

[JBW89] N.P.Jouppi, J.Bertoni, and D.W.Wall, "A Unified
Vector/Scalar Floating-Point Architecture", Proc. 3rd Int'l
Conf. on Architectural Support for Programming Languages
ad Operating Systems (ASPLOS-III), pp134-143, 1989

[JDBN88] N.P.Jouppi, J.Dion, D.Boggs, and M.J.K.Nielsen,
"MultiTitan: Four Architecture Papers", Tech. Rept. 87/8,
Digital Equipment Corporation Western Research Lab, 1988

[KL91] A.C.Klaiber, H.M.Levy, "An Architecture for Software-
Controlled Data Prefetching", Proc. 18th Int'l Symp. on
Computer Architecture, pp.43-53, 1991

[Kro81] D.Kroft, "Lockup-Free Instruction Fetch/Prefetch
Cache Organization", Proc. 8th Int'l Symp. on Computer
Architecture, pp81-87, 1981

[Lam82] B.W.Lampson, "Fast Procedure Calls", Proc. 1st Int'l
Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-I), pp66-75, 1982

[Moy91] S.M.Moyer, "Performance of the iPSC/860 Node
Architecture", Tech. Rept. IPC-TR-91-007, University of
Virginia, 1991

[PS81] D.A.Patterson and C.H.Sequin, "RISC I: A Reduced
Instruction Set VLSI Computer", Proc. 8th Int'l Symp. on
Computer Architecture, pp.443-457, 1981

[RLTS92] B.R.Rau, M.Lee, P.P.Tirumalai, and M.S.Schlansker,
"Register Allocation for Software Pipelined Loops", Proc.
ACM SIGPLAN '92 Conf. on Programming Language Design
and Implemenation, pp283-299, 1992

[Sit79] R.L.Sites, "How to use 1000 registers", Caltech Conf.
on VLSI, 1979

[Smi82a] A.J.Smith, "Cache Memories", ACM Computing
Surveys, Vol.14, No.3, pp473-530, 1982

[Smi82b] J.E.Smith, "Decoupled Access/Execute Computer
Architecture", Proc. 9th Int'l Symp. on Computer
Architecture, pp.112-119, 1982

[SW90] M.L.Simmons and H.J.Wasserman, "Performance
Evaluation of the IBM RISC System/6000: Comparison of an
Optimized Scalar Processor with Two Vector Processors",
Proc. Supercomputing '90, pp132-141, 1990

[SWP86] J.E.Smith, S.Weiss, and N.Y.Pang, "A Simulation
Study of Decoupled Architecture Computers", IEEE Trans. on
Computers, Vol.C-35, No,8, pp.692-702, 1986

[SF91] G.S.Sohi and M Franklin, "High-Bandwidth Data
Memory Systems for Superscalar Processors", Proc. 4th Int'l
Conf. on Architectural Support for Programming Languages
ad Operating Systems (ASPLOS-IV), pp53-62, 1991

[Sun89] Sun Microsystems, "The SPARC Architectural Manual,
Version 8", Part No. 800-1399-09, 1989

[Zor92] G.Zorpette, "Technology 1992: Large Computers",
IEEE Spectrum, Vol.29, No.1, pp33-35, 1992

