Pseudo Vector Processor based on
Register-Windowed Superscalar Pipeline

NAKAZAWA, Kisaburo NAKAMURA, Hiroshi
IMORI, Hiromitsu KAWABE, Shun*

Institute of Information Sciences and Electronics, University of Tsukuba
1-1-1, Tennodai, Tsukuba, Ibaraki, 305, Japan

* Kanagawa Works, HITACHI Ltd.
1, Horiyamashita, Hadano, Kanagawa, 259-13, Japan

Abstract example, in [SW90]. The same problem arises in massivel
) ) parallel supercomputers [Moy91].

In this paper, we present a new architecturehigh- Enhanced caches such as prefetched caches or lock-up fr
speed pseudo vector processor based on a superscalar caches [Kro81] [SF91] have been proposed to reduce
pipeline. Without using cache memory, the proposednemory access penalties. In cache prefetching, cache blocl
architecture is able to overcome penalty of memory accesge prefetched before they are needed by hardware [BC9:
latency by introducingegister windows with register  [Smig2a] [Jou90] or software [KL91]. However, there still
preloading andpipelined memory. One outstanding feature exist the serious problems of extra main memory traffic anc
of the proposed architecture is that iupvard compatible  jncreased cache traffic. Fetching unnecessary data caus
with existing scalar architectures. Performance evaluation (gxtra memory traffic. Furtherrnore7 in the worst case, cache
the proposed architecture using the Livermore Loop Kernelgaffic can become twice as much as memory traffic. This is
shows over 6 times higher performance than a usugue to the prefetch of extra data from lower level memory tc
superscalar processor and 1.2 times higher performance thggiche, the read/write for internal processor execution, an
a hypothetical extended model with cache prefetchinghe write back to lower memory. Therefore, expensive

technique with a memory access latency of 20 CPU cloclqylti-ported caches have to be provided to match the
cycles. List vectors are also effectively handled in a similarequired throughput, as described in [KL91].

architecture. Strategy

1. Introduction We propose a new architectupseudo vector processor,
which reduces the penalty of memory access latency an

M otivation . . ;
Over the past several vears. technological an realizes high-speed vector processing on advance:
P y ’ 9 %uperscalar processors.

_archlf[ectural advances have realized dramatic improvements The problem of extra cache traffic is inevitable if caches

€3re used only as prefetch data buffers. Vector processol

becoming comparable to mini-supercomputers. To realizg, ;g problem by bringing data into vector registers
high end supercomputing, much attention has been pa rectly without going through data caches, and by

over housands such advanced sealar processors [ZoroJPementing the effecive technigue of chaining
However. performance of such massive? arallel svste "Comparisons between vector processors and superscal
' P yp Yy rocessors indicate that there are some similarities in thei

cannot be very high unless each node processor achie &Xecution of arithmetic operations. Both provide multiple

g't?:(:ﬂeego”r;]:;]g?' Tg'sst'grg'ffr:;iltﬁgf?gifeglseezpzzdfggth%eIined functional units which can be scheduled to be
y Sy ly utilized. Several vector instructions are executed

processor speed [HJ91]. The growing gap between processﬁﬁwultaneously by chaining in vector processors, while

and memory sp.eed IS & Serlous prc')l_)lem.l several scalar instructions are also pipelined and execute
Caches [Smi82a] are widely utilized in order to reduce

the penalty of memory access latency and close the growi simultaneously in multi-functional and arithmetic pipelined
gap. Advanced processors can realize their potential hi perscalar processors. Therefore, superscalar processc

performance only when their caches work effectivelyi ave ability to do simple vector processing if each scalai

[CPO0] [Jou90]. However, especially in engineerin /nstruction is regarded asvartical micro-instruction for
C A er, esp y 9 9 vector processing. The technigue of concurrent execution
scientific applications with large amount of data, dat

; L nd data forwarding in superscalar processors can realiz
caches are not eff?c“"e b_ecause such appllqatlons may harYz?turalIy chaining which is one of the most effective
some spatial locality but little temporal locality and CaChe%echanism in vector processors

cannot keep all the data to be used. Although tremendously However, the essential difference between two processor

. 4 fles in the ability to supply data. In vector processors, date
ggﬁﬂffoﬁm;'fou(;t:tegtggtaexfﬁgt rfgtsletrtrleis F;;el;ertt(ég ?;transfers between main memory and vector registers ar
y : P P ' Otealizedin a pipelined fashion. Memory accesses are

overlapped with processor arithmetic operations, which



exhibit preload features. Since sufficientector registersand  poststore instructions store data from registers of the

multiple load/store pipelines are provided, memoryprevious window. Since the length of the register field in
throughput is extremely high and the penalty of memoryhe instruction format can specify registers in just one
access latency is well hidden in vector processors. On theindow, the number of registers in a single window is the
contrary, data transfers from/to main memory are nosame as that in the original scalar architecture. Therefore
pipelined in most of the recent superscalar processors. Asultiple sets of windows can be provided without changing
their cache systems are not effective in scientifidhe instruction formats. In this way, more scalar registers
/engineering applications, memory throughput is low whileare introduced while keeping upward compatibility with

data access latency is high. The heavy penalty of dakxisting scalar architectures.

accesses seriously degrades the performance of superscgiibse Pipelining on Register Window

Processors.

Therefore, if the following three mechanisms are
implemented, superscalar processors will be able to d
economical vector processing.

- large number of floating-point registers
- enhanced data preload feature
- pipelined memory

Our strategy is to satisfy these requirements withou

serious changes in the instruction set architectures. It

The most time consuming parts in engineering/scientific
%pplications are usually in the form of loop iterations.

By providing pipelined memory, memory requests can be
issued continuously without waiting for the return of the
requested data. Each iteration loogasceptually divided
into three phases: data load, calculation, and result store. 2

hown in Figure 1-(a), these phases are usually execute
equentially, that is, the load phase for (i+1)-th iteration
difficult to increase the number of registers withoutﬁegins after the store phase of i-th_ iter_at_ion has fin_ished. B
changing the instruction formats because the register fielciJSIng the well-knownsoftware pipelining technique,
in instructions are limited. We have overcome this Rstructions from d|fferent loop iterations are interleaved anq
y the three phases of different iterations are executed i
parallel as shown in Figure 1-(b). However, in executions
like that of Figure 1-(b), the register space is too limited by
the register fields in the instructions and is common to all
he phases executed in parallel, which leads to the
terference between phases. A single phase cannot utiliz

difficulty by providing sufficient physical floating point
registers and splitting them into several setsregjister-
windows. This extension requires only a few additional
instructions. In order to implemenégister preloading, a
few instructions are introduced and software-base

preloading becomes available. Thougeudo pipelined full set of registers independently from other phases, ant

memory with .mu.ltiple interleaved memory banks is therefore, the efficiency dbop unrolling is suppressed.
expensive, this is necessary for high speed vector In the proposecphase pipelining technique, preload,

processing. As a result, the proposed architecture hOIq:sdlculation, and poststore phases are executed concurrent!

upward compatibility with non-enhanced processors. ThiSThe registers used in each phase belong to different regist:
distinguishes it from other works. Although the idea Ofspacesg as shown in Figurg 1-(c). Thig is different p%int

register windows is not new [Sit79] [Lam82] and has bee rom the usual software pipelini

. X pipelining. Therefore, we can make
already implemented in RISC-I [PS81] and the SPAR Jﬂe best use of loop unrolling within a single window.
processor [Sun89], their register windows were introduce In Figure 1-(c), suppose that the active window is
for the purpose of reducing the overhead of procedure Ca”\%/indow j' in the i-’th iteration. Three phases are executec

and _(rjetlé_rf?s. Otur erJ]rpqse '? enttlrze[y different, and W&, - alel as follows. In the preload phase, data for the nex
provide difierent mechanisms irom theirs. iteration 'data(i+1)" are preloaded into the registers in the
2. Principle of Pseudo Vector Processing next window 'window j+1'. In the calculation phase,
Register Extension with Uoward Compatibilit arithmetic operations use the registers in the current activ
€9 ; P . P y window 'window j'. In the poststore phase, the calculated
The proposed architecture can be implemented as &g in the previous iteration 'data(i-1)' are stored from the
extension of existing scalar architectures. The key ideas afggisters in the previous window ‘window j-1'. From the
to pro_vi_de su_fficient physi_cal floating poinf[ registers whichyje\ point of register space, the data required for i-th
are divided into severakindows and to introduce new jteration are preloaded into registers of 'window j' when the
instructions forwindow-change, preload, andpoststore.  active window is j-1. Next, the active window is changed
Among the windows, just one window is allowed to bejnig 'window j' and the preloaded data in 'window j' are usec
active for usual instruction execution and this activefor the calculation. After that, the active window is changed
window (current window) is changed by the window-chang&nto 'window j+1' and the calculated results in ‘window j'
instruction. Each window has a full set of logical floating gre stored by poststore instructions from 'window j'.
point registers identified by the register specifiers in the Rgg| performance, of course, depends on the detai
instructions. Physical floating point registers are identifiedmplementation of the processor and the nature of the targe
by the active window pointer in PSW and the register, rogram. For example, if memory access latency is toc
specifier in the instructions. Therefore, ordinary instructionqarge, preloaded data in the i-th iteration may not be
need not specify which window to use. While ordinaryayajlable when the calculation of the (i+1)-th iteration

arithmetic instructions can only use registers in the activgaquires them. In such a case, calculation must wait for the
window, preload instructions load data into registers of the ayriva) of the requested data.

window next to the active one (hidden window) and



In order to avoid this, it is necessary to make the program status register and the exception registers. Th
calculation phase longer. As seen from Figure 1-(c), a remaining twenty-eight registers (Register #4-#31) are
longer calculation phase (for example, calculation of data(i)) floating-point data registers.
means a longer allowable memory latency in the next All instructions are one word (32-bits) in length. A 6-bit
preload phase (preload of data(i+1)). Thus, longer major opcode and several bits for extending the opcode ar
calculation phases can alleviate the situation. Loop provided. Source and target registers are specified in 5-bi
unrolling can be utilized to make the calculation phase be register field. Therefore, no instructions can identify over

longer. thirty-two registers.

- Memory Reference Instructions: 32-bit data is transferrec
t load of calculation storeof v 5 fime between general registers and memory only by means c
L dae0 ] ofdaa® ) daa® loadof calculation integer load/store instructions. Also 32 or 64-bit data are
e ne o meeee- | data(+) y ofdaa(+) y transferred between floating point registers and memory
: .- (it1)th  ------- only by floating load/store instructions.

iteration

- Floating Point Operation Instructions: Besides the

(@) Usual Execution of Iteration conventional add, subtract, multiply, and divide

© loadof ! calculation 1 storeof " : instructions, multiple-operation instructions are provided.

1 data(i-1) 1 of data (i-1) | caacy | i For example, the operation of "FMPYADD

: i o) i ) i e rml,rm2,tm,ra,ta" is "FPR[tm] <- FPR[m1] * FPR[m2];

; ; —Toadof ! cammﬁ'gn—! FPR[ta] <- FPR[ta] + FPR[ra]" under the constraint that

: : Ldataeny | ofdata i) | ra# tm and ta rm1, rm2, tm.

e et oo ™ (LD - - All branch instructions are delayed branches.

(b) Usual Software Pipelining 3.2. Architecture for Register-Windowed
Pseudo Vector Processing
change of change of change of change of change of ) i i . )

active window  active window active window active window ~ active window Floating-Point Registers and Active Window
reqister active Window*active Window*active window* active Window* FiI'.St, the stru_cture OT ﬂoatin.g'pomt_ registers iS eXte.nded-
cpace B2y i [E 88 sixty-four-bit floating-point registers are provided

_ preload of +  calculation | poststore of i physically and divided into four windows as shown in
W'j“_‘"l’w data(i-1) i ofdata(-)] dataGl) J ; Figure 2. Each window consists of 32 registers and thes
. ; \ preloadof ! calculation ! poststore ! registers are specifiddgically in the same manner as in the
R |_data® | ofdatad) § ofdaay j original PA-RISC architecture. As seen from Figure 2,

_‘ ; 5 1 preload of ! (ﬁljlculal,ifr’” E registers are categorized inghobal registers, overlap
B ol registers andlocal registers. This structure is similar to
i o N SPARC's register windows [Sun89]. The floating point
' : ' ' 'y program status and exception registers are located in fou
time global registers. The other four global registers are open ti
(c) Phase Pipelining general usage. Four registers overlap each window. Fa
Figure 1. Concept of Phase Pipelining example, register #28 in a window (say, window #1) is the

same as register #8 in the next window (window #2) and is

; ; : _ physical register #48. The overlap registers are able t
3. Architectural Extension for Register deliver data of a window to the next window, which results

Windowed Pseudo Vector Processor in an efficient support fogoftware pipelining. The window

In this section, by using an example, we describe howtrycture illustrated here is just an example. It is possible tc
we extend an existing scalar architectures riegister-  extend the structure of floating-point registers in ways
windowed pseudo vector processor. The new architecture is  different from that of Figure 2.
upward compatible with the basic architecture. The number of windows, global registers, or overlap
3.1. Overview of Basic Scalar registers may be selected suitably. In the _foIIowing_

Architecture sections, performance of the proposed architecture it

) evaluated with this extension and remarkable effectivenes
The Hewlett-Packard PA-RISC 1.1 Architecture [Hew90]is achieved.

is selected as an example of the basic scalar architecture. WeThe current active window is pointed to by a newly
emphasize that similar extensions are possible for othghtroduced CFRWP (Current Floating Register Window
commercially available RISC architectures and superscal@ointer). Since the number of windows is four in this case,
implementations. First, the PA-RISC 1.1 Architecture isyyo bits for the CFRWP is assigned in the program statu
overviewed. The extension of the architecture is explaineg,ord(PSW). The physical register number is obtained from

in the next section. the logical register number specified by the instruction anc

- 32 thirty-two bit general registers and 32 sixty-four bitihe yalue of CFRWP when the instruction is issued.
floating registers are provided. Among the floating

registers, registers #0-#3 contain the floating point



87 27
local
register
72 12
overlap 71 31 11
register 68 28 8
67 27
local
register
overlap gi a1 ﬁ
register 28 28 8
47 27
local
register
32 12
ovgrlap 31 % 11
register 28 8
27 27
local
register
12 12
overlap 11 11 31
register 8 8 28
7 7 7 7 7
global 0 0 0 0
register oL - - -
physical registel window #0 window #1 window #2 window #3
number

logical register number

Figure 2. Structure of Floating Point Register
Window

Additional Instructions
Only the following four new instructions need to be

introduced. The first two instructions manage the registef®"

window while the other two instructions of preload and

poststore support data transfer between main memory af
floating-point registers. We need not change any

instructions in the basic architecture.
- CFRWPenable: This is a privileged instruction which

enable or disable the register window feature. If register
window is disabled, only the registers in the window #0

are available, and the proposed new architecture becom
fully compatible with the non-windowed architecture.
When the register window is enabled by this instruction
CFRWP is initially set to 0 and the current active
window is 'window #0'. One bit field in PSW is assigned
to indicate the status of enable/disable.

CFRWPIinc: This is a non-privileged instruction and

changes the active window. CFRWP is incremented in:

modulo of 'the number of windows' by this instruction.
No window overflow / underflow interruption is required.

4. Example of Pseudo Vector Processing

Compiled Code

Figure 3-(a) is an essential part of Lawrence Livermore
Loops #1 and Figure 3-(b) is a compiled object code ontc
the extended architecture. For clarity of explanation, loop
unrolling is not utilized and instructions for index
modification and count decrement are omitted. In the PA-
RISC 1.1 architecture, load/store instructions can modify
index registers. Some startup codes before the loop an
finishing up codes after the loop are also ignored in Figure
3-(b).

As seen from Figure 3-(b), Z(K+12) and Y(K+1) are
preloaded into the next window while X(K-1) is poststored
from the previous window. Calculation of X(K-1) which is
a part of the previous iteration is moved into this iteration
by software pipelining. Figure 3-(c) illustrates the timing
of instruction execution where parallel issues and paralle
executions of the memory accesses and floating-poin
arithmetic instructions are supported bysaperscalar
scheme. In Figure 3-(c), instructions using window j are
underlined. This indicates that the FRPreload in the (i-1)-th

DolK=1,n
1 X(K)=Q+Y(K)*(R*Z(K+10) + T * Z(K+11))

(a) Lawrence Livermore Loop #1

FMPYADD 18, 15, r13, 14, r10
1113 <- Z(K+10) * R
1110 <= X(K-1)'= ((Z(K+9) * R + Z(K+10) * T ) * Y(K)) +

FRPreload r28 Z(K+12) :r28 <- Z(K+12)

FMULT r28, 16, r14 irld <-Z(K+11) * T

FRPreload r27 Y(K+1) :r27 <- Y(K+1)

FADD r13, r14,r13 :r13<- Z(K+10) *R + Z(K+11) * T
FRPoststore r30 X(K-1) : store X(K-1) from r30

FMULT r13,r27,r30  :r30<-(Z(K+10)*R+Z(K+11)*T) *Y(K)
CFRWPInc : increment CFRWP

Branch : Branch to Loop

(b) Object Code on Extended Architecture

es

multiply preload / poststore

% (i-1)-th iteration, active window is (j-1)

1. r13<-Z(i+9)*R  rl0 <- X(i-2) FRPreload Z(i+11)

2. rl4<-Z(i+10)* T FRPreload Y(i)
r13<-Z(i+9)*R+Z(i+10)*T FRPoststore X(i-2)

4: r30<-(Z(i+9)*R+Z(i+10)*T)*Y (1) {CFRWPinc} and {Branch)

% i-th iteration, active window is j

FRPreload: This instruction loads a data from memory.
into the specified register of theext window. For :
example, when CFRWHP is set to 2, 'FRPreload r10, (my:
transfers the data into register #10 of the window #3:

the data are loaded from cache. Unlike the usual load
instructions, however, on a cache miss this instructioff:,,
load the data from main memory into the floating pointjy:
register directly without replacing any block of data cachei2:
FRPoststore: This instruction stores a data into memory
from the specified register of thEevious window. This
instruction also does not replace any block of data cache
on a cache miss.

0:114 <- Z(i+12) * T

r13<-Z(i+10) * R r10 <- X(i-1)
14 <-Z(i+11)* T

FRPreload Z(i+12)

FRPreload Y(i+1)
r13<-Z(i+10)*R+Z(i+11)*T FRPoststore X(i-1)

r30<-(Z(i+10)*R+Z(i+11)*T)*Y(i) {CFRWHPinc} and {Branch)

% (i+1)-th iteration, active window is (j+1)
ri3 <- Z(i+11) * R r10 <- X(i) FRPreload Z(i+13)
FRPreload Y(i+2)

r13<-Z(i+11)*R+Z(i+12)*T FRPoststore X(i)
r30<-(Z(i+11)*R+Z(i+12)*T)*Y(i)  {CFRWPiInc} and {Branch)

(c) Timing of Compiled Code Execution

Figure 3. Compiled Code of Lawrence Livermore
Loop #1 on Register Window



iteration, arithmetic instructions in the i-th iteration, andproposed architecture can handle such data effectively b
the FRPoststore in the (i+1)-th iteration always use thallocating them in the overlap registers. Data used in all the
registers in window j. iterations such as Q, R, and T are also handled effectively i
Permitted Memory Access Latency they are allocated on the global registers. Figure 4 show

We now consider the minimum allowable latency timethe register allocation of the register window of Figure 3.

from the request of the preload instruction to the use of th§. Evaluation Framework
requested data. This time interval is called peemitted

memory access latency or thepermitted latency in short. If >.1 Ev'gluated Model )
the actual memory access latency is shorter than this In addition to the proposed. hardware architecture model
permitted latency, no extra waiting cycles occur andve have evaluated the following types of processor model:
processor performance is not degraded by memory acce®y comparison. All of these models have a similar
penalty. As seen from Figure 3-(c), the permitted latency i§uperscalar pipeline scheme. _ _

5 in this code because Z(i+11) is requested in the first cyclgOriginal> Original PA-RISC 1.1 Architecture with an
and used in the sixth cycle. If loop unrolling is utilized, the Ordinary Cache _ _
cycle time for single iteration becomes longer and the‘Cache-Prefetch> PA-RISC 1.1 Architecture with
permitted latency also becomes longer. Of course, the  Pipelined Memory and Prefetch to Cache Instruction
longer is the permitted latency, the less severe is theProposed>Proposed Extended PA-RISC 1.1 Architecture
requirement for memory access penalty. The other way t6Proposed-E>Proposed Extended PA-RISC 1.1
alleviate the severe requirement of the permitted latency is  Architecture with Extended Preload Instructions

to introduce of amxtended preload instruction which loads a ~ <ldeal> Hypothetical PA-RISC 1.1 Architecture without

data into the next to the next window. We will also any Cache Miss
evaluate this extension. Here, <Proposed> and <Proposed-E> are the propose

Register Allocation architectures for pseudo vector processing. Extended preloe

: . instruction is available in <Proposed-E>. <Original> is the
__There are some data which are used in more than tWg;qina pA-RISC 1.1 model with a conventional demand-
iterations. For example, Z(i+11) is used both in the i-th an

X . ; ; . tch data cache. In this model executions are stalled whe
the (i+1)-th iteration. The same is true for X(i) because the,che misses occur. <Cache-Prefetch> is chosen as a typic
calculation of X(i) is moved into the next iteration. The

model with cache prefetch feature. In this model, a prefetct

global  overlap local  overlap to cache instruction is introduced and memory is pipelined
register  register register register H H . H H
ot 39:4 s nllzg - Izsg 51.@'3.%?; ot Prefet_ch instructions are p.erformed in plpeh.ne and cause n
widows [o_we | |8 afe o o e o stalls in processor operations. The cache is assumed to |
window #G+) [0 vt 7 [ il 20 = fuIIy associative. <Ideal> is a hypothetical processor Whlc_:h
2hoZlarme ‘ is the ideal case of <Original> such that no cache miss
Q . 2Z(i+10 - . .
T T occurs in the processor. The characteristics of thes:
J LA T TR T RER o | e 2GR [[ 7T T processors are summarized in Table 1.
' *R Z(i+9)*T) *Y(i-2))  Z(i+11) +2(i+9)*T) Z(i+11)
C: , ;>r1130) +Q=>r10 F::prz‘a , yv2)+Q 10y 20020 Y0 52 Ben Chmar kS
S i+ reloa T "
g . o i J We have tested these models on several vecto
cs @9+ FRPosisiore guorms computations. In this paper, the evaluation results using
— Z(i+10)*T) X(i-2, U . .
2 U v the Livermore Loop Kernels #1 ~ #14 of 64 bit data are
ey o reported. We have increased the number of iterations it
*Y(i-1] .
N enemo o W :,4_’_____ ____________ order to make the problem size closer to real
A5 Z(i+10)*R ~ ((Z(i+9)*R + ~ FRPreload R (@i+9yR Z(+10)R] . . . e . . .
P30TV 20 200 \ 2+12) engineering/scientific applications. Thergfore, the data Size
IS o 1\ ] e ven becomes much larger than data cache size and conventior
*T . .
g = e v caches contribute little except for block transfers of
“, : :
57 @H10/R+  FRPosisire @10yR + multiple data in a block.
£ Z(i+11)T)  X(i-1) Z(i+11)*T) . .
FUU L L P 5.3. Assumptions for Evaluation
‘: ey ‘ )3&“"“ We have made the following assumptions. These
A8 DR @ia0R s T FRereload e [ 77T @orRs g | assumptions are common to all the processor models unle:
1 =>rl3 Z(i+11)*T)*Y(i))  Z(i+13) Z(i+11)*T) * . .
L +Q=n0 = Yo)Q Y. otherwise specified.
i+12) * reloac Z(i+19 2(* .
gz o l “ - Parallel Instruction Issue:
= PR I\ AR ~ Two instructions are issued in every clock cycle. All
7 226T) X0 Z(‘“;W instructions are divided into three categories and the twc
=>r13 from r30 . . . .
! 1) Re issued instructions must be selected from different
N e Wl y categories. The first category consists of load and stort
V

Figure 4. Register Allocation of Lawrence Livermore
Loop #1 on Register Window



Model Original Cache-Prefetch Proposed Proposed-E Ideal
Architecture PA-RISC 1.1 PA-RISC 1.1 with extended extended PA-RISC 1.1
cache prefetch PA-RISC 1.1 PA-RISC 1.1
Register no change no change register window register window no change
Memory not available pipelined pipelined pipelined no access
Preload / Prefetch not available prefetch to cache preload and preload, poststore, not available
Feature instruction poststore and extended preload
Cache conventional multi-ported and conventional conventional always
fully associative cache hit

Table 1. Summary of Evaluated Processor Model

instructions. Preload and poststore in <Proposed> arithve to be provided to synchronize arithmetic instructions
<Proposed-E>, and prefetch in <Cache-Prefetch> alswith preload instructions because they operate independent|
belong to this category. The second category consists a@hd concurrently. However, this can be done by an eas
floating point arithmetic operations, and the last categorgxtension of already available hardware logic for resolving
consists of branch and integer ALU operations. CFRWPinasual data dependencies.
of <Proposed> and <Proposed-E> belongs to the lastPenalty of Control Dependency:
category. Branch instructions are delayed branches in this
- In Order Instruction Issue: architecture. If a delay slot is filled by an effective
All instructions are issued in order except simultaneoufstruction, then there is no penalty caused by control
issues of allowable two instructions. If an instruction isdependency.
stalled, all the following instructions are interlocked. - Instruction Cache:
- Data Cache: All the required instructions are brought into the
The block size of the data cache is 16B and continuousstruction cache in advance. Warm start is assumed in th
two double-precision floating-point data reside in the samé@struction cache. This assumption is appropriate for the
block. No line conflict (collision) miss is assumed to benchmark because it is a collection of simple loops.
occur. This assumption is equivalent to a fully associativ .
cache. The capacit)F/) of cachgis assumed to bginsufﬁcient%o‘l' Evaluation Methodology
keep all the data. In other words, cold start of data cache is We have optimized the codes for the Livermore Loop
assumed. In <Cache-Prefetch>, data cache is multi-ported.Kernels by hand and estimated the performance by
- Main Memory: simulating the execution in instruction pipeline. Estimated
In <Proposed>, <Proposed-E>, and <Cache-Prefetcherformances are given in FLOPS (floating point
main memory access is pipelined by a single load/storéperations per second). In the optimization, the codes ar
pipeline and one preload/poststore instruction or prefetch tanrolled as many times as possible with the available
cache instruction can be issued every clock cycle. Thiggisters.
feature is implemented, for example, on a pseudo pipelined Optimized codes for different processor models differ
memory with multi-interleaved banks. It is assumed that alffom one another. Only the codes for <ldeal> and
the required data are allocated optimally in main memory sgOriginal> are the same. The code for <Cache-Prefetch> i
as not to cause memory bank conflicts. In <Original>0btained by inserting prefetch instructions into the code for
memory access is not pipelined. The memory access latengjdeal>. Since cache memory has more space than registe!
is altered during the evaluation. This latency includes th@refetch to cache instructions are moved ahead enough so

transfer time between processor and storage control unitot to cause data waiting delays. In the codes for
bank control logic, and error code corrections. <Proposed> and <Proposed-E>, although the codes ar

- Penalty of Data Dependency: scheduled so as not to cause any data dependency, dz

Since in-order issue is guaranteed, only RAW (read aftétaiting delays can still occur if memory access latency is
write) dependency need to be considered. If an instructiol@rger than the@ermitted latency, because preload to register
(instrB) tries to read a source operand which is a result ofigstructions and extended preload instructions cannot b
preceding instruction (instrA), instrB should be issueo_moved _ahead without limitation as is the case for prefetct
several machine cycles later than instrA. If instrA is alnstructions.
floating-point operation, instrB should be issued 5 cycles o5 Evyaluation Results

more later than instrA. If instrA is a usual load instruction, ]
Figure 5 shows the performance (MFLOPS) of each

instrB should be issued 2 cycles or more later than instrA o= )
on a cache hit and 'memory access latency' cycles or moPECCESSOr model on the individual Livermore Loops under

later on a cache miss. If instrA is a prefetch instruction i€ conditions that the clock-rate is 100MHz, 2 instruction

<Cache-Prefetch> or a preload instruction in <Proposed> ¢§SU€ Per cycle, and a memory access latency is 20 cycl

<Proposed-E>, the penalty is the same as a load. kf00NS€c).

<Proposed> or <Proposed-E>, some hardware mechanismsV€ have also evaluated the performance of eact
processor model with different the memory access latencies



Figure 6 shows the relative performance of each modedufficiently high memory/cache throughput. <Proposed>
compared with <ldeal>. Here, the performance reported iand <Proposed-E> are 6.3 times and 6.6 times faster ths
the harmonic mean of Livermore Loop Kernels. Since naOriginal> respectively. Furthermore, they are 1.1 times
cache misses occur in <ldeal>, its performance is nand 1.2 times faster than <Cache-Prefetch> respectively.
influenced by memory access latency at all. The next interesting observation is the performance
Figure 6-(a) shows the performance for Livermore Loopdegradation when memory access latency is increase
#1 ~ #12. These loops are selected because they can foether. As seen from Figure 6-(a), performance of
vectorized in recent vector supercomputers. When memogyOriginal> is very low. In Livermore Loop #1~#12, the
access latency is equal to 0, the relative performance afray element references are not dependent on the run tin
<Cache-Prefetch> is 0.84. This degradation arises becaudata. Therefore, we assume that the compiler can mov
prefetch instructions are inserted and the total cycles requirgaefetch instructions far ahead enough without cache
is increased. The relative performance of <Proposed> ambllution. This is the reason why the performance of
<Proposed-E> is 0.99. In the proposed structure of registetxCache-Prefetch> does not seem to be affected b
window, some registers are shared by multiple windowsincreasing access latency. However, this assumption is nc
Therefore, in these processors, loops are occasionally nptactical. Moving prefetch instructions too early is
unrolled as many times as in the other models. This is theccompanied with the danger of cache pollution. Fully
reason of this slight performance degradation. associative caches are also assumed in this evaluation.
Performance of <Original> decreases seriously whegaches are not fully associative, however, early prefetct
memory access latency is increased. When memory accasay cause line conflicts. In <Proposed> and <Proposed-E>
latency is 20 CPU cycles (200nsec), which is a practicgberformance degrades if memory access latency is large
value if DRAM is used, the relative performance ofthan the permitted latency. However, the relative perfor-
<Original> falls to 0.15. <Cache-Prefetch> is 5.6 timesmance of <Proposed-E> remains at 0.99 when memon
faster than <Original>. This speed-up is due to theccess latency reached 30. <Proposed-E> is superior to tt
pipelined memory, the multi-ported cache and theothers until memory access latency reaches 50.
2007 MFLOPS Clock-rate: 100MHz, 2 instruction / cycle
Memory Access Latency: 20 CPU Cycle (200nsec)

Original
Cache-Prefetch
100 Proposed
Proposed-E

OmROOMm

Ideal

ol 1

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14
Livermore Loop Kernel
Figure 5. Performance on Livermore Loop Kernel

relative performance relative performance
1'0 ------------- x ------------- x -------------- x ------------- x -------------- x

Original 0.8

+

—®— Cache-Prefetch 0.6-
T —O— Proposed 7

—{1—

0.4 0.4
E Proposed-E .
027  Thwa— e X Ideal 0.2
0.0 1 L T LI I 1 0.0 T | I — 1 T 1 — 1
0 10 20 30 40 50 0 10 20 30 40 50
memory access latency (CPU Cycle) memory access latency (CPU Cycle)
(a) Performance for Livermore #1 ~#12 (b) Performance for Livermore #1 ~#14

Figure 6. Relative Performance under Variable Memory Access Latency



Figure 6-(b) shows the relative performance for Ideally, hardware-based prefetch technique may prefetcl
Livermore Loop #1~#14. In this figure, the performanceall the required data into a data cache without extra prefetc
reported is also the harmonic mean. Compared with Figuri@structions. However, cache prefetching techniques still
6-(a), the performance of <Cache-Prefetch> degrades &sve the following disadvantages.
memory access latency increases because the array elemehtlly random accesses are not handled effectively.
references in Livermore #13 and #14 are dependent on thdxtra cache traffic is generated as mentioned in Section 1
run time data and consequently the compiler cannot moveExpensive multi-ported data cache is required.
prefetch instructions ahead enough to cover the memoryUnnecessary data may be fetched into the block in the
access latency. Due to the same reasonpdnenitted cache. Extra cache / memory traffic is generated.
latencies in <Proposed> and <Proposed-E> are rather shortEarly prefetch may cause cache pollution.
in Livermore #13 and #14, which leads to the performance Collision (line conflict) misses may increase unless data
degradations. However, as seen from Figure 6-(b), thecache is fully associative.
degradation rate of <Proposed> and <Proposed-E> is less These problems do not arise in the proposed registe
than that of <Cache-Prefetch>. When the latency is 2@reloading architecture because the requested data a
CPU cycle, <Proposed> and <Proposed-E> are 1.7 timésansferred directly into the specified registers.
ggdcllsfa time‘ls f?stter thart1h<Cache—1PéeI_etch>. Indtgezc?se Pfoposed Processor vs. Vector Processors

cycle latency, they are 1.8 times and 2.2 times ; ;
faster than <Cache-Prefetch> respectively. These resul{ﬁ The performance of the proposed architecture is lowel

L n that of vector processors because of the lesser numb
indicate that the proposed processor can cover the penalW(S’I’élIoad/store and arithmetic pipelines. However, the
memory access very effectively. §

proposed architecture has the following advantages whe

7. Discussions compared with vector processors.
] - In the proposed architecture, the techniqustrgf-mining
7.1. EffF_)CtlveneSS of Proposed is not required because vector registers are not utilized.
Architecture - Whenvirtual memory is supported in vector processors,

As seen from the evaluation results, the proposed dynamicaddresstransiation and the handling of page-fault
architecture extended with preload, register window, and '€ difficult because r_nultlple _data are transferred by severe
pipelined memory realize extremely effective vector Vector load/store instructions concurrently. In the
processing on superscalar processors. Because of this, wBroposed architecture, virtual memory is supported as
called the proposed architecturepasudo vector processor. easily as in ordinary scalar processors. _ .

The proposed architecture may seem equivalent to anSome advantages afhified scalar/vector floating-point

architecture with pipelined memory and non-windowed OPeration proposed in [JBW89] are available.
eighty-eight floating-registers. However, without - List vectors are processed effectively. Traditional vector

sufficiently long register specifier fields in the instructions, Processors cannot handle list vectors efficiently without
such a large number of registers cannot be used. OuEXpensive hardware resources. However, the propose
architecture have overcome this difficulty by adopting the architecture has some possibility for list vector handling.
register windows. The important point is that the physical This will be discussed in section 7.5. _

register space is enlarged in keepipgvard compatibility - The overhea(_j for start-up is relatively Iarge_ in vector
with existing scalar architectures. The proposed architectureProcessors. Since set-up of vector control registers is nc
can make the best possible use of proven schedulingneeded on the proposed architecture, the overhead for sta
techniques such as loop unrolling and software pipelining up is less anng(the half-performance length) [HJ88] is
by using non active (hidden window) registers. shorter than usual vector processors. In the propose

Register Preloading vs. Cache Prefetching architecture, the start-up overhead includes only preload
In Figure 6, the performance of <Cache-Prefetch> for the first execution and initializations of index/base

degrades by the insertion of extra prefetch instructions. €gISters.
However, this problem may be avoided by hardware-based 2. Hardware |mplementation
cache prefetch technique [Smi82a] [Jou90] [BC91].

One block look-ahead policy was described in [Smi82a]
In that policy, upon referencing block i, the only potential
prefetch is of block i+1. The use sffeam buffers which

Additional hardware for register windows includes tens of
floating-point registers, several bits of the PSW, translation
logic to generate a physical register number from CFRWF
provide automatic sequential prefetching was proposed iﬁnd a !oglcal register number in an instruction, and some
[Jou90]. These schemes are limited to continuous dafgtensions of the depe_nde_:ncy managing logic. Th_ese ar

all in space and easily implemented on CPU chip. The

accesses or where there is good program locality. If da X ; o
access patterns differ from that assumed, extra cachecPCK raté is not affected. Compared with traditional vector
gisters, much fewer registers (only one tenth to one

memory traffic is generated. In [BC91], a hardware-base . .
prefetch with prediction was proposed. In this technique undredth) are required to play the same role in the propose

not only continuous data references but also constant Stri&\échltecture. Moreover, the required number of input/output

. . . .
references are handled well. However, random accesses %@rtesrs?:grgre :ggézgegﬁs is almost the same as in ordinan
not handled effectively. P P :



The pipelined memory is implemented using memoryby the third previous pfld and the pipelined pfld instruction
banks and interleaving technique as in ordinary vectodoes not place the data in the data cache on a cache mit
processors. Although implementing a pipelined memory i§his instruction also hides memory access latency.
expensive, a pipelined memory is still cost-effectiveHowever, for a data load, the destination register and thu
because sufficient memory throughput is essential in vect@ource location in the memory are defined in different
processing where caches are not effective. instructions. Therefore the number of the stages in loac

. ipeline strictly affects the object codes. That is, if the
7.3. Compiler Related Issue gupmber of theyload pipeline st!iges is changed, the objec

We have obtained the performance results by hanctodes must also be changed in order to obtain the corre:
compiled codes. To develop an effective compiler is outomputation results. Compared with i860 architecture, out
next goal. architecture includes the usual waiting mechanism for

One direction of efficient compilation is the extension ofrequested data and successfully closes the growing ga

themodulo scheduling on rotating register files proposed in petween processor and memory speed without seriou
[RLTS92]. First, optimized code is generated by softwarehanges in the architecture.

pipelining under the assumption that all the physical% . .
registers are available. Then, the generated code is schedule®- Further Extension to Register
so as to match the register window scheme. Windows
Another direction of compilation is suggested from ourg, ,cture of Register Window
experiences of hand compilation, where codes for the The number of register windows is fixed in the

proposed architecture is obtained as follows. First Opt'mlzedvaluations in this report. The number of global, overlap,

code under windowed register is generated without preloagind local reqisters are also fixed. However. the optimal
instructions. The algorithm of register allocation is the g : ' P

most important in this step. Next, load instructions aretructure of these registers must depend on the nature of tt

changed to preload instructions and moved ahead into tfpsogram to be executed. Therefore, the following extensior

previous iteration. Handling of index registers which addres 210 Worth discussing. Namely, fixed the number of
the data to be preloaded is the most important point in thiaySical registers but allow the compiler to arbitrarily form
step the logical structure of registers within the physical register

space. The number of global, overlap, and local registers i
7.4. Related Works changeable under the constraint that the number of tote

The idea of register windows is not new [Sit79] [Lamg2]'€gisters in one window is fixed. To implement this
and has been already introduced in RISC-I [PS81] and tHextension, each compiled code must reflect what logica
SPARC processor [Sun89]. Our purpose andedister structure is assumed in the compilation.
implementation is entirely different from these. We haveEffective Handling of List Vector
introduced the register windows for the purpose of The access of thist vector A(B(i)) is basically an
increasing the number of registers and reducing the penalfiidirect addressing of vectors. If the value of B(i) is
of memory access. The register window does not play thgvailable before the access of A(B(i)), there is no problem
role of a stack in our architecture. Therefore, in ourrherefore, a mechanism of the advanced fetch of B(i) is
architecture, window overflow/underflow interrupt is not necessary. This is enabled by introduciegister windows
required when window circulation occurs. into general registers.

A unified approach to vector and scalar computation was Figure 7 illustrates the principle of list vector handling.
proposed in [JBW89] and adopted as the floating-poinsuppose the CFRWP is 'j' in the i-th iteration and the
architecture in MultiTitan [JDBN88]. Their purpose is execution in the i-th iteration is "A(B(i)) = A(B(i)) +
similar to ours. However, we did not introduce vectorconst.". This kind of execution are effectively handled in the
instructions or vector registers, and therefore, oufollowing way. When CFRWP is 'j', the calculated A(B(i-
architecture can be upward compatible with existingl)) is poststored from the previous floating-point register
load/store scalar architectures. window ‘j-1'. Ordinary floating operations use the active

Decoupled architecture [Smi82b] was also proposed fofioating-point register window j'. A(B(i+1)) is preloaded
the purpose of reducing the penalty of off-chip memoryinto the next floating-register register window 'j+1', and the
access. Its performance evaluation is described in [SWP86jointer (indirect address) of B(i+2) is preloaded into the next
The difference between the decoupled architecture and ot the nexteneral register window ‘j+2'. As a result, B(i)
register windows architecture is that the former transfergjas preloaded into the general register window j' in the (i-
data into a queue whereas the latter transfers the requestgdh iteration at first. Next, A(B(i)) was preloaded into the
data directly into the specified register of the hidderfipating-point register window 'j' in the (i-1)-th iteration.
window. Thus, the decoupled architecture requires addition@{(B(i)) is calculated in the i-th iteration. Finally the
load/move instructions for data transfers between the que@iculated A(B(i)) is poststored from the floating-point
and registers. _ _ _ _ register window j' in the (i+1)-th iteration. The key point

A pipelined floating-point load instruction (pfld) was in this scheme is that the preload of A(B(i)) and the

introduced in i860 processor [Int89]. The load pipeline hagoststore of A(B(i)) can utilize the value of B(i) as indirect
three stages. A pfld returns the data from the address referred



address which was already preloaded into the general registdew90] Hewlett-Packard Company, "PA-RISC 1.1 Architecture
window ', and Instruction Set Reference Manual", Manual Part Number
09740-90039, 1990

change of change of change of change of change of

active window  active window  active window active window active window [H"Z\%S] R|;|\',|V.H0c::|_k9nSeSy’ C.R.Jesshope, "Parallel CompUterS 2",
am Hilger,
\ % W ac“ve}“"”df)w ac“"j'iﬂ”d"w [Int89] Intel Corp., "i860 64-Bit Microprocessor Programmer's
) . . . . . Reference Manual", ISBN 1-55523-080-6, 1989
o e [Jou90] N.P.Jouppi, "Improving Direct-Mapped Cache
space |window | by | : : : Performance by the Addition of a Small Fully-Associative
i I—l preload Cache and Prefetch Buffers”, Proc. 17th Intl Symp. on
e L IR : Computer Architecture, pp364-373, 1990
window ! ; {_ofB(+2) | ; [JBW89] N.P.Jouppi, J.Bertoni, and D.W.Wall, "A Unified
jt2 : : : : Vector/Scalar Floating-Point Architecture”, Proc. 3rd Int'l
reoad aoulaton osstore Conf. on Architectural Support for Programming Languages
foating: A window]_* (ABHD) II of A(B(i-1)) i of AB(-1)) II : . Sg ,\108p8e]ra’\’[llrll:EJJSyste_ms‘J (S_SPL%SL;)III), ppli-’;é‘;j-1,\4/|3:J }(9'2319 |
it o ; ; — : .P.Jouppi, J.Dion, D.Boggs, an .J.K.Nielsen,
r(?gister W:ndowl 1 cﬂril(césa(%) i Coafli\u(lsazf)n L g?it(sé?i;? i "MultiTitan: Four Architecture Papers”, Tech. Rept. 87/8,
space i ! I p— Digital Equipment Corporation Western Research Lab, 1988
window | : { OfAB(+1) jof AB(+1) § [KL91] A.C.Klaiber, H.M.Levy, "An Architecture for Software-
i ; oo | Controlled Data Prefetching”, Proc. 18th Intl Symp. on
WJ-'T’SWE fofA®(+2) § . Computer Architecture, pp.43-53, 1991
e Tt g (Pt i Hth i (i41)-th ! [Kro81] D.Kroft, "Lockup-Free Instruction Fetch/Prefetch
ferson y Ry TEEAT -y feon Cache Organization”, Proc. 8th Intl Symp. on Computer

Architecture, pp81-87, 1981
[Lam82] B.W.Lampson, "Fast Procedure Calls", Proc. 1st Int'l
Conf. on Architectural Support for Programming Languages
: and Operating Systems (ASPLOS-I), pp66-75, 1982
8. Conclusions [Moy91] S.M.Moyer, "Performance of the iPSC/860 Node
We have presented and discussed a new architecture foRArchitecture”, Tech. Rept. IPC-TR-91-007, University of
high-speedpseudo vector processing with a superscalar ~ Virginia, 1991
processor. The proposed architecture is able to minimize tf#@S81] D.A.Patterson and C.H.Sequin, "RISC I: A Reduced
penalty of memory access by introduciregister window '(;‘g:;‘;ﬁtt'g:‘ As;gtm\éttsu'rgogapﬁg’:{;rolcéﬁth Intl Symp. on
mg%gsg:jﬁgrmmg&ﬁ?én%O?Sg&apreél rl%dmprggrgi(l)irg/. inrt]ﬁ [RLTS92] B.R.Rau, M.Lee, P.P.Tirumalai, and M.S.Schlansker,
o . o . "Register Allocation for Software Pipelined Loops", Proc.
existing scalar architectures. This is one of the outstanding

- - X ACM SIGPLAN '92 Conf. on Programming Language Design
points of this work. The performance evaluation shows that 504 jmplemenation, pp283-299, 1992

this architecture hides the penalty of memory access wefkit79] R.L.Sites, "How to use 1000 registers", Caltech Conf.
The performance of the proposed architecture is over 6 on VLSI, 1979

times higher than the original PA-RISC 1.1 ArchitecturgSmi82a] A.J.Smith, "Cache Memories", ACM Computing
and 1.2 times higher than the hypothetical extended modelSurveys, Vol.14, No.3, pp473-530, 1982

with cache prefetching technique when the penalty ofSmi82b] J.E.Smith, "Decoupled Access/Execute Computer
memory access is 20 CPU clock cycles. We also describegArchitecture”, Proc. 9th Int'l Symp. on Computer

xtension ffectively man list v rs. Architecture, pp.112-119, 1982
extensions to effectively manage list vectors [SW90] M.L.Simmons and H.J.Wasserman, "Performance

Acknowledgements Evaluation of the IBM RISC System/6000: Comparison of an

We appreciate the valuable comments of Prof. E.Goto at Optimized Scalar Processor with Two Vector Processors",
Kanagawa Univ., Prof. Y.Oyanagi at Univ. of Tokyo, and Proc. Supercomputing '90, pp132-141, 1990 _ _
Prof. I.Nakata and Prof. T.Boku at Univ. of Tsukuba. wdSWP86] J.E.Smith, S.Weiss, and N.Y.Pang, "A Simulation
would like to thank all the members of the GNOH group Study of Decoupled Architecture Computers”, IEEE Trans. on
and the CP-PACS group for the many fruitful discussion computers, Vol.C-35, No,8, pp.692-702, 1986

. . SF91] G.S.Sohi and M Franklin, "High-Bandwidth Data
Finally, many thanks go to W.F.Wong for his helpful Memory Systems for Superscalar Processors", Proc. 4th Int'

comments and careful revision of the manuscript. Conf. on Architectural Support for Programming Languages
References ad Operating Systems (ASPLOS-1V), pp53-62, 1991
[BC91] J.L.Baer and T.F.Chen, "An Effective On-Chip [Sun89] Sun Microsystems, "The SPARC Architectural Manual,
Preloading Scheme To Reduce Data Access Penalty”, Proc,Version 8", Part No. 800-1399-09, 1989 }
Supercomputing '91, pp176-186, 1991 [Z0r92] G.Zorpette, "Technology 1992: Large Computers”,
[CP90] D.Callahan and A. Porterfield, "Data Cache Performance |EEE Spectrum, Vol.29, No.1, pp33-35, 1992
of Supercomputer Applications"”, Proc. Supercomputing '90,
pp564-572, 1990
[HJ91] J.L.Hennessy and N.P.Jouppi, "Computer Technology
and Architecture: An Evolving Interaction”, IEEE Computer,
Vol.24, No,9, ppl8-29, 1991

time

Figure 7. Principle of List Vector Handling



