
Generative Programming for a Component-based Framework
of Distributed Embedded Systems

Xu Ke, Krzysztof Sierszecki

Mads Clausen Institute for Product Innovation, University of Southern Denmark
Grundtvigs Alle 150, 6400 Soenderborg, Denmark

{xuke, ksi}@mci.sdu.dk

Abstract. COMDES-II is a component-based software framework which formally specifies the
modeling concepts and constraints for distributed embedded systems in different aspects, such as
component structures, interaction, hierarchy, etc. The paper presents an overview of the design
philosophies of COMDES-II in the related aspects and a generative programming approach
developed to enable the engineering applicability of the framework. The dedicated generative
programming approach involves the formal definition of COMDES-II modeling language by
means of meta-models which are instrumented by a meta-modeling tool – Generic Modeling
Environment (GME), and the development of a specific code generation technique using
CodeWorker tool to implement the automatic synthesis of system codes from system models.

1 Introduction

Complexity of software in embedded applications is continuously increasing, this situation is
caused – primarily – by growing computational power of general-purpose microprocessors,
which eliminates the need for special dedicated hardware solutions and therefore moves the
emphasis from hardware to software design. An embedded software system is characterized
by its tight interaction with the physical environment, restricted running resources (e.g. RAM,
CPU, etc.), robust and strictly safe execution under hard real-time constraints [1]. These
domain-specific features mandate the investigation of proper domain-specific modeling
(DSM) techniques for various application domains of embedded systems, whereby the
modeling concepts and abstraction rules of software that are provided in the solution space
should accommodate the critical aspects in the problem space, such as system concurrency,
environmental physicality, time, etc.

Component-based design (CBD) can be regarded as one of the most suitable design
paradigms (if not the most suitable) for domain-specific modeling methodology. Due to the
great profits brought by reusability of components, higher level of system abstraction
(modeling systems rather than programming systems), an embedded software system can be
efficiently and intuitively constructed from the prefabricated and reusable components.
Moreover, from a software engineering point of view, CBD is an effective way to bridge the
gap between the conceptual system design models and the concrete system implementation
[2], provided that a proper generative programming approach is developed.

Generative programming is a software engineering methodology that automates the
generation of system implementations from higher level abstractions represented as textual or
graphical models [3]. In this context, meta-modeling and model-driven development (MDD)
techniques provide great advantages for modeling domain-specific software systems at higher
abstraction level, and on the other side, code generation and model transformation are the
general approaches adopted to implement the automatic synthesis facilities for systems.

This paper intends to present such a generative programming method for a domain-
specific, component-based software framework aiming at the development of distributed

embedded systems – COMDES-II (Component-based Design of Distributed Embedded
Systems, version II) [4]. The focus is placed on the design philosophy and the meta-modeling
approach of framework components in the component design aspect, and the code generation
technique related to the component implementation aspect (as shown in Fig. 1).

The meta-models of COMDES-II components are represented as the special UML class
diagrams provided by the meta-modeling tool GME (Generic Modeling Environment) [5, 11],
a configurable toolkit that supports the creation of domain-specific modeling and program
synthesis environments. The constraint language OCL (Object Constraint Language, a subset
of UML 2.0) is also supported in GME, which can be used to help specify the complex static
semantics of component models in COMDES-II.

For the development of code generation technique, the CodeWorker [12] tool is employed.
CodeWorker is a versatile parsing tool and a universal generator, which provides a scripting
language adapted both to the description of any input format and to the writing of any
generation templates [6]. COMDES-II models are parsed by an extended-BNF script to create
a parse tree, which is subsequently processed by template-based scripts that drive the code
generation. The generated code and the reusable component execution algorithms are finally
composed into the executable code by means of the GNU Compiler Collection (GCC) [13].

This engineering approach involving the graphical modeling of COMDES-II components
and the automatic synthesis of component codes can be conceptually illustrated as in Fig. 1.

Fig. 1. The generative programming approach for COMDES-II components

Firstly, a component is designed in its application domain, at relatively high level, e.g. a
controller of control system in MATLAB/Simulink [14]. Next, the domain component model
that satisfies application requirements can be transformed into the COMDES-II framework
model, e.g. by automatic mapping from Simulink components to COMDES-II components.
The transformed framework components may have some supplementary information which
will guide the implementation generation. Ultimately, the synthesized code can be deployed
into embedded devices and tested against real environment.

The paper is organized as follows: Section 2 gives a brief introduction about the design
philosophies of COMDES-II. Section 3 presents the meta-level definitions of COMDES-II
components through an example. Section 4 describes the code generation technique
developed under CodeWorker tool to automatically synthesize the framework code from the
corresponding component models, and the concluding section summarizes this engineering
approach for COMDES-II framework, discusses the related research and future work.

2 The COMDES-II Framework

COMDES-II is a component-based framework with its focus on the distributed control
systems, as a result the framework places its root in the control engineering domain and

Software Design

Design of component
models in COMDES II

Implementation

Automatic synthesis of
framework components

D
o

m
ai

n
 D

es
ig

n

models

D
ep

lo
ym

en
t

Meta-models and
constraints in GME

Framework templates in CodeWorker
Executable component algorithms in GCC

borrows a number of software concepts that are popular in this domain, such as function
blocks, state machines, etc. [7].

COMDES-II provides specific modeling techniques in the solution space by emphasizing
two significant aspects of an embedded software system: 1) the openness and hierarchy of
system architecture, and 2) predictable and deterministic system behaviour, by taking the
following problem space issues into account:

� Component structures, interaction and hierarchy
� System architecture, concurrency
� Environmental physicality (e.g. external events etc.) and time

The framework employs a two-level architectural model to specify the system architecture:

at the first level (system level) an embedded application is conceived as a composition of
actors (active components) that exchange signals asynchronously through a content-oriented,
producer-consumer model of communication. An example of the system developed under
COMDES-II for Production Cell Case Study [8] is shown in Fig. 2.

Fig. 2. Actors interaction in COMDES-II

At the second level (actor level), an actor contains multiple I/O drivers and a single actor
task (execution thread). I/O drivers are classified as communication drivers and physical
drivers, which are associated with the actor task by the dataflow connection relationship. As
an example, the internal structure of feed belt actor shown in Fig. 2 is illustrated as in Fig 3.

Fig. 3. Internal structure of the feed belt actor

The I/O drivers of an actor are assumed to be short pieces of code executed atomically

(zero time) at precisely specified time instants referred to as execution triggering instant and
deadline instant respectively, hence the execution triggering instant of an actor is also the

RAr arm

RArmA

sta FBe

FBelt

FBS raw

FBSensor

RPo
arm
arm

RPosition

arm
arm
raw

sta
sta

control_task

state
armAstate

raw_value

armAposition

feed belt

input communication
driver

actor task local signal input physical driver output communication
driver

deposit
belt

feed belt

pressrobot
RSwitchA

RRotation

RMotor

RMotorA

RMotorB

FBelt

RArmB
Press

Press

FBelt

DBelt

DBelt

RSwitchB

DBSensor

DBMotor

PLamp

FBMotor

FBSensor

PSensor

RArmA
RPosition

RArmB

RArmA
RPosition

RArmA
RPosition

RArmB
RPosition

LCDRCX1

ButtonsRCX1

ButtonsRCX2

en
vi

ro
nm

en
t environm

ent

actor

control_task

inp
inp

bri

light_sensor

EOpen

arm
arm
bri

sta
sta

FB_control_SM

inp
inp

arm

armA_state

ECovered

EFB state_updated

raw_value

armAstate

state

armAposition inp
inp

arm

armA_position

input

constant

function block instance

output

releasing instant of the actor task. The actor tasks and I/O drivers are scheduled by the real-
time kernel HARTEXTM

1 [9], which employs a preemptive priority-based timed multitasking
(TM) technique [10]. TM guarantees the execution time of an actor is constant – nevertheless
the actor task may be preempted by higher priority tasks in arbitrary times – as long as the
task finishes execution before its deadline. This execution pattern of actor tasks is referred to
as split-phase execution and illustrated by the diagram shown in Fig. 4.

Fig. 4. Split-phase execution of actor tasks under timed multitasking

An actor task can be hierarchically composed from an aggregation of different function

block instances (passive components). Function block (FB) instances are instantiations of
reusable FB types, which can be categorized into four FB kinds (meta-types) - basic,
composite, modal as well as state machine FBs. A basic FB contains attributes, operations
and associations that are common to all kinds of FBs, such as inputs, outputs, parameters, etc.
Hence the definition of basic FBs is a root class which can be extended to define the other
kinds of FBs. A more detailed description of each kind of FBs is referred to [4]. And as an
example, the FB instances contained in the feed belt actor task (named control_task) are
shown as in Fig. 5.

Fig. 5. Internal structure of the feed belt actor task

The concrete operation dynamics of this actor and its constituents will not be explained

here since they are irrelevant to the focus of discussion, and we hope the diagram is intuitive
enough to demonstrate the architectural and hierarchical features of COMDES-II framework.

1 HARTEXTM is a hard real-time kernel developed by Software Engineering Group, Mads Clausen Institute for Product

Innovation, University of Southern Denmark (SEG, MCI/SDU).

A FB type is a software component with an execution record containing its attributes and a
set of operations defining its possible behaviour. A generic component model for all kinds of
COMDES-II FBs is conceptually illustrated as in Fig. 6.

Fig. 6. Component model for COMDES-II FBs

The execution record is actually the FB interface containing the information like input

pointers, parameters, internal variables and output buffers of a specific type of FB. FB
execution record can be instantiated as well as reconfigured for the related FB instances of a
given type. The operations are reentrant and relocatable functions performing some kinds of
algorithms on an execution record, by accepting a pointer as the argument referring to the
corresponding execution record of a specific FB instance.

In COMDES-II, the interface of a specific FB type can be automatically synthesized into
the C files from the corresponding FB graphical design model. The operations of a given type
of FB are predefined algorithms and implemented as C routines. The prefabricated operation
and interface files of FB definitions are stored in the FB repository, in which the operation
files are delivered as executable routines, e.g. as object files (.obj files).

3 Meta-level Definitions of COMDES-II Components

The description of COMDES-II framework presented in the previous sections is informal,
which is helpful to intuitively understand this DSM framework though, it is yet insufficient to
implement a DSM language that is compliant with the framework rules and constraints. A
DSM language of COMDES-II enables the modeling of components and application systems
under the framework, and in order to develop such a language, the meta-models formally
describing the syntax and static semantics of the targeting domain modeling language should
be defined with a consideration of various problem space issues (e.g. hierarchy, time etc.).
Generally speaking, the formalization of modeling languages to be the corresponding meta-
models is a recursive process which can be conceptually presented as in Fig. 7.

Meta-modeling COMDES-II framework involves the formal specification of following
abstractions in different aspects:

• Meta-modeling HARTEXTM kernel and actors to accommodate the physicality (handling

external interrupts), actor task concurrency (primitive priority-based scheduling), actor
interaction (actor communication, actor synchronization etc.) and timing aspects (timed
multitasking).

• Meta-modeling various kinds of function blocks in terms of function block structures,
function block interaction and hierarchy (e.g. a model function block can contain other
function block instances).

• Integrating the meta-model of HARTEXTM kernel and actors with the function block meta-
models to accommodate the architectural aspect of the framework.

Function Block

-input pointers
-parameters
-internal variables
-output buffers

+init()
+run()
+stop()

Execution record

Relocatable operations

Fig. 7. General meta-modeling process

In order to better understand the above meta-modeling approach, an example for
formalizing the models of state machine FBs (SMFBs) is given. A SMFB in COMDES-II
employs a dialect of the finite state machine model with event-driven semantics to specify the
sequential behavior of a system. The graphical representation of FB_control_SM function
block instance in Fig. 5 is presented as in Fig. 8.

Fig. 8. FB_control_SM function block instance

This function block instance contains three inputs and two outputs, which are the common
elements that all kinds of function blocks have and therefore are inherited from the basic
function block definition. Additionally, an event-driven state machine model specifying the
sequential behavior of the host actor is also integrated. The state machine model includes a
dummy initial state pointing to the actual initial state of the machine, a graphical label with
the name history meaning that the state machine is historic, a number of states as well as
state transitions which are labeled by events, guards and transition orders. Transition order is
a number indicating the importance of the transition, i.e. which transition should be fired
when multiple transition triggers associated with the current state are evaluated as true
(transitions are evaluated starting from 1).

FB_control_SM

armA_open

armA_over_FB

state_updated

state

brick_ready

operation

initialState

unloaded

error

unloading

ready

moving

history

1

[!armA_over_FB | !brick_ready]

1[]

2

[!armA_over_FB | !brick_ready]

1[armA_over_FB & !armA_open]

1 [brick_ready]

2[armA_over_FB & !armA_open]

1

[armA_over_FB & armA_open]

1

[!armA_over_FB | !brick_ready]

2 [!armA_over_FB & brick_ready]

The above informal abstractions of the state machine function block can be formalized by a
meta-model as illustrated in Fig. 9.

Fig. 9. Meta-model of state machine function blocks

In addition to the meta-model defined as a class diagram, some extra constraints specifying

the static semantics for the state machine model are also defined in OCL, which are
summarized as in Table.1. The meta-model in form of class diagram together with the
constraints expressed in OCL provide a complete formal definition for the corresponding
kind of function block.

Table 1. Example of constraints in OCL

Syntactic
Constraint OCL Expressions Applying

Object
Checking on

Event

The state machine
is reactive.

self.models("State")->forAll(s |
s.connectedFCOs("dst")->size >= 1) StateMachine_FB CLOSE_MODEL

The state machine
is deterministic.

self.connectionPoint("src").target
().attachingConnections("src","tra
nsition")->select(c : transition |
c.event = self.event and c.guard =
self.guard)->size = 1

transition CONNECT

All states are
reachable

self.models("State")->forAll(s |
s.connectedFCOs("src")->size >= 1) StateMachine_FB CLOSE_MODEL

4 Code Generation Technique of COMDES-II Framework

Implementation of COMDES-II system is achieved in two stages: firstly, CodeWorker
generates source code files from GME models; secondly, GCC composes the generated
source files with prefabricated codes into the final executable implementation. Execution of
the first stage is controlled by an application written in Java accessing CodeWorker
functionality via its Java interface, whereas the second stage is conducted by the Makefile
generated in first stage.

COMDES-II implementation is built, or configured from predefined and reusable
components stored in a repository. For each application component instance a data structure

transition
<<Connection>>

guard : field
order : field
event : field

StateMachine_FB
<<Model>>

historySM : bool

history
<<Atom>>

State
<<Model>>

initialState
<<Atom>>

BasicFB_Proxy
<<ModelProxy>>

src
1

0..1

dst 1

0..*

0..* dst
0..*

0..1

src
0..*

(FB execution record) is generated, whereas the accompanying component algorithms (FB
operations) are prefabricated in advance. In this way, during application synthesis no
component executable code is generated.

In order to match the limited resources of embedded systems, COMDES-II framework is
implemented in C language, which could be seen to some extent as a portable source code as
long as the GCC tool chain is employed. Because some parts of the C code (e.g. FB
operations) are only CPU architecture dependant and are compiled into an executable object
codes for a particular CPU architectures, e.g. avr5 – ATmega128. Some parts, as usual, are
dedicated to a particular hardware platform (e.g. hardware I/O drivers) and are written by an
expert once (Fig. 10). In this way, portability and native platform performance is achieved
rather easily, assuming existence of GCC tool chain for the platform of interest.

Fig. 10. Portability of COMDES-II system

An overview of the generation process is given in Fig. 11, with three different scenarios:

• Application synthesis (green, solid line) – models, which provide all necessary
information, drive the configuration of an application.

• Component generation (blue, dashed line) – component execution record is generated, and
then supplemented with the algorithms written by software expert. Final implementation is
stored in a repository of reusable components in a form of executable object file.

• Reconfiguration (red, dotted line) – rather than generating the reconfigured application as a
whole, only the updated part is created, which provides for faster application modification.

Fig. 11. Automatic synthesis of COMDES-II system

XML
GME .xme model

C source
generated

coded by expert

elf
final code

object code
cpu dependent

object code
platform dependent

models parser parse tree generator

C source
files

compilerlinkerfinal code
or update

component
instances

repository -
component
algorithms

linker script

pr
es

s
a

bu
tto

n

BNF scripts
template
scripts

tree
manipu-

lation
C

od
eW

or
ke

r
Le

ve
l

G
C

C
 L

ev
el

link map Makefile

application synthesis

component generation

re-configuration

5 Conclusion

COMDES-II is a component-based framework aiming at the software development in the
domain of distributed embedded systems. The framework provides the modeling methods for
domain-specific features of an embedded system in different aspects, including component
structures and interaction, system concurrency and functionality under the hard real-time
constraints, etc. The provided design methods in these aspects enable COMDES-II a
framework accommodating both the open system architecture as well as the predictable and
deterministic system behaviour.

In the paper a generative programming approach for COMDES-II has been presented,
which involves the meta-modeling of framework modeling language and the development a
dedicated code generation technique. A complete formal definition of the COMDES-II
components carried out in GME consists of a meta-model specified as a class diagram and a
set of constraints expressed in OCL, which is exemplified in the paper with a concrete state
machine function block instance. Automatic synthesis of application implementation is a
process consisting of parsing of models and generating source files in CodeWorker, next,
compiling and linking of all codes in GCC. Ultimate result is the configuration of
applications from reusable and reconfigurable components.

Throughout the development of the generative approach we follow a motto: let the best
tool do the job, the tool that is designed for the job. And therefore we adopt: GME – rapid
development of DSM editor prototypes, CodeWorker – generation of any output and GCC –
compiling and linking of codes. There are also other options of tools which can be used to
develop the graphical DSM editor, for instance, Eclipse EMF/GMF/GEF frameworks [16], or
MetaCASE MetaEdit+ [15].

Eclipse EMF/GMF/GEF frameworks provide an excellent model-driven approach for
creating domain-specific models from their meta-models, and allow developers to establish a
very flexible graphical environment for editing the models, however, developing such a
graphical editor is really a labor-intensive task. MetaEdit+ is a commercial meta-modeling
product developed by MetaCASE, which offers a Symbol Editor that facilitates the
customization of model visual effects and a promising code generation tool for easy
automatic synthesis and documentation. However, the meta-modeling process in MetaEdit+
is not as straightforward as that in GME or Eclipse EMF, and moreover, only the cardinality
constraints of relationships are supported in MetaEdit+, whereas the Object Constraint
Language (OCL) is not implemented. GME enables a powerful meta-modeling capability by
providing a number of unique meta-modeling concepts, such as sets, references and aspects
etc., additionally the OCL language is fully implemented. Automatic synthesis of program is
also possible in GME through user-defined plug-ins and Builder Object Network (BON) API.
A deficiency of GME is that the graphical representation of models can not be dynamically
changed, due to its fixed Model-View-Controller architecture.

The presented software framework has been experimentally validated through two case
studies: the Production Cell Case Study [16] and the Steam Boiler Control Specification
Problem [17]. The envisioned future work includes the development of a graphical editing
toolset in Eclipse, and the meta-model as well as model transformations from GME to the
developed graphical environment. Such transformations can be realized by using dedicated
model transformation languages, just like GReAT – Graph Rewriting And Transformation
language – for model transformations in GME [19].

References

1. Lee, E. A.: Embedded Software. Advances in Computers, Vol.56. Academic Press, London
(2002)

2. Reekie, J., and Lee, E. A.: Lightweight Component Models for Embedded Systems. Technical
Memorandum UCB/ERL M02/30, University of California, Berkeley, CA 94720, USA, October
(2002)

3. Czarnecki, K., and Eisenecker, U. W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley Professional. 1st edition, June (2000)

4. Angelov, C., Xu Ke, and Sierszecki, K.: A Component-Based Framework for Distributed Control
Systems, to be presented to the 32nd Euromicro Conference on Software Engineering and
Advanced Applications (SEAA 2006), Cavtat-Dubrovnik, Croatia, August (2006)

5. Ledeczi, A., Maroti, M., and Bakay, A. et al.: The Generic Modeling Environment. Workshop on
Intelligent Signal Processing, Budapest, Hungary, May (2001)

6. Lemaire, C.: CODEWORKER Parsing tool and Code generator. User’s guide & Reference manual,
Release 4.2, May (2006)

7. Lewis, R.: Modeling Control Systems Using IEC 61499. Institution of Electrical Engineers,
(2001)

8. Maraninchi, F., and Remond, Y.: Applying Formal Methods to Industrial Cases: the Language
Approach (The Production-Cell and Mode-Automata). Proc. of the 5th International Workshop
on Formal Methods for Industrial Critical Systems, Berlin (2000)

9. Angelov, C., Berthing, J., and Sierszecki, K.: A Jitter-Free Operational Environment for
Dependable Embedded Systems. In A. Rettberg et al. (Eds.): From Specification to Embedded
Systems Application. Springer, (2005) 277-288

10. Liu, J., and Lee, E.A.: Timed Multitasking for Real-Time Embedded Software. IEEE Control
Systems Magazine: Advances in Software Enabled Control, Feb. 2003 65-75

11. GME: http://www.isis.vanderbilt.edu/projects/gme/
12. CodeWorker: a parsing tool and a source code generator: http://codeworker.free.fr/
13. GCC, the GNU Compiler Collection: http://gcc.gnu.org/
14. MATLAB and Simulink for Technical Computing: http://www.mathworks.com/
15. MetaCase - Domain-Specific Modeling with MetaEdit+: http://www.metacase.com/
16. The Eclipse Graphical Modeling Framework: http://www.eclipse.org/gmf/
17. F. Maraninchi and Y. Remond: Applying Formal Methods to Industrial Cases: the Language

Approach (The Production-Cell and Mode-Automata). Proc. of the 5th International Workshop
on Formal Methods for Industrial Critical Systems, Berlin, 2000

18. J.-R. Abrial: Steam Boiler Control Specification Problem. http://www.informatik.uni-
kiel.de/~procos/dag9523/dag9523.html

19. G. Karsai, A. Agrawal, F. Shi, J. Sprinkle: On the Use of Graph, Transformation in the Formal
Specification of Model Interpreters. Journal of Universal Computer Science, Special issue on
Formal Specification of CBS, 2003

