
PVM on the RHODOS
Distributed Operating System

J. Rough, A. Goscinski, D. De Paoli

{ruffy, ang, ddp}@deakin.edu.au

School of Computing and Mathematics
Deakin University

Geelong, Victoria, 3217

Abstract

This report describes the design and implementation of a syntax-compatible version
of the PVM parallel processing tool for the RHODOS distributed operating system. The
implementation of the Unix version of the tool is examined in detail, and the design of the tool
for RHODOS is presented with a discussion of issues raised by the introduction of a
distributed operating system.

PVM on the RHODOS Distributed Operating System

Page ii

Contents

1 Introduction. 1

2 The Structure of PVM. 2

3 PVM on Unix . 4
3.1 Task Management . 4
3.2 Interprocess Communication . 5

3.2.1 Message Passing . 5
3.2.2 Buffer Management . 7
3.2.3 Group Communication. 8

3.3 The Task Identification Number . 9
3.4 Event Notification . 10

4 PVM on RHODOS . 10
4.1 Task Management . 10
4.2 Interprocess Communication . 12

4.2.1 Message Passing . 12
4.2.2 Buffer Management . 13
4.2.3 Group Communication. 13

4.3 The Task Identification Number . 14
4.4 Event Notification . 16

5 Implementation and Testing . 16

6 Conclusions. 17

7 Bibliography . 18

PVM on the RHODOS Distributed Operating System

Page 1

1 Introduction

Parallel Virtual Machine (PVM) is a programming tool for parallel processing that
executes on a (possibly heterogeneous) network of workstations running Unix and presents an
unified virtual machine to the programmer. PVM was developed under the Heterogeneous
Network Computing research project which is a joint venture between Oak Ridge National
Laboratory, the University of Tennesse, Emory University, and Carnegie Mellon University
[Geist et al 1994]. PVM has been implemented on various architectures including Sun
workstations, IBM PCs, Macintoshes, Intel Hypercubes, and Cray supercomputers
[PVM 1996].

PVM provides transparent local and remote interprocess communication (message
passing), and “task” management. Messages under PVM are strongly typed and data
conversion between incompatible architectures is automatic. Tasks are defined as “the unit of
parallelism in PVM” and “often but not always a Unix process”. In the case of PVM programs
written in the C language, a task is always a process. Process groups are also implemented with
group send, barrier synchronisation and global reduce operations. Global reduce operations
involve the application of non-associative mathematical operations to user-specified data sets
across an entire process group. The final result of the operation is stored in the data structure of
one of the tasks in the group (specified by the user). PVM supplies four such mathematical
operations: global maximum, minimum, sum, and product [Geist et al 1994].

The Unix operating system provides a complicated interface to interprocess
communication (sockets), and provides only two protocols in TCP and UDP. In terms of
interprocess communication for parallel processing, TCP does not scale very well (there is too
much overhead from maintaining connections between every pair of communicating
processes) and UDP would require the implementation of a guaranteed delivery service by the
user in order to be useful. PVM counters this by using TCP connections to a local server
reducing the impact of connection maintenance to only one connection per process, without
adding the overhead of guaranteeing delivery. The UDP protocol is then used for
communication between each of the servers, with the servers providing a guaranteed delivery
service. The provision of these features has enabled PVM to gain popularity among research
institutions that cannot afford the funds for the purchase of traditional massively parallel
computers.

The ResearcH Oriented Distributed Operating System (RHODOS) is a modern
distributed operating system composed of a microkernel and kernel servers supported by the
client-server model. RHODOS provides transparent interprocess communication and process
management as does PVM, but at the operating system level. Porting PVM to RHODOS
would allow the majority of Unix PVM’s functionality to be replaced with operating system
mechanisms, thus affording increases in efficiency and speed.

The major issues that are faced by moving PVM to RHODOS are the heterogeneous
nature of the Unix systems supported by PVM versus the homogeneity of RHODOS;
differences in interprocess communication architecture; and differences in process
management.

The introduction of PVM to the RHODOS operating system will provide a
recognisable set of interprocess communication primitives on the RHODOS system to any
programmer that is familiar with PVM but is new to the RHODOS operating system. Existing

PVM on the RHODOS Distributed Operating System

Page 2

PVM programs will be able to be compiled for the RHODOS system without modification,
thus expanding the range of software that is available for testing and measuring performance.
PVM programs will also benefit from the addition of features of the distributed operating
system such as transparent dynamic load balancing.

This report outlines the design, implementation and testing of the PVM tool for the
RHODOS operating system. A discussion of the structure of the Unix PVM environment and
the effects the RHODOS environment has on the structure is presented in Section 2. A review
of the major features of the PVM package is presented in Section 3. The design of the PVM
tool for the RHODOS operating system is described in Section 4. Section 5 presents a
discussion of the implementation and testing carried out on the RHODOS version of PVM.
Section 6 concludes this report.

2 The Structure of PVM

The PVM package is composed of two parts: a server that contains the mechanisms
required for PVM functionality, and a programming library that provides the programmer with
an interface to the server. A ‘console’ program is also included in the package that allows the
user to manipulate the virtual machine through a command prompt interface [Geist et al 1994].
Any commands entered at this command prompt are mapped directly to standard PVM
primitives, hence this is only a utility.

A server is run on each workstation that is part of the virtual machine. The servers
cooperate to provide an abstract view of the network of workstations to the user in the form of
a unified virtual machine (Figure 1), with each server responsible for the support of the PVM
tasks running on the same workstation (Figure 2). This support involves the transparent routing
of messages to a destination process’ local server, manipulation of the tasks’ message queues,
and process management. The servers also function as a trusted entity for authentication and
supply fault detection (in the form of event notification) for building fault tolerant applications
[Manchek 1994].

t1

t3

t2

t6

t4

Figure 1: Programmer View of PVM Task Interaction

Unified Virtual Machine

PVM Messages

PVM Task

PVM on the RHODOS Distributed Operating System

Page 3

The first server is manually started by the user, and is known as the master server. The
master server in addition to the responsibilities of a slave server also coordinates the addition
or removal of workstations to and from the virtual machine. Any requests to manipulate the
virtual machine that are received by slave servers are immediately forwarded to the master
server for processing [Manchek 1994].

Distributed Operating Systems by their very nature provide a virtual machine,
presenting a unified processing environment, instead of a collection of individual workstations
connected by a communication subsystem [Goscinski 1991]. For the RHODOS distributed
operating system, this has involved the provision of transparency between local and remote
operations for interprocess communication [Goscinski et al 1994] and process management
[De Paoli et al 1995].

The provision of transparent local and remote interprocess communication and
process management by the RHODOS operating system means that it is no longer necessary
for the PVM server to provide this functionality. The elimination of this functionality reduces
the requirements of the PVM server, so that it now only needs to provide a trusted entity for
authentication, and to provide event notification.

The first of these requirements, to provide authentication, can also be eliminated if we
examine the semantics of the RHODOS interprocess communication facility. The RHODOS
receive operation provides a description of the IPC port where a message was sent, and from
this description the owner of that port can be determined. RHODOS also includes support for
user authentication ([Wang and Goscinski 1992a] and [Wang and Goscinski 1992b]), hence
the owner’s name obtained from the description of the sending port can be trusted to
authenticate other PVM tasks. The last requirement, to provide event notification, will be
addressed in Section 4.4, and is also eliminated.

In summary, the requirements of the server were to provide transparent local and
remote interprocess communication and task management, a trusted entity for authentication,
and event notification. Each of these requirements has been fulfilled by using functionality

PVMD

t1

t3

PVMD

t2

t6

PVMD

t4

Figure 2: Architecture of PVM on Unix

UDP Datagrams

TCP Connections

Workstation A Workstation B

Workstation C

PVM Task PVM Server

PVM on the RHODOS Distributed Operating System

Page 4

already provided by the RHODOS operating system, thus the server can be safely removed
from the model.

The removal of the server from the PVM model provides additional benefits. Under
the Unix PVM, each task depends on the local server for all interaction with other tasks. If the
server crashes, the tasks do not have the ability to continue running. With the tasks now
communicating directly with each other (Figure 3) this dependency has been removed. This is
extended further by the fact that a slave server shuts down when contact is lost with the master
server, first terminating all the tasks under its control. This can not longer happen. Thus the
reliability of the tasks running under the RHODOS PVM model has been improved. The
elimination of the server from the communications model should also decrease the time it
takes to send a message from one task to another.

3 PVM on Unix

The major issues that need to be addressed in order to implement PVM on RHODOS
are: task management, interprocess communication, task identification, and fault tolerance. It
is the goal of this section to present a review of how these issues have been addressed in the
Unix version of PVM, so that a functionally equivalent design for RHODOS can be
determined.

The design of task management in the Unix PVM is the subject of Section 3.1. A
review of the design of interprocess communication in the Unix PVM is presented in
Section 3.2. The model used for identifying tasks for task management and interprocess
communication is presented in Section 3.3. Finally, the support PVM has for fault tolerant
applications is presented in Section 3.4.

3.1 Task Management

PVM provides transparent local and remote task creation (thepvm_spawn() primitive)
and termination (thepvm_kill() primitive) mechanisms for the management of tasks. For task
creation, the user also has the option of specifying either a particular architecture or a

t1

t3

t2

t6

t4

Figure 3: Architecture of PVM on RHODOS

Workstation A Workstation B

Workstation C

PVM Task

PVM on the RHODOS Distributed Operating System

Page 5

particular workstation as the target for the new task. The task creation and termination
primitives are implemented by forwarding the creation or termination request to the server that
is local to the target workstation/task which then carries out the requested operation. Primitives
are also provided for signalling the termination of a task (pvm_exit()) and for determining
which workstation a particular task is located upon (pvm_tidtohost()).

The selection of a target workstation for task creation is the responsibility of the
server that is local to the task that requested the operation. The following algorithm is used to
select a target workstation [Sunderam 1990]:

(1) a list of candidate workstations is computed;
(2) the next workstation in the pool is selected in a round-robin manner;
(3) a measurement of the load is obtained from the selected workstation;
(4) if the load measurement is below a specific threshold, then the selected workstation is

deemed to be the target workstation;
(5) otherwise, the algorithm is repeated from (2).

If none of the workstations in the list of candidates has a load measurement below the
threshold, then the workstation with the overall lowest value is deemed to be the target
workstation.

Once a target workstation has been selected, a message is dispatched to that
workstation to request the creation of the new task. The target workstation attempts to create
the task, and returns a message to the caller indicating the success or failure of the operation.
Task termination is achieved by sending the task to be terminated the Unix SIGTERM signal
using thepvm_sendsig() primitive (discussed in Section 3.4).

3.2 Interprocess Communication

Interprocess communication forms an essential part of any parallel processing task.
PVM provides the user with message passing for the transmission of PVM managed buffers, as
well as support for group communication. A detailed review of these features of the Unix
version of PVM is the subject of this Section, in order to allow the design for the RHODOS
version to be determined (see Section 4.2).

3.2.1 Message Passing

On the first call to a PVM library function, any state information in the library is
initialised and a TCP connection (using Unix domain sockets) is opened to the PVM server.
This connection is used for all communication between the PVM task and the server including
control messages (such as modification of the virtual machine) and messages for transmission
to other tasks. Any messages that are sent to a task that has not yet registered itself with the
PVM server are buffered by the server in order to prevent the loss of any messages. The
servers communicate with each other using UDP datagrams. These datagrams are used for
forwarding any messages between servers [Manchek 1994].

The TCP and UDP protocols were selected because of their wide availability. The
TCP protocol is used for task-server communication because using UDP (unreliable quality of
service) would require the task to be interrupted periodically to manage the re-transmission or
acknowledgement of packets and also the splitting and reconstruction of messages into
packets. The use of UDP would also require additional coding by the programmer using PVM

PVM on the RHODOS Distributed Operating System

Page 6

to handle any interruptions that may occur. The UDP protocol was selected for communication
between servers in order to eliminate the overhead of TCP connection maintenance and the
requirement of a file descriptor for each connection, thus improving scalability
[Manchek 1994].

Two paths are available for communicating between tasks. The first of these is known
asPvmRouteDefault. The task transmits the message to its local server (via TCP) that forwards
the message via UDP to the server local to the destination task. The server that is local to the
destination task then places the message on the task’s message queue [Manchek 1994].

The second path known asPvmRouteDirect involves the establishment of a TCP
connection directly between the source and destination tasks, followed by the transmission of
the message across that connection. The TCP connection is established by the source task first
sending a connection request message to the destination task through the default message route
discussed above. The destination task creates a TCP port if the direct connection is to be
allowed, and returns a positive or negative acknowledgement indicating whether or not the
connection is allowed. The source task upon receiving a positive acknowledgement connects
to the new TCP port and sends the message, or upon receiving a negative acknowledgement
returns an error message indicating the denial of direct routing [Manchek 1994].

Each message that is transmitted using PVM is first encapsulated by a 16 byte header.
This header contains the tag that was placed on the message, the type of encoding used on the
data in the message, a “wait context ID” (used internally by servers to determine any tasks
waiting for the completion of an operation), and 4 bytes that are reserved for future use as a
checksum [Manchek 1994].

Messages transmitted between a task and a server are encapsulated by another 16 byte
header which is required because of the way the TCP protocol treats any transmitted data (as a
continuous stream). This header is composed of the destination TID (see Section 3.3), the
source TID, the length of the packet, and flags for indicating the start and/or end of a message
[Manchek 1994].

The UDP protocol limits the size of a packet, and thus the fragmentation and
reconstruction of messages has been implemented to allow messages of any size to be
transmitted. For this feature and to provide a reliable delivery service, a header was required
for communication between servers. This header is composed of the destination TID, the
source TID, the sequence number of the packet, the number of the packet being acknowledged
(if the packet is an acknowledgement message), and flags to indicate whether the packet is an
acknowledgement, a server is shutting down, there is data contained within the packet, the
packet is the start of a message, and the packet is the end of a message [Manchek 1994].

The message passing primitives that are provided to the user are an asynchronous
blocking send (thepvm_send() primitive) and receive (thepvm_recv() primitive), a
non-blocking receive (thepvm_nrecv() primitive) and a receive with timeout (thepvm_trecv()
primitive). The pvm_probe() primitive has also been made available for checking for the
arrival of a message, along with primitives for multicasting a message to several destinations
(pvm_mcast()), and combined pack and send (pvm_psend()) and receive and unpack primitives
(pvm_precv()) [Geist et al 1994].

PVM on the RHODOS Distributed Operating System

Page 7

3.2.2 Buffer Management

Message passing is provided through the use of PVM managed buffers. Two buffers
are automatically created during initialisation: the default send buffer, and the default receive
buffer. Data is ‘packed’ in to the default send buffer in order to construct a message for
transmission. The default receive buffer is used to store the message that is retrieved with a call
to a receive primitive. The message content can then be ‘unpacked’ from this buffer
[Geist et al 1994].

The default send buffer must first be initialised using thepvm_initsend() primitive
before any data can be packed in to it. This operation clears any data that may already be stored
in the buffer and also sets the type of encoding that will be performed on data that is stored in
the buffer. Three methods of encoding are provided:

(1) PvmDataDefault - this method of encoding uses Sun Microsystems’ External Data
Representation (XDR) standard [Sun 1987] which allows data to be transmitted correctly
between tasks that are executing on heterogeneous architectures;

(2) PvmDataRaw - with this setting no encoding is performed on the data and hence should
only be used for communication across homogeneous architectures (this is not enforced
though);

(3) andPvmDataInPlace - this encoding is the same asPvmDataRaw except that instead of
copying the data into the buffer only the location of the data is stored, and then the data is
read directly from the user’s buffer during the send operation. This has not yet been
implemented in the Unix version (as of v3.3.11) [Geist et al 1994] and [PVM 1996].

Unlike the default send buffer, the default receive buffer is automatically reset to empty each
time a call is made to a receive operation [Geist et al 1994].

The pvm_pkbyte(), pvm_pkcplx(), pvm_pkdcplx(), pvm_pkdouble(), pvm_pkfloat(),
pvm_pkint(), pvm_pkuint(), pvm_pkulong(), pvm_pklong(), andpvm_pkshort() primitives are
provided for packing an array of variables of their associated type in to the default send buffer.
Additional primitives have been provided for packing null terminated strings (thepvm_pkstr()
primitive) and for packing data in to the default send buffer using a printf-like format (the
pvm_packf() primitive) [Geist et al 1994].

Similarly, the pvm_upkbyte(), pvm_upkcplx(), pvm_upkdcplx(), pvm_upkdouble(),
pvm_upkfloat(), pvm_upkint(), pvm_upkuint(), pvm_upkulong(), pvm_upklong(), and
pvm_upkshort() primitives are provided for unpacking an array of variables of their associated
type from the default receive buffer. Additional primitives have been provided for unpacking
null terminated strings (thepvm_upkstr() primitive) and for unpacking data from the default
receive buffer using a scanf-like format (thepvm_unpackf() primitive) [Geist et al 1994].

PVM buffers are identified by a number that is unique to each particular buffer. They
can be manipulated by using thepvm_mkbuf() primitive for creating buffers,pvm_freebuf()
primitive for deleting buffers,pvm_getsbuf() and pvm_setsbuf() primitives for getting and
setting default send buffer respectively,pvm_getrbuf() andpvm_setrbuf() primitives for getting
and setting the default receive buffer, and thepvm_bufinfo() primitive for obtaining the
statistics (message size, tag, and source task) on a particular buffer [Geist et al 1994].

PVM on the RHODOS Distributed Operating System

Page 8

3.2.3 Group Communication

For some parallel processing applications, it is more natural to think of the tasks that
are being used for the application as a group of tasks, instead of individual tasks. There are also
tasks where it is more appropriate to refer to the tasks used for the application as a number
between0 andp - 1 (wherep is the number of tasks involved in the application). For these
reasons, PVM provides the user with process groups and group communication facilities.

Groups within PVM are identified by a null terminated string. Any task can join or
leave a group at any time without having to inform the other members of the group. There is no
limit imposed on the number of tasks that may be in a group, nor is there a limit on the number
of groups that a task may be a member of. Upon joining a group, a task is allocated an instance
number for that particular group. The instance numbers are allocated from zero for the first
task enrolled in the group, and count up. The instance number a task has been allocated which
will not change during the period of membership. However if the task were to leave and then
re-join the group, there is no guarantee that the same instance number will be allocated
[Geist et al 1994].

The mechanisms for task groups have been built on top of the core PVM primitives
and are supported by the addition of another server known as the “group server”. The group
server is responsible for:

(1) managing the list of tasks in each group, ensuring that no task is enrolled in a group
twice;

(2) coordinating thepvm_barrier()operation;
(3) mapping anypvm_bcast() calls to the appropriatepvm_mcast() call (Section 3.2.1);
(4) the selection of coordinators for thepvm_reduce() operation.

The primitives that are provided for group management are for joining a group
(pvm_joingroup()), leaving a group (pvm_lvgroup()), finding out how many tasks are
registered in the group (pvm_gsize()), to match a TID and group name pair to that task’s
instance number (pvm_getinst()), and to match an instance number and group name pair to that
tasks TID (pvm_tid()). Each of these operations is performed by the group server. Groups are
created automatically upon the first call to thepvm_joingroup() primitive with a new group
name. The data entries for a group are not destroyed by the server after the last task has left the
group, but the first task to enrol in the group would receive an instance number of zero, and
thus it will be functionally equivalent to a newly created group.

For group based communication, PVM provides a send operation (thepvm_bcast()
primitive) that is mapped to thepvm_mcast() multicast send primitive, barrier synchronisation
(thepvm_barrier() primitive), and a reduce operation (thepvm_reduce() primitive) with built-
in support for global minimum, maximum, sum and product operations and also user-defined
operations. The group send operation has been implemented by requesting a list of TIDs of the
tasks that are in the group, and then using this list as the list of TIDs parameter of the
pvm_mcast() primitive (see Section 3.2.1) to multicast the message to those tasks.

The barrier synchronisation operation is coordinated by the group server. Upon
receipt of thepvm_barrier() call, the tasks send a message to the group server specifying the
count of tasks that are to participate in the barrier. If the call is the start of a new barrier, the
task count for the barrier is stored with the other group details, the calling task’s TID is added

PVM on the RHODOS Distributed Operating System

Page 9

to a queue of tasks waiting on the barrier, and the group server returns to waiting for messages
to arrive. The calling task then calls a blocking receive to wait for the server to return a
message indicating that the barrier has cleared. If it is not a new barrier, the count is checked
against the count the barrier was initialised with (they must be equal or an error is returned),
and the calling task’s TID is added to the queue of tasks waiting on the barrier. Once the
number of tasks in the queue waiting for the barrier is equal to the required count, the barrier
count is cleared and a message is sent to each of the tasks waiting for the barrier to allow them
to continue.

The reduce operation is used for the application of a non-associative mathematical
function to sets of data spread across each of the tasks in the group, with the result placed in
the memory of the “root task” (specified by the user). The operation is performed by the tasks
themselves, with coordination provided by the group server. The group server selects a task on
each workstation with group members to act as a coordinator for the reduce operation. The
coordinators are responsible for the collection of data from the other group members on the
workstation, applying the reduce operation on the data, and sending summary information to
the root task.

The reduce operation is implemented by the calling tasks first requesting from the
group server the coordinator for this workstation, the number of tasks on the current
workstation (if the calling task is to be the coordinator for this workstation), and the number of
workstations in the virtual machine that currently have tasks that are group members (if the
calling tasks is the root task). If a task is a coordinating task, it first receives the data from the
other tasks in the group on the workstation and applies the specified mathematical function to
the data as it is received. Once all the data from other tasks on the workstation has been
received and processed, the result is sent to the root task. The root task may or may not be a
coordinator for the workstation it is located upon, and if so first receives and processes the data
from the other tasks in the group on the workstation. The root task then receives the rest of the
data from the other coordinator tasks, again applying the reduce operation to the data as it
arrives.

Section 5.7 of [Geist et al 1994] claims that thepvm_reduce() operation is a
non-blocking call. However it can be seen that in the case of the tasks that are deemed to be
“coordinators” or the “root” task, the tasks must block until all the data has been received from
all the other tasks/coordinators. Thus thepvm_reduce() call is not always a non-blocking call.

3.3 The Task Identification Number

PVM tasks are identified by a 32-bit integer known as the task identification number
(TID). The TID identifies tasks as targets for task management and as a communication end
point [Geist et al 1994]. The TID is composed of a one bit flag to indicate whether a server is
being addressed; a one bit flag to indicate whether a group is being addressed; a 12-bit serial
number to indicate the location (workstation) of a task or where a group is being maintained;
and the remaining 18-bits are used by the individual PVM servers to identify individual tasks
or groups under their control.

The PVM server is responsible for the allocation of TIDs to new tasks during the
process creation operation, and the mapping of TIDs to processes during process management
operations, and to a task’s PVM communications socket during communication operations
[Manchek 1994].

PVM on the RHODOS Distributed Operating System

Page 10

3.4 Event Notification

PVM tasks using thepvm_notify() primitive are able to request the notification of the
addition of workstations to the virtual machine, the removal of a specific workstation(s) from
the virtual machine, or the termination of a specific task(s). This notification mechanism is
provided by the PVM servers. After the addition of a workstation to the virtual machine, a
message is sent to the PVM servers to inform them of the change. Any tasks that have
requested the notification of an addition to the virtual machine are then sent a message
indicating the TIDs of the new server. The notification of the removal of a workstation from
the virtual machine is performed both when the server receives a message indicating that a
server is shutting down, and when contact is lost with the server. The notification of the exiting
of a task is accomplished by forwarding the notification request to the server local to the task
that is to be monitored. A notification message is also sent by the server local to the requesting
task if the remote server has been forcefully removed from the virtual machine after the master
server had lost contact with it.

PVM also provides thepvm_sendsig() primitive which allows for the sending of
signals (Unix signals) to other tasks. This has been achieved by requesting the server local to
the target task to send the specified signal.

4 PVM on RHODOS

This section presents the design of the PVM tool for the RHODOS distributed
operating system. The layout of this section is the same as for Section 3 (PVM on Unix), in
order to allow the reader to easily relate back to the design of the Unix version.

The design of task management for the RHODOS PVM is presented in Section 4.1.
The design of PVM interprocess communication for RHODOS is presented in Section 4.2. The
new model for identifying tasks in RHODOS is presented in Section 4.3. Finally, the design of
PVM fault detection mechanisms for the RHODOS system is presented in Section 4.4.

4.1 Task Management

The RHODOS operating system supplies transparent process creation and termination
supported by a Global Scheduler employing static allocation (supported by remote process
creation [Hobbs and Goscinski 1996]) and dynamic load balancing (supported by process
migration [De Paoli and Goscinski 1997]) [Hobbs 1995].

RHODOS provides theprocess_create() primitive for creating processes from
a program stored on disk, and theprocess_twin() primitive for duplicating a process already
executing. Process termination can be accomplished by the process itself by using the
process_exit() primitive (functionally equivalent to the traditional C languageexit() primitive),
or can be forcefully terminated by another process using theprocess_kill() primitive
[Hobbs and Goscinski 1996].

PVM provides transparent task creation and termination to the user, and uses static
allocation for load balancing (Section 3.1). This functionality is already a feature of the
RHODOS operating system, hence there is no need for any additional functionality to be
introduced. Only a simple mapping of the parameters of the PVM primitives to the equivalent
parameters for the RHODOS primitives will be required.

PVM on the RHODOS Distributed Operating System

Page 11

The PVMpvm_spawn() (Block 2) primitive requires six parameters:

• file - the location of the program on disk to be run;
• argv - the command line arguments to be passed to the new child processes;
• flags - for specifying a specific workstation or architecture for the new process, to start the

process using a debugger, to make the child process output trace information, to start the
process on a massively parallel computer front end, or to use the complement of group of
candidate workstations (see Section 3.1);

• where - used to specify the workstation or architecture used inflags;
• count- the number of instances of the process that should be created;
• and tids - a pointer to an array of integers to be populated with the task identification

numbers of the new tasks.

The RHODOSprocess_create() (Block 2) primitive requires five parameters:

• proc_name - the location of the program on disk to be run;
• proc_num - the number of instances of the process that should be created;
• proc_snames - a pointer to an array of SNames (discussed in Section 4.2.3) to be populated

with the process SNames of the new child processes;
• proc_arg - the command line arguments to be passed to the new child processes;
• andproc_env - the environment for the child processes.

It can be seen that thepvm_spawn parametersfile, argv, andcount map directly to the
proc_name, proc_arg, andproc_num parameters. The requirements of theflags parameter is
reduced because in RHODOS there is no addressing of individual workstations, there are only
homogeneous architectures, and there are no massively parallel computers. This reduces the

int pvm_spawn(
char *file,
char **argv,
int flags,
char *where,
int count,
int *tids

);

Block 1: The PVM pvm_spawn() primitive

int32_t process_create(
uint8_t *proc_name,
int32_t proc_num,
SNAME proc_snames[],
uint8_t *proc_arg[],
uint8_t *proc_env[]

);

Block 2: The RHODOSprocess_create() primitive

PVM on the RHODOS Distributed Operating System

Page 12

flags parameter to starting the process using a debugger, and having the child process output
trace information, also eliminating the requirement of thewhere parameter. Due to RHODOS’
relative youth, no debugging tools are available. This leaves the tracing flag, which can be
passed to the child process as additional configuration information (see Section 4.3).

The tids parameter cannot be mapped directly to the RHODOS SName’s parameter
for reasons discussed in Section 4.3. However, new child tasks in RHODOS will return their
identification numbers to the parent process during their initialisation (and before the
pvm_spawn() primitive returns), and thus the array of integers will be able to be filled then.

4.2 Interprocess Communication

The RHODOS operating system is based on the concept of microkernel and the
client-server model. A good interprocess communication facility is thus an essential
component of the operating system. A review of PVM support for interprocess communication
under Unix was presented in Section 3.2. The impact of the RHODOS interprocess
communication facility on PVM, and the design of the PVM interprocess communication
support for RHODOS is presented in this section.

4.2.1 Message Passing

The goals during the selection of communication protocols for PVM on Unix were to
provide a guaranteed delivery to minimise the workload of the tasks to deliver messages, and
to use a datagram service wherever possible to reduce the demands on system and network
resources and to increase scalability. For these reasons, the TCP protocol was selected for
communication between tasks and servers to minimise the workload placed on tasks, and the
UDP protocol was selected for communication between servers to increase scalability.

These protocols cannot be used for the RHODOS operating system because it does
not support either of the TCP or UDP protocols. However RHODOS does provide a high
performance reliable datagram protocol known as the RHODOS Reliable Datagram Protocol
(RRDP) [Joyce et al 1995]. This protocol places no limits on the size of a message, and any
necessary fragmentation is handled automatically.

The default path for communication under the Unix PVM was to route messages
through the server processes. The elimination of the server from the RHODOS PVM model in
Section 2 means that this is no longer possible. However the use of the RRDP protocol under
RHODOS also means that it is no longer necessary. Messages will therefore be routed directly
between tasks, and this will not introduce any extra overhead to the tasks because the RRDP
protocol provides a reliable service, and as a connectionless based service it will scale well.

The removal of the server and new routing for messages also allows the headers that
were used in Unix versions of PVM to be modified somewhat. Three headers were used in the
Unix PVM: a message header; a header for task-server communication; and a header for
server-server communication. The removal of the server eliminates the need for the second and
third headers, leaving only the message header.

Of the four fields in the message header (message tag, encoding type, wait context ID
and checksum), only the message tag will be required. The encoding type will not be required
because only the raw encoding type is now used (see Section 4.2.2). The wait context ID is

PVM on the RHODOS Distributed Operating System

Page 13

used by servers to keep track of tasks blocking on operations so that if a workstation were to be
removed from the virtual machine, an error message could then be returned to the calling
processes. The removal of the server as an intermediary means that this is no longer possible.
The checksum field in the Unix version of PVM was not being used (only reserved for future
use) and with RRDP providing a reliable service no use can be seen for such a field.

4.2.2 Buffer Management

As discussed in Section 3.2.2, PVM provides buffers for the storage and manipulation
of data that is to be passed between tasks. The data is stored in the PVM buffers based on the
level of encoding selected (see Section 3.2.2 for more information). RHODOS is composed
only of homogeneous workstations and thus the use of XDR would be an unwarranted
overhead. For these reasons, XDR encoding will not be used, and raw encoding will now be
the default encoding in order to keep the syntax of the primitives equal to the Unix version of
PVM.

The PvmDataInPlace encoding level presents the problem of not having an existing
model to refer to for its equivalent implementation under RHODOS. However, the RHODOS
interprocess communication primitives support reading from multiple data buffers during a
send operation. Using this feature eliminates the additional copy operation which is the goal of
this encoding level and thus is an appropriate solution.

4.2.3 Group Communication

The naming of groups under RHODOS, as with other objects in RHODOS, is split
into two levels: the User Name and the System Name (SName). The User Name is an
attributed name, designed to be user friendly; and the System Name, a data structure (shown in
Block 3) that is more appropriate for system use. The primitives that RHODOS provides for
group communication include (among others): creation of a group (create_group()), joining a
group (join_group()), leaving a group (leave_group()), destroying a group (destroy_group()),
and for obtaining information about a group (group_info()).

The group server used in the Unix PVM manages the list of tasks in each group,
coordinates the barrier operation, mapspvm_bcast() calls to the appropriatepvm_mcast() call,
and selects the coordinators for thepvm_reduce() operation (Section 3.2.3). RHODOS
provides process groups, thus the first of these requirements is no longer present. The second

typedef struct sname {
uint16_t sn_signature; /* The user’s id */
uint8_t sn_type; /* The object’s type */
uint8_t sn_copy; /* Which object copy */
uint32_t sn_origin; /* The object’s origin */
uint32_t sn_object; /* The object’s name */
uint32_t sn_access_rights; /* The access rights */
uint32_t sn_checksum; /* Checksum */
} SNAME;

Block 3: The RHODOS System Name (SName)

PVM on the RHODOS Distributed Operating System

Page 14

of these requirements, to coordinate the barrier operation (see Section 3.2.3), can be
implemented by using the RHODOS barrier synchronisation facility [Silcock et al 1997]. The
third of these operations, the mapping ofpvm_bcast() calls topvm_mcast() calls, is trivial with
thepvm_mcast() primitive supported by the RHODOS group communication service. The last
of these requirements, to select the coordinators for thepvm_reduce() operation, is made
redundant by the nature of a distributed operating system (no specific workstations), and thus
the only coordinator that is required is the root instance (nominated by the programmer).

To be able to implement PVM group communications without using a server, certain
information needs to be accessible by all of the tasks, specifically: which instance number of a
a task in a group is mapped to which task ID (and vice-versa), and which instance/task is
coordinating the current barrier synchronisation operation (if any). Under RHODOS, any
object can be given multiple (attributed) names [Goscinski and Haddock 1994]. This
information can thus be made available by modifying the name of the group object, storing this
information as one of the attributes.

4.3 The Task Identification Number

PVM uses task identification numbers (TIDs) for identifying tasks for task
management, and as destinations for interprocess communication. RHODOS uses SNames to
identify processes for process management and to identify ports as destinations for
interprocess communication. The simplest solution would be to simply swap the TIDs with
SNames. However there are differences between the two that cause problems with this
solution. The differences between TIDs and SNames are:

• the TID is a 32-bit integer and the SName is a data structure (see Block 3);
• the TID identifies the task for both task management and for interprocess communication

whereas the SName cannot identify both a process and a communications port.

The first of these differences would mean that swapping TIDs with SNames would cause the
RHODOS PVM primitives to be syntactically incompatible with the primitives of the Unix
PVM, which is to be avoided. In order to achieve both syntax compatibility and be able to
locate SNames for both the PVM task’s process SName and port SName, some way must be
found to map a 32-bit integer to the two different SNames.

A solution to the problem of how to map a 32-bit integer to two SNames can be found
upon examination of the RHODOS naming facility. RHODOS uses attributed names to
provide a user-friendly means of addressing objects within the RHODOS system (processes,
ports, peripherals, etc). Attributed naming involves using a set of properties (attributes) to
describe an object. These attributes of an object can be divided into three categories:

• Naming oriented attributes - these attributes are used to support user-oriented naming or its
associated operations, and can be added, updated or deleted at any time by the owner or
supervisor;

• System oriented attributes - these attributes are used for the management of the objects (e.g.
the size of a particular file) and are maintained by the managing system servers;

• Dynamic attributes - these are used to describe the status of a particular object (e.g. print
jobs waiting for a printer).

Through the use of naming oriented attributes, a task’s TID can be added as an attribute to the
process SName and the port SName. However the problem still remains of how to allocate a
unique TID.

PVM on the RHODOS Distributed Operating System

Page 15

The simplest solution would be to allocate the first available TID to a task. However
to determine the first available TID, in a worst-case scenario, a task would need to query the
name server as many times as there are tasks. A better solution is to use the information in the
SName (which is already unique) to build the TID. The fields of the SName that uniquely
identify an object are: the object’s type (sn_type , 8 bits), origin (sn_origin , 32 bits) and
the object’s number (sn_object , 32 bits). It can be seen that a single 32-bit number cannot
represent every possible SName. However the values of the SNAME can be used to generate a
starting value for the search for a free TID.

Before determining how to create the starting value, we first need to determine
whether to use the SName of the process, or the SName of the port used for PVM
communications. The object number of an SName is incremented each time a new object is
created. Using the process SName to generate the starting value would cause the distribution of
used TID values to be heavily grouped. In a worst case scenario this would again require the
same number of queries to the name server as there are processes in existence. However, each
process in RHODOS is automatically allocated a “hidden port” for remote procedure calls
(RPCs), and a “unique port” which was once used for identifying processes (a process SName
is used now). Thus if the SName of the port used for PVM communication is used, at least two
unused TID values will initially exist for every used TID. The selection of the port SName also
makes the type of object to be a constant. A starting value can now be constructed from the
origin and object number fields.

The origin and object number fields are both 32-bit integers. The origin field
represents the network address, each 8 bits representing one number of the IP address.
RHODOS currently exists only within a single subnet, thus the IP address can be divided into a
24 bit static part and 8 bit dynamic part. Using the dynamic 8 bits of the object’s origin in the
construction of the TID leaving 24 bits which can be used to represent the 24 least significant
bits of the object number. Hence we now have a starting value.

Using the SName of the port used for PVM communication as the basis for a task’s
TID presents an additional problem in that the SName port is not known until the task has
created the port. This will require thepvm_spawn() task creation primitive to wait until the port
is created. Under Unix the PVM server generates and returns the TID for each task during the
process creation operation. Under RHODOS the TID will need to be generated by a task during
initialisation and passed back to the parent task (if it exists).

Under Unix, the port used for PVM communication (a Unix socket) is not created until
the first PVM primitive is invoked. This event may occur early, late or even never in the lifetime
of a task, hence this model cannot be used for the RHODOS PVM. The solution to this problem
lies with the header that is attached to each executable file. For the C language this header
typically performs various initialisation operations (such as the queuing of command line
arguments), and then calls themain() function. This header can be modified so that a special
initialisation function for PVM is called before themain() function, which will then create the
port for PVM communication, register the required attributes with the name server, return the
TID to the parent task and receive any special configuration information from the parent task.
This guarantees that the TID will be returned to the parent task immediately after the task is
created, thus allowing the parent process to continue its execution.

PVM on the RHODOS Distributed Operating System

Page 16

4.4 Event Notification

As discussed in Section 3.4, PVM tasks can request notification for the addition of
workstations to the virtual machine, the removal of workstations from the virtual machine, and
the termination of another task. Due to the nature of a distributed operating system, the first
two of these are eliminated. However the notification of the termination of a task is yet to be
addressed.

RHODOS currently has support for the detection of a child process exiting in the
process_wait() call, but there is currently no support for notifying any process that another
process has terminated. However the RHODOS Remote Execution (REX) Manager is
responsible for coordinating all process management operations including the termination of
processes [Hobbs and Goscinski 1996] and it is not difficult to extend this facility to provide
such a notification service.

Thepvm_sendsig() primitive cannot be supported by the RHODOS operating system
at this time because it does not support Unix signals. However thepvm_kill() primitive on
RHODOS will not use thepvm_sendsig() primitive (as in Unix, see Section 3.1), and the use of
Unix signals for communication can be accomplished using the usual PVM interprocess
communication primitives. Thus, thepvm_sendsig() primitive is not required.

5 Implementation and Testing

The RHODOS is characterised by a layered architecture consisting of the microkernel
(nucleus), kernel servers, system servers, and user processes [De Paoli et al 1995] (the layered
architecture and relevant kernel and system servers are shown in Figure 4). The microkernel
provides the basic services required in order to support processes, and any remaining services
are handled by the kernel and system servers. The kernel and system servers are privileged
processes, with kernel servers capable of modifying the structures maintained within the
nucleus. The RHODOS implementation of PVM is located completely within the user
processes layer, as no PVM specific support is required from the operating system.

The testing of this and other implementations of PVM involves the application of a
test suite [Casanova et al 1995] which consists of a graphical Tcl/Tk front-end to a series of
functions that test the functionality of each of the PVM primitives on any particular
implementation of PVM. This cannot be used directly on RHODOS because it currently does
not have support for Tcl/Tk. However the functions were easy to extract from the program and
run on the RHODOS system.

Each of the tests have been run, and completed successfully, except for:

• tests that involve the manipulation or querying of the configuration of the virtual machine
(redundant, see Section 2);

• tests of thepvm_sendsig() primitive (unsupported, see Section 4.4);

The application of these tests indicates that the implementation of the individual primitives is
correct, and that the interface is consistent with the Unix version of PVM.

PVM on the RHODOS Distributed Operating System

Page 17

6 Conclusions

This report has described the design and implementation of the PVM tool for the
RHODOS distributed operating system which provides an identical syntax to that provided by
the Unix version (apart from the loss of workstation- and Unix-specific primitives). A
recognisable set of interprocess communication primitives is now available for programmers
that are familiar with PVM. Any existing PVM programs are now be able to be compiled for
the RHODOS system without modification. Hence the range of software available for testing
and performance measurement of the RHODOS system has been expanded.

The replacement of the Unix environment with RHODOS as the base for the PVM
package has allowed the functionality provided by the package to be greatly simplified.
Furthermore, the addition of RHODOS specific features such as transparent dynamic load
balancing will also help to improve the performance of PVM applications.

Acknowledgements

The author would like to acknowledge the assistance of Philip Joyce for his assistance
in helping me better understand the RHODOS Group Communication and Naming services
and Greg Wickham for his contribution of the model used for PVM task initialisation.

Data
Collection

User — Application — OS Processes

Library Calls and Routines

System Call Interface

File Server/
Agent

TTY
Server

Migration
Manager

IPC
Manager

Authentication
Server

USER

SYSTEM
SERVERS

KERNEL
SERVERS

THE
NUCLEUS

PROCESSES

Global
Scheduler

Authentication
Server

Trading
Server

Name
Server

Remote Execution
Manager

Process
Manager

Figure 4: Process Layers in RHODOS

The Microkernel

PVM on the RHODOS Distributed Operating System

Page 18

7 Bibliography

[Beguelin et al 1995]
A. Beguelin, J. Dongarra, G. Geist, W. Jiang, R. Manchek, B. Moore, and V. Sunderam,
“PVM - Parallel Virtual Machine System Version 3”, pvm_intro(1) manual page, PVM
v3.3.11 distribution, 1995.

[Casanova et al 1995]
H. Casanova, J. Dongarra, P. Mucci,“A Test Suite for PVM”, Technical Report
UT-CS-95-276, University of Tennessee, March 1995.

[De Paoli and Goscinski 1997]
D. De Paoli and A. Goscinski,“The RHODOS Migration Facility”, to appear in the
Journal of Systems and Software, late 1997.

[De Paoli et al 1995]
D. De Paoli, A. Goscinski, M. Hobbs, and G. Wickham,“The RHODOS Microkernel,
Kernel Servers and Their Cooperation”, in Proceedings of the IEEE First ICA3PP,
Brisbane, Australia, 19-21 April 1995.

[Geist et al 1994]
G. Geist, A. Beguelin, J. Dongarra, W. Jiang, and R. Manchek,“PVM: Parallel Virtual
Machine - A User’s Guide and Tutorial for Networked Parallel Computing”, The MIT
Press, 1994.

[Gerrity et al 1990]
G. Gerrity, A. Goscinski, J. Indulska, W. Toomey, and W. Zhu,“The RHODOS
Distributed Operating System”, Technical Report CS90/4, Department of Computer
Science, University College, Australian Defence Force Academy, University of New
South Wales, February 1990.

[Goscinski 1991]
A. Goscinski,“Distributed Operating Systems: The Logical Design”, Addison-Wesley,
1991.

[Goscinski et al 1994]
A. Goscinski, M. Hobbs, P. Joyce, and G. Wickham,“Message Passing and RPC-based
Interprocess Communication Mechanisms in the RHODOS Microkernel*”, Technical
Report TR C94/09, School of Computing and Mathematics, Deakin University,
May 1994.

[Goscinski and Haddock 1994]
A. Goscinski and A. Haddock,“A Naming and Trading Facility for a Distributed
System”, The Australian Computer Journal, Volume 26(2), pp50-65, May 1994.

[Hobbs 1995]
M. Hobbs,“Global Scheduling on Distributed Systems: the RHODOS Case”, Technical
Report TR C95/29, School of Computing and Mathematics, Deakin University,
August 1995.

PVM on the RHODOS Distributed Operating System

Page 19

[Hobbs and Goscinski 1996]
M. Hobbs and A. Goscinski,“A Remote Process Creation and Execution Facility
Supporting Parallel Execution on Distributed Systems”, in Proceedings of the IEEE
Second ICA3PP, Singapore, June 11-13 1996.

[Joyce et al 1995]
P. Joyce, M. Hobbs, A. Goscinski, and D. De Paoli,“Implementation and Performance
of the Interprocess Communications Facility in RHODOS”, in Proceedings of the IEEE
SICON/ICE, Singapore, July 3-7 1995.

[Manchek 1994]
R. Manchek,“Design and Implementation of PVM Version 3”, a thesis presented for the
degree of Master of Science, also available as Technical Report UT-CS-94-232,
Department of Computer Science, University of Tennessee, May 1994.

[PVM 1996]
PVM v3.3.11 source code, released May 1996.

[Rough 1996]
J. Rough,“The Development of a Parallel Programming Environment for RHODOS
based on PVM”, a thesis presented for the degree of Bachelor of Science (Honours),
School of Computing and Mathematics, Deakin University, November 1996.

[Silcock et al 1997]
J. Silcock, A. Goscinski,“Invalidation-Based Distributed Shared Memory as a Integral
Part of the RHODOS Distributed Operating System”, submitted to Euro-PDS97, 1997.

[Sun 1987]
Sun Microsystems, “XDR: External Data Representation Standard”, Internet
RFC 1014, June 1987.

[Sunderam 1990]
V. Sunderam,“PVM: A Framework for Parallel Distributed Computing*”, appeared in
Concurrency: Practice and Experience, Volume 2(4), pp315-339, December 1990.

[Wang and Goscinski 1992a]
M. Wang and A Goscinski,“The Logical Design of an Authentication Service for
RHODOS*”, Technical Report TR C92/6, School of Computing and Mathematics,
Deakin University, September 1992.

[Wang and Goscinski 1992b]
M. Wang and A. Goscinski,“The Development and Testing of an Authentication Service
for RHODOS*”, Technical Report TR C92/7, School of Computing and Mathematics,
Deakin University, September 1992.

