Gener ative Programming for a Component-based Framework
of Distributed Embedded Systems

Xu Ke, Krzysztof Sierszecki

Mads Clausen Institute for Product Innovation, @nsity of Southern Denmark
Grundtvigs Alle 150, 6400 Soenderborg, Denmark
{xuke, ksi}@mci.sdu.dk

Abstract. COMDES-II is a component-based software framewshlich formally specifies the
modeling concepts and constraints for distributethedded systems in different aspects, such as
component structures, interaction, hierarchy, & paper presents an overview of the design
philosophies of COMDES-II in the related aspectsl @ generative programming approach
developed to enable the engineering applicabilitythe framework. The dedicated generative
programming approach involves the formal definitioh COMDES-II modeling language by
means of meta-models which are instrumented by ta-medeling tool — Generic Modeling
Environment (GME), and the development of a specdode generation technique using
CodeWorker tool to implement the automatic synthesisystem codes from system models.

1 Introduction

Complexity of software in embedded applicationsdatinuously increasing, this situation is
caused — primarily — by growing computational powéigeneral-purpose microprocessors,
which eliminates the need for special dedicatediware solutions and therefore moves the
emphasis from hardware to software design. An eadedoftware system is characterized
by its tight interaction with the physical enviroam, restricted running resources (e.g. RAM,
CPU, etc.), robust and strictly safe execution urftlrd real-time constraints [1]. These
domain-specific features mandate the investigatddnproper domain-specific modeling
(DSM) techniques for various application domains emibedded systems, whereby the
modeling concepts and abstraction rules of softwlaaé are provided in the solution space
should accommodate the critical aspects in thelpnolspace, such as system concurrency,
environmental physicality, time, etc.

Component-based design (CBD) can be regarded as one of the most suitdblgn
paradigms (if not the most suitable) for domainesipe modeling methodology. Due to the
great profits brought by reusability of componentggher level of system abstraction
(modeling systems rather than programming systeamsgmbedded software system can be
efficiently and intuitively constructed from the giabricated and reusable components.
Moreover, from a software engineering point of vi&BD is an effective way to bridge the
gap between the conceptual system design modelshancbncrete system implementation
[2], provided that a prope&enerative programming approach is developed.

Generative programming is a software engineeringhatwlogy that automates the
generation of system implementations from higheell@bstractions represented as textual or
graphical models [3]. In this contexteta-modeling and model-driven development (MDD)
techniques provide great advantages for modelimgaito-specific software systems at higher
abstraction level, and on the other sidede generation and model transformation are the
general approaches adopted to implement the autosyathesis facilities for systems.

This paper intends to present such a generativgrgmming method for a domain-
specific, component-based software framework aimahghe development of distributed



embedded systems €OMDESII (Component-based Design of Distributed Embedded
Systems, version I[4]. The focus is placed on the design philosopiy e meta-modeling
approach of framework components in the componesigd aspect, and the code generation
technique related to the component implementatpect (as shown in Fig. 1).

The meta-models of COMDES-II components are reptesgeas the special UML class
diagrams provided by the meta-modeling tGME (Generic Modeling Environment) [5, 11],

a configurable toolkit that supports the creatidrdomain-specific modeling and program

synthesis environments. The constraint langu@gk (Object Constraint Language, a subset
of UML 2.0) is also supported in GME, which canused to help specify the complex static
semantics of component models in COMDES-II.

For the development of code generation technidueCodeWorker [12] tool is employed.
CodeWorker is a versatile parsing tool and a usalegenerator, which provides a scripting
language adapted both to the description of anwtifiprmat and to the writing of any
generation templates [6]. COMDES-II models are géitsy an extended-BNF script to create
a parse tree, which is subsequently processedrpldée-based scripts that drive the code
generation. The generated code and the reusablpoc@nt execution algorithms are finally
composed into the executable code by means of iti¢é Gompiler Collection (GCC) [13].

This engineering approach involving the graphicaldeling of COMDES-II components
and the automatic synthesis of component codebeaonceptually illustrated as in Fig. 1.
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Firstly, a component is designed in its applicatitmmain, at relatively high level, e.g. a
controller of control system in MATLAB/Simulink [14Next, the domain component model
that satisfies application requirements can besfoamed into the COMDES-II framework
model, e.g. by automatic mapping from Simulink comgnts to COMDES-II components.
The transformed framework components may have supplementary information which
will guide the implementation generation. Ultimgtethe synthesized code can be deployed
into embedded devices and tested against realosment.

The paper is organized as follows: Section 2 gavdwief introduction about the design
philosophies of COMDES-II. Section 3 presents thetarievel definitions of COMDES-II
components through an example. Section 4 describescode generation technique
developed under CodeWorker tool to automaticallytisgsize the framework code from the
corresponding component models, and the conclusiajon summarizes this engineering
approach for COMDES-II framework, discusses thateel research and future work.

2 The COMDES-II Framework

COMDES-II is a component-based framework with ib&€us on the distributed control
systems, as a result the framework places its irodhe control engineering domain and



borrows a number of software concepts that are lpopn this domain, such as function
blocks, state machines, etc. [7].

COMDES-II provides specific modeling techniqueshe solution space by emphasizing
two significant aspects of an embedded softwaréesysl) the openness and hierarchy of
system architecture, and 2) predictable and detgstia system behaviour, by taking the
following problem space issues into account:

e Component structures, interaction and hierarchy
e System architecture, concurrency
¢ Environmental physicality (e.g. external events etc.) and time

The framework employs a two-level architectural eldd specify the system architecture:
at the first level (system level) an embedded appibn is conceived as a composition of
actors (active components) that exchange signals asynohsby through a content-oriented,
producer-consumer model of communication. An exangdl the system developed under
COMDES-II for Production Cell Case Study [8] is shmin Fig. 2.
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Fig. 2. Actors interaction in COMDES-II

At the second level (actor level), an actor corgamultiplel/O drivers and a singlexctor
task (execution thread). I/O drivers are classifiedcasimunication drivers and physical
drivers, which are associated with the actor task byddtaflow connection relationship. As
an example, the internal structurefe¢d belt actor shown in Fig. 2 is illustrated as in Fig 3.
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Fig. 3. Internal structure of thimed belt actor

The I/0O drivers of an actor are assumed to be ghietes of code executed atomically
(zero time) at precisely specified time instanfemed to asexecution triggering instant and
deadline instant respectively, hence the execution trigggeinstant of aractor is also the



releasing instant of theactor task. The actor tasks and I/O drivers are schedulethéyeal-
time kernelHARTEXmy! [9], which employs a preemptive priority-bastiehed multitasking
(TM) technique [10]. TM guarantees the executiometiof an actois constant — nevertheless
the actor task may be preempted by higher prigdasks in arbitrary times — as long as the
task finishes execution before its deadline. TRiscation pattern of actor tasks is referred to
assplit-phase execution and illustrated by the diagram showhign 4.
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Fig. 4. Split-phase execution of actor tasks under timattitasking

An actor task can be hierarchically composed framaggregation of differerfunction
block instances (passive components). Function block (FB) instaraes instantiations of
reusable FBtypes, which can be categorized into four Fnds (meta-types) -basic,
composite, modal as well asstate machine FBs. A basic FB contains attributes, operations
and associations that are common to all kinds &f, BBch as inputs, outputs, parameters, etc.
Hence the definition of basic FBs is a root classctv can be extended to define the other
kinds of FBs. A more detailed description of eaahdkof FBs is referred to [4]. And as an

example, the FB instances contained in féd belt actortask (hamedcontrol_task) are
shown as in Fig. 5.
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Fig. 5. Internal structuref thefeed belt actor task

The concrete operation dynamics of this actor amdonstituents will not be explained
here since they are irrelevant to the focus ofwdision, and we hope the diagram is intuitive
enough to demonstrate the architectural and hieicicfeatures of COMDES-II framework.

1 HARTEXqy is a hard real-time kernel developed by Softwangifieering Group, Mads Clausen Institute for Product
Innovation, University of Southern Denmark (SEG, NEDU).



A FB type is a software component with eacution record containing its attributes and a
set ofoperations defining its possible behaviour. A generic compamaodel for all kinds of
COMDES-II FBs is conceptually illustrated as in .Fég
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Fig. 6. Component model for COMDES-II FBs

The execution record is actually the FB interfacataining the information like input
pointers, parameters, internal variables and oubuiters of a specific type of FB. FB
execution record can be instantiated as well asnfegured for the related FB instances of a
given type. The operations are reentrant and redbtafunctions performing some kinds of
algorithms on an execution record, by acceptingiatpr as the argument referring to the
corresponding execution record of a specific FBaince.

In COMDES-II, the interface of a specific FB typancbe automatically synthesized into
the C files from the corresponding FB graphicaligiesnodel. The operations of a given type
of FB are predefined algorithms and implemente@ asutines. The prefabricated operation
and interface files of FB definitions are storedthie FB repository, in which the operation
files are delivered as executable routines, e.gbget files (.obj files).

3 Meta-levd Definitions of COMDES-II Components

The description of COMDES-II framework presentedthe previous sections is informal,
which is helpful to intuitively understand this DSkmework though, it is yet insufficient to
implement a DSM language that is compliant with fitsanework rules and constraints. A
DSM language of COMDES-II enables the modelingahponents and application systems
under the framework, and in order to develop sudanguage, the meta-models formally
describing the syntax and static semantics ofdhgeting domain modeling language should
be defined with a consideration of various problgpace issues (e.g. hierarchy, time etc.).
Generally speaking, the formalization of modeliagduages to be the corresponding meta-
models is a recursive process which can be conal®ypfpresented as in Fig. 7.

Meta-modeling COMDES-II framework involves the falnspecification of following
abstractions in different aspects:

* Meta-modelingHARTEXmv kernel and actors to accommodate the physicaligndling
external interrupts), actor task concurrency (piirai priority-based scheduling), actor
interaction (actor communication, actor synchrotiiza etc.) and timing aspects (timed
multitasking).

* Meta-modeling various kinds of function blocks rrhs of function block structures,
function block interaction and hierarchy (e.g. adelofunction block can contain other
function block instances).

* Integrating the meta-model 6fARTEXty kernel and actors with the function block meta-
models to accommodate the architectural aspetiediramework.
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Fig. 7. General meta-modeling process

In order to better understand the above meta-muglelipproach, an example for
formalizing the models of state machine FBs (SMFBsyjiven. A SMFB in COMDES-II
employs a dialect of the finite state machine mad#i event-driven semantics to specify the
sequential behavior of a system. The graphicalesgptation oFB_control_SM function
block instance in Fig. 5 is presented as in Fig. 8.
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Fig. 8. FB_control_SM function block instance

This function block instance contains three in@nd two outputs, which are the common
elements that all kinds of function blocks have &émerefore are inherited from the basic
function block definition. Additionally, an eventiden state machine model specifying the
sequential behavior of the host actor is also natiegl. The state machine model includes a
dummy initial state pointing to the actual initetate of the machine, a graphical label with
the namehistory meaning that the state machine is historic, a raunolb states as well as
state transitions which are labeled by events,dguand transition orders. Transition order is
a number indicating the importance of the transijtioe. which transition should be fired
when multiple transition triggers associated wikie tcurrent state are evaluated as true
(transitions are evaluated starting from 1).



The above informal abstractions of the state machinction block can be formalized by a
meta-model as illustrated in Fig. 9.

BasicFB_Proxy
<<ModelProxy>>

| |
transition

history StateMachine_FB State S <<Connection>>

<<Atom>> T - <<Model>> i <<Model>> « guard: field

historySM:  bool - 0. 0. order : field
[ dst]1 ewvent: field

Jo.

0.1

initialState
<<Atom>> i“:

Fig. 9. Meta-model of state machine function blocks

In addition to the meta-model defined as a claagrdim, some extra constraints specifying
the static semantics for the state machine model aso defined in OCL, which are
summarized as in Table.1l. The meta-model in fornclaés diagram together with the
constraints expressed in OCL provide a completendbrdefinition for the corresponding
kind of function block.

Tablel. Example of constraints in OCL

Syntactic e Applying Checking on
Constraint OCL Expressions Object Event

The state machine| sel f. nodel s("State")->forAll (s | :

is reactive. s. connect edFOOs( " dst ") - >si ze >= 1) StateMachine_FB CLOSE_MODEL

sel f. connecti onPoint ("src").target
The state machine ().attachi ngConnections("src","tra

. . nsition")->select(c : transition | transition CONNECT
is deterministic. c.event = self.event and c.guard =

sel f.guard)->size = 1

All states are sel f.nodel s("State")->forAll (s | .
reachable s. connect edFOOs( " src") - >si ze >= 1) StateMachine_FB CLOSE_MODEL

4 Code Generation Technique of COMDES-II Framework

Implementation of COMDES-II system is achieved wotstages: firstly, CodeWorker
generates source code files from GME models; ségoi@&CC composes the generated
source files with prefabricated codes into thelfeweecutable implementation. Execution of
the first stage is controlled by an application tien in Java accessing CodeWorker
functionality via its Java interface, whereas tbeosid stage is conducted by the Makefile
generated in first stage.

COMDES-II implementation is built, or configuredom predefined and reusable
components stored in a repository. For each agjgit@omponent instance a data structure



(FB execution record) is generated, whereas thenaganying component algorithms (FB
operations) are prefabricated in advance. In théy,wduring application synthesis no
component executable code is generated.

In order to match the limited resources of embedsetems, COMDES-II framework is
implemented in C language, which could be seemmoesextent as a portable source code as
long as the GCC tool chain is employed. Becauseesparts of the C code (e.g. FB
operations) are only CPU architecture dependantaaaadompiled into an executable object
codes for a particular CPU architectures, e.g. av/dImegal28. Some parts, as usual, are
dedicated to a particular hardware platform (eagdware 1/O drivers) and are written by an
expert once (Fig. 10). In this way, portability andtive platform performance is achieved
rather easily, assuming existence of GCC tool cfaithe platform of interest.

C source
—» generated —»
coded by expert

XML

object code + object code elf
GME .xme model

cpu dependent platform dependent final code

Fig. 10. Portability of COMDES-II system

An overview of the generation process is givenig E1, with three different scenarios:

» Application synthesis g(eeny solid line) — models, which provide all necessary
information, drive the configuration of an applicat

» Component generatioml(e, dashed line) — component execution record is rgéed, and
then supplemented with the algorithms written bijveare expert. Final implementation is
stored in a repository of reusable componentsfarra of executable object file.

» Reconfigurationred dotted line) — rather than generating the recméd application as a
whole, only the updated part is created, which ples for faster application modification.
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5 Conclusion

COMDES-II is a component-based framework aiminghat software development in the
domain of distributed embedded systems. The framemmvides the modeling methods for
domain-specific features of an embedded systemifiereht aspects, including component
structures and interaction, system concurrency fandtionality under the hard real-time
constraints, etc. The provided design methods msdhaspects enable COMDES-II a
framework accommodating both the open system aaite as well as the predictable and
deterministic system behaviour.

In the paper a generative programming approachClOMDES-II has been presented,
which involves the meta-modeling of framework manigllanguage and the development a
dedicated code generation technique. A completendbrdefinition of the COMDES-II
components carried out in GME consists of a metdehspecified as a class diagram and a
set of constraints expressed in OCL, which is exdieq in the paper with a concrete state
machine function block instance. Automatic synthesi application implementation is a
process consisting of parsing of models and gengraource files in CodeWorker, next,
compiling and linking of all codes in GCC. Ultimatesult is the configuration of
applications from reusable and reconfigurable camepts.

Throughout the development of the generative amprage follow a mottolet the best
tool do the job, the tool that is designed for the job. And therefore we adopt: GME — rapid
development of DSM editor prototypes, CodeWorkegenreration of any output and GCC —
compiling and linking of codes. There are also othgtions of tools which can be used to
develop the graphical DSM editor, for instance jjfisd EMF/GMF/GEF frameworks [16], or
MetaCASE MetaEdit+ [15].

Eclipse EMF/GMF/GEF frameworks provide an excellembdel-driven approach for
creating domain-specific models from their meta-glsdand allow developers to establish a
very flexible graphical environment for editing timeodels, however, developing such a
graphical editor is really a labor-intensive tabletaEdit+ is a commercial meta-modeling
product developed by MetaCASE, which offers a SymhBditor that facilitates the
customization of model visual effects and a prongsicode generation tool for easy
automatic synthesis and documentation. Howeverpte&-modeling process in MetaEdit+
is not as straightforward as that in GME or EcligddF, and moreover, only the cardinality
constraints of relationships are supported in Meilaf: whereas the Object Constraint
Language (OCL) is not implemented. GME enablesvaepil meta-modeling capability by
providing a number of unique meta-modeling concefish as sets, references and aspects
etc., additionally the OCL language is fully implemed. Automatic synthesis of program is
also possible in GME through user-defined plugand Builder Object Network (BON) API.
A deficiency of GME is that the graphical repres¢ion of models can not be dynamically
changed, due to its fixed Model-View-Controllerlatecture.

The presented software framework has been expetathewalidated through two case
studies: the Production Cell Case Study [16] arel $team Boiler Control Specification
Problem [17]. The envisioned future work includkee tdevelopment of a graphical editing
toolset in Eclipse, and the meta-model as well agehtransformations from GME to the
developed graphical environment. Such transformatican be realized by using dedicated
model transformation languages, just like GReATGraph Rewriting And Transformation
language — for model transformations in GME [19].
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