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Abstract. COMDES-II is a component-based software framework which formally specifies the 
modeling concepts and constraints for distributed embedded systems in different aspects, such as 
component structures, interaction, hierarchy, etc. The paper presents an overview of the design 
philosophies of COMDES-II in the related aspects and a generative programming approach 
developed to enable the engineering applicability of the framework. The dedicated generative 
programming approach involves the formal definition of COMDES-II modeling language by 
means of meta-models which are instrumented by a meta-modeling tool – Generic Modeling 
Environment (GME), and the development of a specific code generation technique using 
CodeWorker tool to implement the automatic synthesis of system codes from system models. 

1  Introduction 

Complexity of software in embedded applications is continuously increasing, this situation is 
caused – primarily – by growing computational power of general-purpose microprocessors, 
which eliminates the need for special dedicated hardware solutions and therefore moves the 
emphasis from hardware to software design. An embedded software system is characterized 
by its tight interaction with the physical environment, restricted running resources (e.g. RAM, 
CPU, etc.), robust and strictly safe execution under hard real-time constraints [1]. These 
domain-specific features mandate the investigation of proper domain-specific modeling 
(DSM) techniques for various application domains of embedded systems, whereby the 
modeling concepts and abstraction rules of software that are provided in the solution space 
should accommodate the critical aspects in the problem space, such as system concurrency, 
environmental physicality, time,  etc. 

Component-based design (CBD) can be regarded as one of the most suitable design 
paradigms (if not the most suitable) for domain-specific modeling methodology. Due to the 
great profits brought by reusability of components, higher level of system abstraction 
(modeling systems rather than programming systems), an embedded software system can be 
efficiently and intuitively constructed from the prefabricated and reusable components. 
Moreover, from a software engineering point of view, CBD is an effective way to bridge the 
gap between the conceptual system design models and the concrete system implementation 
[2], provided that a proper generative programming approach is developed. 

Generative programming is a software engineering methodology that automates the 
generation of system implementations from higher level abstractions represented as textual or 
graphical models [3]. In this context, meta-modeling and model-driven development (MDD) 
techniques provide great advantages for modeling domain-specific software systems at higher 
abstraction level, and on the other side, code generation and model transformation are the 
general approaches adopted to implement the automatic synthesis facilities for systems.  

This paper intends to present such a generative programming method for a domain-
specific, component-based software framework aiming at the development of distributed 



embedded systems – COMDES-II (Component-based Design of Distributed Embedded 
Systems, version II) [4]. The focus is placed on the design philosophy and the meta-modeling 
approach of framework components in the component design aspect, and the code generation 
technique related to the component implementation aspect (as shown in Fig. 1). 

The meta-models of COMDES-II components are represented as the special UML class 
diagrams provided by the meta-modeling tool GME (Generic Modeling Environment) [5, 11], 
a configurable toolkit that supports the creation of domain-specific modeling and program 
synthesis environments. The constraint language OCL (Object Constraint Language, a subset 
of UML 2.0) is also supported in GME, which can be used to help specify the complex static 
semantics of component models in COMDES-II. 

For the development of code generation technique, the CodeWorker [12] tool is employed. 
CodeWorker is a versatile parsing tool and a universal generator, which provides a scripting 
language adapted both to the description of any input format and to the writing of any 
generation templates [6]. COMDES-II models are parsed by an extended-BNF script to create 
a parse tree, which is subsequently processed by template-based scripts that drive the code 
generation. The generated code and the reusable component execution algorithms are finally 
composed into the executable code by means of the GNU Compiler Collection (GCC) [13]. 

This engineering approach involving the graphical modeling of COMDES-II components 
and the automatic synthesis of component codes can be conceptually illustrated as in Fig. 1. 

 
 
 
 
 
 
 
 
 
 

Fig. 1. The generative programming approach for COMDES-II components 

Firstly, a component is designed in its application domain, at relatively high level, e.g. a 
controller of control system in MATLAB/Simulink [14]. Next, the domain component model 
that satisfies application requirements can be transformed into the COMDES-II framework 
model, e.g. by automatic mapping from Simulink components to COMDES-II components. 
The transformed framework components may have some supplementary information which 
will guide the implementation generation. Ultimately, the synthesized code can be deployed 
into embedded devices and tested against real environment. 

The paper is organized as follows: Section 2 gives a brief introduction about the design 
philosophies of COMDES-II. Section 3 presents the meta-level definitions of COMDES-II 
components through an example. Section 4 describes the code generation technique 
developed under CodeWorker tool to automatically synthesize the framework code from the 
corresponding component models, and the concluding section summarizes this engineering 
approach for COMDES-II framework, discusses the related research and future work. 

2  The COMDES-II Framework 

COMDES-II is a component-based framework with its focus on the distributed control 
systems, as a result the framework places its root in the control engineering domain and 
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borrows a number of software concepts that are popular in this domain, such as function 
blocks, state machines, etc. [7]. 

COMDES-II provides specific modeling techniques in the solution space by emphasizing 
two significant aspects of an embedded software system: 1) the openness and hierarchy of 
system architecture, and 2) predictable and deterministic system behaviour, by taking the 
following problem space issues into account: 

 
� Component structures, interaction and hierarchy 
� System architecture, concurrency 
� Environmental physicality (e.g. external events etc.) and time 

 
The framework employs a two-level architectural model to specify the system architecture: 

at the first level (system level) an embedded application is conceived as a composition of 
actors (active components) that exchange signals asynchronously through a content-oriented, 
producer-consumer model of communication. An example of the system developed under 
COMDES-II for Production Cell Case Study [8] is shown in Fig. 2.  

 
 
 
 
 
 
 
 
 
 

Fig. 2. Actors interaction in COMDES-II 

At the second level (actor level), an actor contains multiple I/O drivers and a single actor 
task (execution thread). I/O drivers are classified as communication drivers and physical 
drivers, which are associated with the actor task by the dataflow connection relationship. As 
an example, the internal structure of feed belt actor shown in Fig. 2 is illustrated as in Fig 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Internal structure of the feed belt actor 
 
The I/O drivers of an actor are assumed to be short pieces of code executed atomically 

(zero time) at precisely specified time instants referred to as execution triggering instant and 
deadline instant respectively, hence the execution triggering instant of an actor is also the 
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releasing instant of the actor task. The actor tasks and I/O drivers are scheduled by the real-
time kernel HARTEXTM

1 [9], which employs a preemptive priority-based timed multitasking 
(TM) technique [10]. TM guarantees the execution time of an actor is constant – nevertheless 
the actor task may be preempted by higher priority tasks in arbitrary times – as long as the 
task finishes execution before its deadline. This execution pattern of actor tasks is referred to 
as split-phase execution and illustrated by the diagram shown in Fig. 4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. Split-phase execution of actor tasks under timed multitasking 
 
An actor task can be hierarchically composed from an aggregation of different function 

block instances (passive components). Function block (FB) instances are instantiations of 
reusable FB types, which can be categorized into four FB kinds (meta-types) - basic, 
composite, modal as well as state machine FBs. A basic FB contains attributes, operations 
and associations that are common to all kinds of FBs, such as inputs, outputs, parameters, etc. 
Hence the definition of basic FBs is a root class which can be extended to define the other 
kinds of FBs. A more detailed description of each kind of FBs is referred to [4]. And as an 
example, the FB instances contained in the feed belt actor task (named control_task) are 
shown as in Fig. 5. 

 
 
 
 
 
 
 
 
 
 

      

 
 
 

Fig. 5. Internal structure of the feed belt actor task 
 
The concrete operation dynamics of this actor and its constituents will not be explained 

here since they are irrelevant to the focus of discussion, and we hope the diagram is intuitive 
enough to demonstrate the architectural and hierarchical features of COMDES-II framework. 

                                                           
1 HARTEXTM is a hard real-time kernel developed by Software Engineering Group, Mads Clausen Institute for Product 

Innovation, University of Southern Denmark (SEG, MCI/SDU). 

 



A FB type is a software component with an execution record containing its attributes and a 
set of operations defining its possible behaviour. A generic component model for all kinds of 
COMDES-II FBs is conceptually illustrated as in Fig. 6. 

 
 
 
 
 
 
 
 
 

Fig. 6. Component model for COMDES-II FBs 
 
The execution record is actually the FB interface containing the information like input 

pointers, parameters, internal variables and output buffers of a specific type of FB. FB 
execution record can be instantiated as well as reconfigured for the related FB instances of a 
given type. The operations are reentrant and relocatable functions performing some kinds of 
algorithms on an execution record, by accepting a pointer as the argument referring to the 
corresponding execution record of a specific FB instance. 

In COMDES-II, the interface of a specific FB type can be automatically synthesized into 
the C files from the corresponding FB graphical design model. The operations of a given type 
of FB are predefined algorithms and implemented as C routines. The prefabricated operation 
and interface files of FB definitions are stored in the FB repository, in which the operation 
files are delivered as executable routines, e.g. as object files (.obj files). 

3  Meta-level Definitions of COMDES-II Components 

The description of COMDES-II framework presented in the previous sections is informal, 
which is helpful to intuitively understand this DSM framework though, it is yet insufficient to 
implement a DSM language that is compliant with the framework rules and constraints. A 
DSM language of COMDES-II enables the modeling of components and application systems 
under the framework, and in order to develop such a language, the meta-models formally 
describing the syntax and static semantics of the targeting domain modeling language should 
be defined with a consideration of various problem space issues (e.g. hierarchy, time etc.). 
Generally speaking, the formalization of modeling languages to be the corresponding meta-
models is a recursive process which can be conceptually presented as in Fig. 7. 

Meta-modeling COMDES-II framework involves the formal specification of following 
abstractions in different aspects: 

 
• Meta-modeling HARTEXTM kernel and actors to accommodate the physicality (handling 

external interrupts), actor task concurrency (primitive priority-based scheduling), actor 
interaction (actor communication, actor synchronization etc.) and timing aspects (timed 
multitasking). 

• Meta-modeling various kinds of function blocks in terms of function block structures, 
function block interaction and hierarchy (e.g. a model function block can contain other 
function block instances). 

• Integrating the meta-model of HARTEXTM kernel and actors with the function block meta-
models to accommodate the architectural aspect of the framework. 
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Fig. 7. General meta-modeling process 
  

In order to better understand the above meta-modeling approach, an example for 
formalizing the models of state machine FBs (SMFBs) is given. A SMFB in COMDES-II 
employs a dialect of the finite state machine model with event-driven semantics to specify the 
sequential behavior of a system. The graphical representation of FB_control_SM function 
block instance in Fig. 5 is presented as in Fig. 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. FB_control_SM function block instance 
 

This function block instance contains three inputs and two outputs, which are the common 
elements that all kinds of function blocks have and therefore are inherited from the basic 
function block definition. Additionally, an event-driven state machine model specifying the 
sequential behavior of the host actor is also integrated. The state machine model includes a 
dummy initial state pointing to the actual initial state of the machine, a graphical label with 
the name history meaning that the state machine is historic, a number of states as well as 
state transitions which are labeled by events, guards and transition orders. Transition order is 
a number indicating the importance of the transition, i.e. which transition should be fired 
when multiple transition triggers associated with the current state are evaluated as true 
(transitions are evaluated starting from 1). 
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The above informal abstractions of the state machine function block can be formalized by a 
meta-model as illustrated in Fig. 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9. Meta-model of state machine function blocks 

 
In addition to the meta-model defined as a class diagram, some extra constraints specifying 

the static semantics for the state machine model are also defined in OCL, which are 
summarized as in Table.1. The meta-model in form of class diagram together with the 
constraints expressed in OCL provide a complete formal definition for the corresponding 
kind of function block. 

 
Table 1.  Example of constraints in OCL 
 

Syntactic 
Constraint OCL Expressions Applying 

Object 
Checking on 

Event 

The state machine 
is reactive. 

self.models("State")->forAll(s | 
s.connectedFCOs("dst")->size >= 1) StateMachine_FB CLOSE_MODEL 

The state machine 
is deterministic. 

self.connectionPoint("src").target
().attachingConnections("src","tra
nsition")->select(c : transition | 
c.event = self.event and c.guard = 
self.guard)->size = 1 

transition CONNECT 

All states are 
reachable 

self.models("State")->forAll(s | 
s.connectedFCOs("src")->size >= 1) StateMachine_FB CLOSE_MODEL 

4  Code Generation Technique of COMDES-II Framework 

Implementation of COMDES-II system is achieved in two stages: firstly, CodeWorker 
generates source code files from GME models; secondly, GCC composes the generated 
source files with prefabricated codes into the final executable implementation. Execution of 
the first stage is controlled by an application written in Java accessing CodeWorker 
functionality via its Java interface, whereas the second stage is conducted by the Makefile 
generated in first stage. 

COMDES-II implementation is built, or configured from predefined and reusable 
components stored in a repository. For each application component instance a data structure 

transition
<<Connection>>

guard : field
order : field
event : field

StateMachine_FB
<<Model>>

historySM : bool

history
<<Atom>>

State
<<Model>>

initialState
<<Atom>>

BasicFB_Proxy
<<ModelProxy>>

src
1

0..1

dst 1

0..*

0..* dst
0..*

0..1

src
0..*

 



(FB execution record) is generated, whereas the accompanying component algorithms (FB 
operations) are prefabricated in advance. In this way, during application synthesis no 
component executable code is generated. 

In order to match the limited resources of embedded systems, COMDES-II framework is 
implemented in C language, which could be seen to some extent as a portable source code as 
long as the GCC tool chain is employed. Because some parts of the C code (e.g. FB 
operations) are only CPU architecture dependant and are compiled into an executable object 
codes for a particular CPU architectures, e.g. avr5 – ATmega128. Some parts, as usual, are 
dedicated to a particular hardware platform (e.g. hardware I/O drivers) and are written by an 
expert once (Fig. 10). In this way, portability and native platform performance is achieved 
rather easily, assuming existence of GCC tool chain for the platform of interest. 

 
 
 
 
 

Fig. 10. Portability of COMDES-II system 
 

An overview of the generation process is given in Fig. 11, with three different scenarios: 

• Application synthesis (green, solid line) – models, which provide all necessary 
information, drive the configuration of an application. 

• Component generation (blue, dashed line) – component execution record is generated, and 
then supplemented with the algorithms written by software expert. Final implementation is 
stored in a repository of reusable components in a form of executable object file. 

• Reconfiguration (red, dotted line) – rather than generating the reconfigured application as a 
whole, only the updated part is created, which provides for faster application modification. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

Fig. 11. Automatic synthesis of COMDES-II system 
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5  Conclusion 

COMDES-II is a component-based framework aiming at the software development in the 
domain of distributed embedded systems. The framework provides the modeling methods for 
domain-specific features of an embedded system in different aspects, including component 
structures and interaction, system concurrency and functionality under the hard real-time 
constraints, etc. The provided design methods in these aspects enable COMDES-II a 
framework accommodating both the open system architecture as well as the predictable and 
deterministic system behaviour. 

In the paper a generative programming approach for COMDES-II has been presented, 
which involves the meta-modeling of framework modeling language and the development a 
dedicated code generation technique. A complete formal definition of the COMDES-II 
components carried out in GME consists of a meta-model specified as a class diagram and a 
set of constraints expressed in OCL, which is exemplified in the paper with a concrete state 
machine function block instance. Automatic synthesis of application implementation is a 
process consisting of parsing of models and generating source files in CodeWorker, next, 
compiling and linking of all codes in GCC. Ultimate result is the configuration of 
applications from reusable and reconfigurable components.  

Throughout the development of the generative approach we follow a motto: let the best 
tool do the job, the tool that is designed for the job. And therefore we adopt: GME – rapid 
development of DSM editor prototypes, CodeWorker – generation of any output and GCC – 
compiling and linking of codes. There are also other options of tools which can be used to 
develop the graphical DSM editor, for instance, Eclipse EMF/GMF/GEF frameworks [16], or 
MetaCASE MetaEdit+ [15].  

Eclipse EMF/GMF/GEF frameworks provide an excellent model-driven approach for 
creating domain-specific models from their meta-models, and allow developers to establish a 
very flexible graphical environment for editing the models, however, developing such a 
graphical editor is really a labor-intensive task. MetaEdit+ is a commercial meta-modeling 
product developed by MetaCASE, which offers a Symbol Editor that facilitates the 
customization of model visual effects and a promising code generation tool for easy 
automatic synthesis and documentation. However, the meta-modeling process in MetaEdit+ 
is not as straightforward as that in GME or Eclipse EMF, and moreover, only the cardinality 
constraints of relationships are supported in MetaEdit+, whereas the Object Constraint 
Language (OCL) is not implemented. GME enables a powerful meta-modeling capability by 
providing a number of unique meta-modeling concepts, such as sets, references and aspects 
etc., additionally the OCL language is fully implemented. Automatic synthesis of program is 
also possible in GME through user-defined plug-ins and Builder Object Network (BON) API. 
A deficiency of GME is that the graphical representation of models can not be dynamically 
changed, due to its fixed Model-View-Controller architecture. 

The presented software framework has been experimentally validated through two case 
studies: the Production Cell Case Study [16] and the Steam Boiler Control Specification 
Problem [17]. The envisioned future work includes the development of a graphical editing 
toolset in Eclipse, and the meta-model as well as model transformations from GME to the 
developed graphical environment. Such transformations can be realized by using dedicated 
model transformation languages, just like GReAT – Graph Rewriting And Transformation 
language – for model transformations in GME [19].  
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