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ABSTRACT
It is difficult to write programs that behave correctly in the
presence of run-time errors. Existing programming language
features often provide poor support for executing clean-up
code and for restoring invariants in such exceptional situa-
tions. We present a dataflow analysis for finding a certain
class of error-handling mistakes: those that arise from a
failure to release resources or to clean up properly along
all paths. Many real-world programs violate such resource
safety policies because of incorrect error handling. Our
flow-sensitive analysis keeps track of outstanding obligations
along program paths and does a precise modeling of control
flow in the presence of exceptions. Using it, we have found
over 800 error handling mistakes almost 4 million lines of
Java code. The analysis is unsound and produces false posi-
tives, but a few simple filtering rules suffice to remove them
in practice. The remaining mistakes were manually verified.
These mistakes cause sockets, files and database handles to
be leaked along some paths. We present a characterization
of the most common causes of those errors and discuss the
limitations of exception handling, finalizers and destructors
in addressing them. Based on those errors, we propose a pro-
gramming language feature that keeps track of obligations
at run time and ensures that they are discharged. Finally,
we present case studies to demonstrate that this feature is
natural, efficient, and can improve reliability; for example,
retrofitting a 34kLOC program with it resulted in a 0.5%
code size decrease, a surprising 17% speed increase (from
correctly deallocating resources in the presence of excep-
tions), and more consistent behavior.
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1. INTRODUCTION
An IBM survey [Cri87] reports that up to two-thirds of

a program may be devoted to error handling. Our experi-
ments with a suite of open-source Java programs ranging in
size from 4,000 to 1,600,000 lines of code suggest that error
handling is a lesser fraction of all source code but that it
is still significant. Between 1% and 5% of program text in
our experiments was comprised of error-handling catch and
finally blocks. Between 3% and 46% of the program text
was transitively reachable from catch and finally blocks,
which often contain calls to cleanup methods. Aside from
programs specifically designed from the ground up for reli-
ability (e.g., [BP03]), these proportions grow with program
size and age. These broad numbers suggest that error han-
dling is an important part of such programs and that much
effort is devoted to it.

Despite the importance of addressing run-time errors,
poor handling abounds. Here we are not concerned with
the frequency of run-time errors but instead with how the
program reacts to such exceptional situations. Error han-
dling mistakes in which “applications don’t properly handle
error conditions that occur during normal operation” are
one of the top ten causes of Java web application security
risks [Adv03]. Exception handling itself is insufficient: along
with others [AHA+00], we observe that the two most com-
mon exception handling strategies are (1) do nothing, and
(2) abort the program. In addition, existing exception han-
dling mechanisms in programming languages are too low-
level: higher-level machinery for error-handling is needed.
In particular, attention is rarely paid to restoring invari-
ants and adhering to interface requirements (e.g., releasing
previously-acquired resources). Based on a static analysis,
we will present experimental evidence that many Java pro-
grams make mistakes of this nature. The biggest problem



is that programs fail to account for all possible execution
paths in the presence of run-time errors.

It is hard to restore invariants correctly on all paths. We
propose a mechanism where program actions can be asso-
ciated with compensations, code that semantically undoes
effects and restores invariants. This mechanism is similar
to destructors and finalizers. This system ensures that if an
action is taken, the program cannot halt without first exe-
cuting the compensation. Thus a program that acquires a
resource protected by this mechanism will release that re-
source along all execution paths, including those on which
run-time errors occur. The compensating actions themselves
are recorded and executed at run time. Compensations are
stored in special run-time stacks. Our system uses stacks
because dependencies between important resources make it
desirable to execute the most recent compensation first.

The contributions of this paper include:

• A static analysis for locating mistakes in resource man-
agement run-time error handling. We report on such
mistakes in a large number of programs.

• A language-level mechanism for associating compensa-
tions with actions and guaranteeing that the compen-
sations are executed along all paths.

Section 2 provides a motivating example and shows com-
mon practices in error handling. We discuss our analysis for
finding error-handling mistakes in Section 3. In Section 4,
we apply the analysis and show that many programs make
mistakes in their error handling. We attempt to character-
ize common mistakes in Section 5. In Section 6 we examine
problems with error-handling via destructors and finalizers.
Section 7 describes formally our proposed language features
for run-time error handling. Case studies arguing that our
proposed features are efficient and natural are given in Sec-
tion 8. We place this work in context in Section 9 and
compare it to existing techniques. In Section 10 we mention
future research directions. Section 11 concludes.

2. MOTIVATING EXAMPLE
Consider this code, taken from Ohioedge CRM,

the largest open-source customer relations management
project [Sou03].

01: Connection cn; PreparedStatement ps; ResultSet rs;
02: try {
03: cn = ConnectionFactory.getConnection(/* ... */);
04: StringBuffer qry = ...; // do some work
05: ps = cn.prepareStatement(qry.toString());
06: rs = ps.executeQuery();
07: ... // do I/O-related work with rs
08: rs.close(); ps.close();
09: } finally {
10: try { cn.close(); }
11: catch (Exception e1) { }
12: }

This program uses language features to facilitate run-time
error handling (i.e., Java’s finally), but many problems re-
main. Connections, PreparedStatements and ResultSets
represent global resources associated with an external
database, so the program should close each one as quickly
as possible. If a run-time error occurs on line 4, the runtime
system will raise an exception, and the program will close
the open Connection on line 10. However, if a run-time er-
ror occurs on line 7 (or 6 or 8), the resources associated with
ps and rs will not be freed.

Moving the close calls from line 8 into the finally block
is insufficient for at least two reasons. First, the close

method itself can raise exceptions (as indicated by lines 10
and 11), so a failure while closing rs might leave ps dan-
gling. Second, if an error occurs on line 5, an attempt will
be made to close the never-opened and still-null rs, caus-
ing a null-pointer exception.

This sort of code is quite common and highlights a num-
ber of important observations. First, the programmer is
aware of the safety policies: try and close abound. Sec-
ond, there are many paths where error handling is poor.
Third, there are a few control-flow paths where the error
handling works correctly, so the programmer is aware of the
correct policy. Finally, fixing the problem typically has soft-
ware engineering disadvantages: the distance between any
resource acquisition and its associated release increases, and
extra control flow used only for error-handling must be in-
cluded. In addition, if another procedure wishes to make use
of Connections, it must duplicate all of this error handling
code. This duplication is frequent in practice; the source
file containing the above example also contains two similar
procedures that make the same mistakes. Developers have
cited this required repetition to explain why error handling
is sometimes ignored (e.g., [BP03]). In general, correctly
dealing with N resources requires N nested try-finally
statements or a number of run-time checks (e.g., checking
each variable against null or keeping track of progress in
a counter variable). Handling such problems is complicated
and error-prone in practice, and we claim it could be made
easier with more support from the programming language.

In the next section we will discuss an analysis for au-
tomatically discovering such error-handling mistakes. For
example, this analysis will report three paths in the
example above. If an exception occurs on line 6, a
PreparedStatement is leaked. If an error occurs on line
7, both the PreparedStatement and the ResultSet are for-
gotten. Finally, if the first call to close on line 8 raises an
exception, the PreparedStatement is again leaked.

3. ERROR-HANDLING ANALYSIS
We present a static analysis for locating mistakes in re-

source management run-time error handling. This analysis
yields paths through methods on which mistakes may oc-
cur and can be used to direct changes to the source code to
improve error handling. The analysis may report false pos-
itives and may miss real errors. We have chosen to take a
fully static approach to avoid the problems of test case gen-
eration and the unavailability of third-party libraries. Path
coverage and test case generation are particularly thorny
problems in the context of run-time errors and exceptions,
which are typically rare and difficult to trigger.

We consider each method body in turn, symbolically ex-
ecuting all code paths, abstracting away data values but
paying special attention to control flow and exceptions.

The first step is to create the control-flow graph. Con-
structing a control-flow graph that explicitly accounts for
exceptional control flow is non-trivial in Java. While try-
catch-finally is conceptually simple, it has the most com-
plicated execution description in the language specifica-
tion [GJS96] and requires four levels of nested “if”s in its
English description. In short, it contains a large number of
corner cases that programmers often overlook.



3.1 Fault Model
Modeling exceptional control-flow requires determining

where exceptions can be raised. We treat throw statements
directly, but all other expressions fall under a specific fault
model we have adopted. In Java, method declarations ex-
plicitly list all checked exceptions that they can (transi-
tively) raise. We assume that all method and constructor in-
vocations can either return normally or raise any of their de-
clared exceptions. This choice is motivated by experiments
demonstrating that actual failures (e.g., pulling the plug on
a remote machine) do map to application-visible checked ex-
ceptions at call sites [CDCF03]. In addition to such checked

exceptions, Java also contains unchecked exceptions for sit-
uations like null-pointer dereferences and division by zero.
Thus we could treat any division expression, for example,
as terminating normally or raising a DivisionByZero ex-
ception. In our fault model we do not consider such implicit
unchecked exceptions because they do not necessarily cor-
respond to the run-time errors that concern us.

Finally, there is the practical issue of unavailable code
(in particular, public domain code written against commer-
cial database libraries). When a method in an unavailable
library is invoked, its signature is also unavailable so we can-
not determine what exceptions it may raise. Our fault model
is to assume that it can raise any exception mentioned in a
lexically-enclosing catch clause or raised by the enclosing
method. This fault model gives the programmer the benefit
of the doubt and also concentrates the analysis on mistakes
in existing error handling (which is common in our expe-
rience), not mistakes caused by completely forgetting error
handling (rare in our experience). Once an exception has
been raised, type-checking is required in order to determine
control flow. Barring finally clauses, execution transfers
to the nearest enclosing catch clause with a declared excep-
tion parameter that is a supertype of the raised exception’s
type. Note that our fault model is Java-specific but that our
dataflow analysis is language-independent.

3.2 Dataflow Analysis
Given the control-flow graph, our flow-sensitive, intrapro-

cedural dataflow analysis [Kil73, DLS02, ECCH00] is de-
signed to find paths along which programs forget to dis-
charge obligations in the presence of run-time errors. We
abstract away data values, and retain as symbolic state a
path through the program and a multiset of outstanding re-
source types for that path. That is, rather than keeping
track of which variables hold important resources we merely
keep track of a set of acquired resource types. We begin
the analysis of each method body with an empty path and
no obligations. If a symbolic state at the end of method
contains outstanding obligations, we term it a violation and
report it.

The analysis is parametric with respect to a safety policy.
The safety policy enumerates the abstract obligations (e.g.,
Socket and ResultSet are different resources that must be
tracked separately) and lists method invocations (by receiver
class and name) that create and discharge such obligations.
We formalize the safety policy as a set of triples: method
names, an add-or-remove annotation, and a unique resource
identifier. For example, these triples are a subset of our
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sthen = visit(s, L)
selse = visit(s, L)

sn =

 add(s, o, L) if (meth, add, o) ∈ Policy
del(s, o, L) if (meth, del, o) ∈ Policy
visit(s, L) otherwise

se =

{
del(s, o, L) if (meth, del, o) ∈ Policy
visit(s, L) otherwise

sother = visit(s, L)

sjoin =

{
visit(shorter(s, s′), L) if s.obs = s′.obs
visit(s, L) ∪ visit(s′, L) otherwise

visit(〈obs, path〉, L) = {〈obs, path • L〉}
add(〈obs, path〉, o, L) = {〈{o} ∪ obs, path • L〉}
del({o} ∪ obs, path〉, o, L) = {〈obs, path • L〉}

shorter(〈o, p〉, 〈o, p′〉) =

{
〈o, p〉 if |p| ≤ |p′|
〈o, p′〉 otherwise

Figure 1: Analysis flow functions. obs is a multiset of
obligations, path is a sequence of locations. Each in-
coming state from s (an 〈obs, path〉 pair) is considered
individually and produces a set of outgoing states.

database safety policy and handle ResultSets:

(java.sql.Statement.executeQuery, add, ResultSet)
(java.sql.PreparedStatement.executeQuery, add, ResultSet)
(java.sql.ResultSet.close, del, ResultSet)

Given such a safety policy we must still determine what
state information to propagate on the graph, and give flow
and grouping functions. Much like the ESP [DLS02] and
Metacompilation [ECCH00] projects, we combine a degree
of symbolic execution with dataflow and often keep state
associated with multiple distinct paths that pass through
the same program point.

The symbolic state s = 〈obs, path〉 propagated from node
to node is a multiset of outstanding obligations, obs, and
a sequence of program point labels, path. Thus at the be-
ginning of line 6 in the example in the previous section,
we would carry the information that a Connection and a
PreparedStatement obligation are present (but not which
variables contain them) and that lines 1, 2, 3, 4 and 5 have
been executed.

3.3 Flow Functions
The flow functions are determined by the safety policy and

are given in Figure 1. The four main types of control flow
nodes are branches, method invocations, other statements
and join points.

We handle normal and conditional control flow by ab-
stracting away data values: control can flow from an if

to both the then and the else branch (assuming that the
guard does not raise an exception, etc.) and our symbolic
state propagates directly from the incoming edge to both



outgoing edges. We write visit(s, L) to mean the symbolic
state s with location L appended to its path.

A method invocation may terminate normally, repre-
sented by the sn edge in Figure 1. Such an invocation of an
obligation-creating method adds the appropriate obligation
to the symbolic state (and is propagated to the next pro-
gram point). We write add(s, o, L) to mean a new symbolic
state like s that includes obligation o and has L appended to
its path. A method invocation may also discharge an obliga-
tion depending on the safety policy, and we use del(s, o, L)
to mean a new symbolic state like s with obligation o deleted
and L appended to the path. An attempt to discharge an
obligation that is not present is reported as a violation, but
that never occurred in our experiments. All other successful
method invocations do not change the outstanding obliga-
tions.

A method invocation may also raise a declared exception,
represented by the se edge in Figure 1. Note that unlike the
successful invocation case and as per our fault model, the
symbolic state does not accrue obligations since the method
did not complete normally. However, an attempt to dis-
charge an obligation that raises an exception still removes
that obligation. Thus we do not require that programs loop
around close functions, invoking them until they succeed.
Since close functions can generally not be retried and al-
most no programs we have observed do so, it would create
unnecessary false positives. In any event, the resulting sym-
bolic state is propagated to the nearest appropriate handler.

Continuing the above example, evaluating line 6 would
propagate Connection, PreparedStatement and ResultSet

to line 7 and Connection and PreparedStatement to line 10
(assuming that executeQuery is declared to raise an excep-
tion). As described above, any invocation of an obligation-
discharging method discharges the obligation, but we still
consider both normal and exceptional control flow. For ex-
ample, rs.close() on line 8 always removes the ResultSet

from the set of obligations, but may propagate to both the
next statement on line 8 and the finally block on line 10.

The grouping (or join) function tracks separate paths
through the same program point provided that they have
different obligation lists. Our join function uses the property
simulation approach [DLS02] to grouping sets of symbolic
states. We merge states with identical obligations by retain-
ing only the shorter path for error reporting (modeled here
with the function shorter(s1, s2)).

To ensure termination we stop the analysis and flag an
error when a program point occurs twice in a path with
different obligation sets (e.g., if a program acquires obli-
gations inside a loop). For the safety policies we consid-
ered, that never occurred. The analysis is exponential in the
worst case (e.g., sequential if statements with every path
containing a different obligation list) but quite efficient in
practice. For example, performing this analysis on the 57k
LOC hibernate program, including parsing, typechecking
and printing out the resulting error traces, took 104 seconds
and 46 MB of memory on a 1.6 GHz machine.

3.4 Error Report Filtering
Finally, we use heuristics as a post-processing step to filter

reported violations and avoid false positives. Based on an
exhaustive analysis of the false positives reported by this
analysis, we designed three simple filtering rules.

When a violation is reported, we examine its path. Every

time it passes through a conditional of the form t = null
we remove an outstanding obligation that has the same type
as t. This addresses the very common case of checking for
null resources:

if (sock != null) { try { sock.close(); }
catch (Exception e) { } }

Since we abstract away data values, we would report a
false positive in such cases. Intuitively, the resource is not
leaked along this path because the program has checked and
ensured that it was not allocated.

Second, we examine the path for assignments of the form
field = t. For each such assignment we remove one out-
standing obligation with the same type as t. When impor-
tant resources are assigned to object fields, the object al-
most invariably contains a separate “cleanup” method that
is charged with releasing those resources. As we shall dis-
cuss in Section 6, this cleanup method is almost never an
actual finalizer.

Finally, if the path contains a return t, we remove one
outstanding resource of type t. Such functions are effectively
wrappers around the standard library constructors and the
obligation for discharging the resource falls to the caller.
We did not observe wrappers for standard library close

functions, so we do not similarly remove obligations based
on values passed as function arguments.

Our first heuristic helps to reduce false positives intro-
duced by data abstraction. The second and third heuristics
help to address false positives caused by the intraprocedural
nature of our analysis. These three simple filters eliminate
all false positives we encountered but could cause this anal-
ysis to miss real errors. We discuss the ramifications along
with the results in the next section.

3.5 Analysis Summary
Our fault model is specific to Java, and we use it to con-

struct a control-flow graph where method invocations can
raise declared exceptions. We chose Java because experi-
ments show that exceptions and run-time errors are corre-
lated and because method signatures include exception in-
formation. Our dataflow analysis is language-independent.
The analysis is flow-sensitive because we want to consider
control flow and because the abstract state of a resource
(e.g., acquired or released) can change from program point
to program point. The analysis is intraprocedural for effi-
ciency since we track separate execution paths. This leads
to false positives, which we can eliminate easily in practice,
but our heuristics for doing so may also mask real errors.
The analysis abstracts away data values, keeping instead a
set of outstanding resource types as the per-path symbolic
state. This abstraction can also lead to false positives and
false negatives, but stylized usage patterns allow us to elim-
inate the false positives in practice. At join points we keep
symbolic states separate if they have distinct sets of obliga-
tions.1 We report a violation when a path leaves a method
(normally or exceptionally) with an outstanding obligation.

1In the analysis presented, keeping two states will usually yield a
violation later. We present the general join so that if the analysis
abstraction is made more precise (e.g., if it captures correlated
conditionals) the join will work unchanged.



Lines Methods paths with errors
Program of with per safety policy

Code Errors DB File Strm
javad 2000 4k 1 0 0 1
javacc 3.0 13k 4 0 36 0
jtar 1.21 17k 5 0 7 4
jatlite 3.5.97 18k 6 0 4 0
toba 1.1c 19k 6 0 1 20
osage 1.0p10 20k 3 15 0 0
jcc 0.02 26k 0 0 0 0
quartz 1.0.6 27k 17 46 5 20
infinity 1.28 28k 14 0 165 1
ejbca 2.0b2 33k 31 0 39 117
ohioedge 1.3.1 40k 15 23 5 0
jogg 1.1.3 47k 7 0 11 2
staf 2.4.5 55k 12 0 76 0
hibernate 2.0b4 57k 13 34 6 19
jaxme 1.54 58k 6 1 12 0
axion 1.0m2 65k 15 1 61 5
hsqldb 1.7.1 71k 18 22 8 13
cayenne 1.0b4 86k 7 2 27 6
sablecc 2.17.4 99k 3 0 0 6
jboss 3.0.6 107k 40 134 5 53
mckoi-sql 1.0.2 118k 37 37 6 190
portal 1.8.0 162k 39 99 20 13
pcgen 4.3.5 178k 17 0 120 0
compiere 2.4.4 230k 322 715 10 9
aspectj 1.1 319k 27 0 50 48
ptolemy2 3.0.2 362k 27 0 504 46
eclipse 5.25.03 1.6M 126 0 181 252
total 3.9M 818 1129 1359 825

Figure 2: Error handling mistakes by program and
policy. The “Methods” column indicates the to-
tal number of distinct methods that contain viola-
tions. The “DB”, “File”, and “Stream” columns
give the total number of acyclic control-flow paths
within those methods that violate the given policy.

4. POOR HANDLING ABOUNDS
In this section we apply the analysis from the previous sec-

tion and show that many programs make mistakes in their
run-time error handling.

Safety Policies. We surveyed catch blocks, finally

blocks, and object finalizers in order to see what error han-
dling existing programs found important. In order to make
our analysis as applicable as possible, we looked for safety
with respect to some standard Java library resources. These
policies have an acquire-release flavor: if a resource has been
acquired, a special function must later be called to release
it. We arrived at a set of resources and policies by sys-
tematically inspecting Java programs and then checking the
official definition in Java Platform API Specification. In our
experiments, any program that used a resource of a certain
type had at least some paths along which it adhered to that
resource’s safety policy. Correctly handling these resources
is important but difficult to do perfectly in the presence of
run-time errors.

Figure 2 shows results from this analysis. The “Methods”
column shows the number of methods that violate at least
one policy. The “DB” policy refers to an API for linking
Java programs to SQL databases as mentioned in Section 2.
Java programs consider this policy to be particularly impor-
tant: the vast majority of finally blocks tried to deal with
it. In includes ten method calls governing three resources:
Connections, Statements, and ResultSets. The “Stream”

policy deals with any class (even a user-defined one) that in-
herits from java.io.InputStream. The Java Platform API
indicates that “system resources” may be associated with
such streams. The “File” policy covers acquiring and releas-
ing java.io.FileInputStreams. In addition, we applied a
simple “Socket” policy (not detailed in Figure 2) that cov-
ers the Socket and ServerSocket constructors and close

methods and found 14 paths with violations in 4 of the pro-
grams.

Programs. The programs were taken from open source
repositories (e.g., [Sou03]), ranging from business soft-
ware (compiere) to music players (jogg), from databases
(hsqldb) to games (pcgen) to heterogeneous concurrent
modeling (ptolemy2 [BKL+04]). In the larger programs,
much of the application logic did not interact with our safety
policies. For example, in eclipse and ptolemy2 only 10%
of the files mentioned resources covered by these safety poli-
cies, and in aspectj only 16% of the files did, making them
behave like smaller programs.

False Positives. Figure 2 includes every violation re-
ported by the analysis that was not automatically filtered
out using the heuristic techniques presented in the previous
section. All of the methods with errors were then manually
inspected to verify that they contained at least one error.
This manual inspection assumed that a method could raise
any of its declared exceptions. The heuristics eliminate all
false positives that the analysis would report on these pro-
grams.

The heuristics reduce the number of reported methods by
20% (from 1034 to 818) and the number of reported paths
by 15% (from 3922 to 3320). The applicability of a heuris-
tic depends on the coding practices of the program. For
example, in ejbca, which favors populating catch blocks
with statements like if (c != null) c.close(), there are
10 methods that are not reported because of the if filter
and 4 that are not reported because of a combination of the
if and return filters. In mckoi-sql, which makes use of
wrappers and accessors like getInputStream(), 25 methods
are elided by the return filter, 2 are not reported because
of the assignment filter, and 1 is suppressed because of a
combination of filters.

From our perspective, such false positives are worth men-
tioning because they represent places where code quality
could be improved by other language-level mechanisms; if
an analysis cannot reason about the code, the programmer
may not be able to either.

Error Paths. All paths in Figure 2 arose in the presence
of exceptions the program did not handle correctly. More
than half of these paths featured some sort of exception
handling (i.e., the exception was caught), but the resource
was still leaked. This result demonstrates that existing
exception handlers contain mistakes. Java’s IOException,
SQLException and SecurityException were the three most
common exceptions that programs handled poorly in this
manner.

A single path may violate multiple safety policies: for ex-
ample, along an exceptional path the program might forget
to close a Socket and a ResultSet. For simplicity, such
cases are categorized in favor of the leftmost policy in Fig-
ure 2. To give one example, of the 59 possible error paths
reported in hibernate, 34 involved violating multiple poli-
cies along a single path with up to 4 forgotten resources
at once. Errors that cross safety policies argue strongly for



the need to have an error-handling mechanism that supports
multiple resources in sequence. In the next section we will
summarize trends in error-handling mistakes.

Finally, some programs contain some methods that never
close these resources at all and others that close them care-
fully. For example, in ejbca’s HttpGetCert.sendHttpReq
method, a BufferedReader is created but not closed (al-
though two other resources are closed in that method).
However, in ejbca’s RemoveVerifyServlet.loadUserDB, a
BufferedReader is given its own try-finally statement
and its close call is given its own exception handler
within that finally block. We report sendHttpReq as a
method with an error-handling mistake, following Engler et
al. [ECC01], since the ejbca program takes care to handle
BufferedReaders in some cases and is thus inconsistent with
itself.

5. MISTAKE CHARACTERIZATION
In this section we attempt to characterize some of the er-

rors found by our analysis, paying special attention to the
qualities a handling mechanism should have in order to ad-
dress these errors naturally.

In some cases, try-finally handling is skipped entirely,
as in this example from axion’s ObjectBTree class:

01: public void read() throws IOException, /* ... */ {
02: File idxFile = getFileById(getFileId());
03: // ...
04: FileInputStream fin = new FileInputStream(idxFile);
05: ObjectInputStream in = new ObjectInputStream(fin);
06: // ...
07: in.close();
08: fin.close();
09: }

This happens even though the annotation on line 1 and ex-
tant handling in other methods mean that the programmer
is aware of the possibility of run-time errors. Such examples
show that it would be useful to have an automatic mech-
anism that does the right thing in common cases with no
programmer intervention.

It is also common for try-finally statements to protect
some, but not all, operations, as in this fragment from staf’s
STAXMonitor class:

01: ObjectInputStream ois = null;
02: try {
03: ois = new ObjectInputStream(/* ... */);
04: // ...
05: } catch (StreamCorruptedException ex) {
06: if (ois != null) { ois.close(); }
07: showErrorDialog(/* ... */);
08: return false;
09: }
10: Object obj = ois.readObject(); // no try
11: ois.close(); // no finally

Care is taken to deal with run-time errors that occur on
lines 3–4 when ois is created and used, but reading from ois

on line 10 is done without an enclosing try-finally. These
examples show that it would be useful to have a mechanism
that allows fine-grained control for some error handling but
automatic behavior for others.

A single project will often re-use an error-handling design
pattern that contains flaws. In the rest of the discussion,
we assume that (1) if method a1() is called then method
c1() should be called, (2) c1() should not be called unless
a1() succeeds (similarly for all ai() and ci()), and (3) that
all methods can raise exceptions and suffer from run-time
errors. Thus the previous example would be rendered:

try { a1(); wrk(); } catch { c1(); return; } wrk(); c1();

In osage multiple methods use this form:

try { a1(); a2(); } finally { c2(); c1(); }

Such handling can fail if a2 or c2 raises an exception.
Some programs, like compiere, treat multiple resources se-
quentially but still fail to handle errors perfectly:

a1(); c1(); a2(); c2(); // no try-finally

The quartz program contains a number of instances of:

try { a1(); a2(); } finally { c1(); }

Such partial handling covers some of the resources, but
not all. The ohioedge program contains examples like:

for (...) { a1(); wrk(); c1(); }

Such handling can be difficult to reason about statically,
especially if the important resources are not variables local
to the loop body. Finally, various programs often use flags
(and often use them correctly) to track resources and free
them early:

try { a1(); f = 0; if (...) { f = 1; c1(); } wrk(); }
finally { if (!f) { c1(); } }

In many cases, like the example in Section 2, error han-
dling with multiple resources contains an insufficient num-
ber of try statements to handle all paths. One common
approach to handling this problem is to introduce a flag
variable (or check individual objects against null), as the
following examples (adapted from [BP03]) illustrate:

01: int f = 0;
02: try {
03: a1(); f = 1;
04: a2(); f = 2;
05: a3(); f = 3;
06: } finally {
07: switch (f) {
08: case 3: try { c3(); } catch (Exception e) {}
09: case 2: try { c2(); } catch (Exception e) {}
10: case 1: try { c1(); } catch (Exception e) {}
11: }
12: }

This approach has a number of software engineering disad-
vantages. One is that the cleanup code is distant from the
action code. Another is that control-flow that determines
the actions must be duplicated in reverse for the cleanup.
Every distinct path of normal control flow must have a cor-
responding path in the exceptional error-handling control
flow. The following code fragment demonstrates this com-
plexity:

01: int f = 0;
02: try {
03: a1(); f = 1;
04: if (p2) { a2(); f = 2; did_a2 = true; }
05: a3(); f = 3;
06: } finally {
07: switch (f) {
08: case 3: try { c3(); } catch (Exception e) {}
09: case 2: if (did_a2) try { c2(); } catch // ...
10: case 1: try { c1(); } catch (Exception e) {}
11: }
12: }

Thus attempting to deal with the issue introduces addi-
tional logic into the program that must be maintained (and
reproduced at every resource use). If the control-flow is non-
trivial (e.g., a while loop or a visitor that performs actions



on btree elements) it might not even be desirable to repro-
duce the control flow (e.g., in the btree case it would involve
jumping to the middle of the tree and then traversing it in
reverse). In such general cases it makes more sense to record
which actions were taken at run-time and then clean up ex-
actly what is required. A mechanism that does not require
the programmer to reproduce control flow or introduce ex-
tra bookkeeping is desired here. In the next section we will
examine destructors and finalizers, which are modern pro-
gramming language features that could be used to address
such concerns, and argue that they are not sufficient.

6. DESTRUCTORS AND FINALIZERS
Destructors and finalizers are existing programming lan-

guage features that can help programs deal with resources
in the presence of run-time errors.

Destructors provide guaranteed cleanup actions for stack-
allocated objects even in the presence of exceptions. How-
ever, for heap-allocated objects the programmer must still
remember to explicitly delete the object along all paths. We
would like to generalize the notion of destructors: rather
than one implicit stack tied to the call stack, programmers
should be allowed to manipulate first-class collections of
obligations. In addition, programmers should have guaran-
tees about managing objects and actions that do not have
their lifetimes bound to the call stack (such objects are com-
mon in practice — see e.g., [GA98]). In many domains,
multiple stacks are a more natural fit with the application.
For example, a web server might store one such stack for
each concurrent request. If the normal request encounters
an error and must abort and release its resources, there is
generally no reason that another request cannot continue.
Destructors can be invoked early, but would typically have
to include a flag to ensure that actions are not duplicated
when it is called again. We believe such bookkeeping should
be automatic. Destructors are tied to objects and there are
many cases where a program would want to change the state
of the object, rather than destroying it. We shall return to
that consideration in Section 7.1.

Compared to pure finalizers, most programmer-specified
error handling must be more immediate and more determin-
istic. Finalizers are arguably well-suited to resources like file
descriptors that must be collected but need not be collected
right away.2 In contrast, the database locks from the exam-
ple in Section 2 should be released as quickly as possible,
making finalizers an awkward fit for performance reasons.
We want a mechanism that is well-suited to being invoked
early, and while finalizers can be called in advance they suffer
from the same disadvantages as destructors in that regard.
Like destructors, finalizers can be invoked early but doing
so typically requires additional bookkeeping.

More importantly, finalizers in Java come with no order
guarantees [GJS96]. For example, a Stream built on (and
referencing) a Socket might be finalized after that socket if
they are both found unreachable in the same garbage col-
lection pass. If the arbitrary cleanup actions above were to
be handled by finalizers on dependent objects, the natural
“trick” of adding an extra pointer field to the child object
pointing to the parent object in order to ensure that the

2Even this use of finalizers is often discouraged because programs
have a limited number of file descriptors and can easily “race”
with the garbage collector to exhaust them.

child action is called before the parent action would not
be sound. Thus we desire an error handling mechanism that
can strictly enforce such dependencies and provide a more
intuitive ordering for cleanup actions. While such depen-
dencies could be encoded in a finalizer system, we did not
observe such a system in any of the programs we examined
in Section 4.

Finally, it is worth noting that Java programmers do not
make even a sparing use of finalizers to address these prob-
lems. Some Java implementations do not implement final-
izers correctly [Boe03], finalizers are often viewed as unpre-
dictable or dangerous, and the delay between finishing with
the resource and having the finalizer called may be too great.
In all of the code surveyed in Section 4, there were only 13
user-defined finalizers (hibernate had 4; osage had 3; jboss
and eclipse had 2; javad and aspectj had 1). In our ex-
perience, Java programmers basically do not use finalizers.
One might also hope that standard libraries would make
use of finalizers, but this is not always the case. The GNU
Classpath 0.05 implementation of the Java Standard Library
does not use finalizers for any of the resources governed by
the safety policies in Section 4. Sun’s JDK 1.3.1 07 does use
them, but only in some situations (e.g., for database connec-
tions but not for sockets). While other or newer Standard
Libraries may well use finalizers for all such important re-
sources, one cannot currently portably count on the Library
to do so. We would like to make something like finalizers
more useful to Java programmers by making them easier to
use and giving them destructor-like properties.

The results in Section 4 argue that language support is
necessary: merely making a better Socket library will not
help if Sockets, databases, and user-defined resources must
be dealt with together. Using exception handling to han-
dle run-time errors is difficult. In the next section, we will
describe language mechanisms that make it easy to do the
right thing: all of the mistakes presented here could have
been avoided using our proposed language extensions. In
addition, the analysis presented in this section can easily ver-
ify that programs using our mechanisms are handling these
resources correctly.

7. COMPENSATIONS
Based on our characterization of existing mistakes and

coding practices in Section 5 and existing programming lan-
guage techniques in Section 6, we propose a language ex-
tension where program actions and interfaces are annotated
with “compensations,” which are closures containing arbi-
trary code. At run-time, these compensations are stored in
first-class stacks. Compensation stacks can be thought of as
generalized destructors, but we emphasize that they can be
used to execute arbitrary code and not just call functions
upon object destruction.

Our compensation stacks are an adaptation of the
database notions of compensating transactions and linear
sagas [GMS87]. A compensating transaction semantically
undoes the effect of another transaction after that trans-
action has committed. A saga is a long-lived transaction
seen as a sequence of atomic actions a1...an with compen-
sating transactions c1...cn. This system guarantees that ei-
ther a1...an executes or a1...akck...c1 executes. Note that
the compensations are applied in reverse order. We have
found this model to be a good fit for this sort of run-time
error handling. Many conceptually simple program actions



actually require that multiple resources be handled in se-
quence.

Our system allows programmers to link actions with com-
pensations, and guarantees that if an action is taken, the
program cannot terminate without executing the associated
compensation. Compensation stacks are first-class objects
that store closures. They may be passed to methods or
stored in object fields. The Java language syntax is ex-
tended to allow arbitrary closures to be pushed onto com-
pensation stacks. These closures are later executed in a
last-in, first-out order. Closures may be run “early” by the
programmer, but they are usually run automatically when
a stack-allocated compensation stack goes out of scope or
when a heap-allocated compensation stack is finalized. If
a compensating action raises an exception while executing,
the exception is logged but compensation execution contin-
ues.3 When a compensation terminates (either normally or
exceptionally), it is removed from the compensation stack.

Compensation stacks normally behave like generalized de-
structors, deallocating resources based on lexical scoping,
but they are also first-class collections that can be put in
the heap and that make use of finalizers to ensure that their
contents are eventually executed. The ability to execute
some compensations early is important and allows the com-
mon programming idiom where critical shared resources are
freed as early as possible along each given path. In addition,
the program can explicitly discharge an obligation without
executing its code (presumably based on outside knowledge
not directly encoded in the safety policy). This flexibility
allows compensations that truly undo effects to be avoided
on successful executions, and it requires that the program-
mer annotate a small number of success paths rather than
every possible error path. Additional compensation stacks
may be declared to create a “nested transaction” effect. Fi-
nally, the analysis in Section 3 can be easily modified to
show that programs that make use of compensation stacks
do not forget obligations.

7.1 Implementation
We implemented compensation stacks using a source-level

transformation for Java programs. This entails defining
a CompensationStack class, adding support for closures
(as in [OW97]), and adding convenient syntactic sugar for
lexically-scoped compensation stacks.

In our system, the client code from Section 2 looks like
this:

01: Connection cn; PreparedStatement ps; ResultSet rs;
02: cn = ConnectionFactory.getConnection(/* ... */);
03: StringBuffer qry = ...; // do some work
04: ps = cn.prepareStatement(qry.toString());
05: rs = ps.executeQuery(S);
06: ... // do I/O-related work with rs

3Neither Java finalizers nor POSIX cleanup handlers propagate
such exceptions. Lisp’s unwind-protect may not execute all
cleanup actions if one raises an exception. In analogous situ-
ations, C++ aborts the program. Since our goal is to keep the
program running and restore invariants, we choose to log such ex-
ceptions. Ideally, error-prone compensations would contain their
own internal compensation stacks for error handling. A second
option would be to have the type system statically verify that a
compensation cannot raise an exception. In the particular exam-
ple of Java, this solution is not desirable. First, it would require
checking unchecked exceptions, which is non-intuitive to most
Java programmers. Second, most compensations can, in fact,
raise exceptions (e.g., close can raise an IOException).

All of the release actions are handled automatically,
even in the presence of run-time errors. An implicit
CompensationStack based on the method scope is being
used and the resource-acquiring methods have been anno-
tated to use such stacks. We will now elaborate those de-
tails and develop our system to the point where such code
behaves correctly along all paths.

The first step in such an approach is to annotate the in-
terface of methods that acquire important resources. For
example, we would associate with the action getConnection
the compensation close at the interface level so that all uses
of Connections can be affected. Consider this code:

public Connection getConnection() throws SQLException {
// ... do work ...

}

We would change it so that a CompensationStack argu-
ment is required. The syntax compensate { a } with { c
} using (S) corresponds to executing the action a and then
pushing the compensation code c on the stack S if a com-
pleted normally. The modified definition follows:

public Connection getConnection(CompensationStack S)
throws SQLException {
compensate { /* ... do work ... */ }
with { this.close(); } using (S);

}

As we mentioned in Section 6, this mechanism has the ad-
vantages of early release and proper ordering over just using
finalizers. Not all actions and compensations must be asso-
ciated at the function-call level; arbitrary code can be placed
in compensations. After annotating the database interface
with compensation information, the client code might look
like this:

01: Connection cn; PreparedStatement ps; ResultSet rs;
02: CompensationStack S = new CompensationStack();
03: try {
04: cn = ConnectionFactory.getConnection(S, /* ... */);
05: StringBuffer qry = ...; // do some work
06: ps = cn.prepareStatement(S, qry.toString());
07: rs = ps.executeQuery(S);
08: ... // do I/O-related work with rs
09: } finally {
10: S.run();
11: }

As the program executes, closures containing compensa-
tion code are pushed onto the CompensationStack S. Com-
pensations are recorded at run-time, so resources can be ac-
quired in loops or other procedures. Before a stack becomes
inaccessible, all of the associated compensations must be ex-
ecuted. A particularly common use involves lexically scoped
compensation stacks that essentially mimic the behavior of
destructors. We add syntactic sugar allowing a keyword
(e.g., methodScopeStack) to stand for a compensation stack
that is allocated at the beginning of the enclosing scope and
finally executed at the end of it. In addition, we optionally
allow that special stack to be used for omitted compensation
stack parameters. We thus arrive at the six-line version at
the beginning of this section for the common case.

Compensations can contain arbitrary code, not just
method calls. For example, consider this code fragment
adapted from [BP03]:

01: try {
02: StartDate = new Date();
03: try {
04: StartLSN = log.getLastLSN();
05: ... // do work 1



06: try {
07: DB.getWriteLock();
08: ... // do work 2
09: } finally {
10: DB.releaseWriteLock();
11: ... // do work 3
12: }
13: } finally {
14: StartLSN = -1;
15: }
16: } finally {
17: StartDate = null;
18: }

We might rewrite it as follows, using explicit
CompensationStacks:

01: CompensationStack S = new CompensationStack();
02: try {
03: compensate { StartDate = new Date(); }
04: with { StartDate = null; } using (S);
05: compensate { StartLSN = log.getLastLSN(); }
06: with { StartLSN = -1; } using (S);
07: ... // do work 1
08: compensate { DB.getWriteLock(); }
09: with { DB.releaseWriteLock();
10: ... (* do work 3 *) }
11: ... // do work 2
12: } finally {
13: S.run();
14: }

Resource finalization and state changes are thus handled
by the same mechanism and benefit from the same order-
ing. Traditional destructors are tied to objects, and there
are many cases where a program would want to change the
state of the object rather than destroying it. Destructors
could be used here by creating “artificial objects” that are
stack-allocated and perform the appropriate state changes
on the enclosing object. However, such a solution would not
be natural. For example, the program from which the last
example was taken had 17 unique compensations (i.e., error-
handling code that was site-specific and never duplicated)
with an average length of 8 lines and a maximum length of
34 lines. Creating a new artificial object for each unique
bit of error-handling logic would be burdensome, especially
since many of the compensations had more than one free
variable (which would generally have to be passed as extra
arguments to the helper constructor). Nested try-finally
blocks could also be used but are error-prone (see Section 2
and Section 4).

Previous approaches to similar problems can be vast and
restrictive departures from standard semantics (e.g., linear
types or transactions) or lack support for common idioms
(e.g., running or discharging obligations early). We designed
this mechanism to integrate easily with new and existing
programs, and we needed all of its features for our case stud-
ies. With this feature, we found it easy to avoid the mistakes
that were reported hundreds of times in Section 4. In the
common case of a lexically-scoped linear saga of resources,
the error handling logic needs to be written only once with
an interface, rather than every time a resource is acquired.
In more complicated cases (e.g., storing compensations in
heap variables and associating them with long-lived objects)
extra flexibility is available when it is needed.

8. CASE STUDIES
We hand-annotated two programs to show that it is easy

to modify existing programs to use compensation stacks

(and by implication that it would not be difficult to write
a new program from scratch using them) and to demon-
strate that the run-time overhead is low. Guided by the
dataflow analysis in Section 3, the programs were modi-
fied so that their existing error-handling makes use of com-
pensation stacks; no truly new error handling was added
(even when inspection revealed it to be missing) and the be-
havior was otherwise unchanged. In the common case this
amounted to removing an existing close call (and possi-
bly its guarding finally) and using a CompensationStack

instead (possibly with a method that had been annotated
to take a compensation stack parameter). Maintaining the
stacks and the closures takes time, but that overhead was
dwarfed by the I/O latency in our case studies.

The first case study, Aaron Brown’s undoable email store
[BP03], can be viewed as an SMTP and IMAP proxy that
provides operators with system-level time travel. The orig-
inal version was 35,412 lines of Java code. Annotating the
program took about four hours and involved updating 128
sites with code to use compensations as well as annotat-
ing the interfaces for some standard library methods (e.g.,
sockets and databases). The resulting program was 225
lines shorter (about 1%) because redundant error-handling
code and control-flow were removed. The program contains
non-trivial error handling, including one five-step saga of
actions and compensations and one three-step saga. Sin-
gle compensating actions ranged from simple close calls
to 34-line code blocks with internal exception handling and
synchronization. Using fifty microbenchmarks and one ex-
ample workload (all provided by the original author), the
annotated program’s performance was almost identical to
the original. Performance was measured to be within one
standard deviation of the original, and was generally within
one half of a standard deviation; the run-time overhead as-
sociated with keeping track of obligations at run-time was
dwarfed by I/O and other processing times. Compensa-
tions were used to handle every request answered by the
program. Finally, by changing a method invocation in some
insufficiently-guarded cleanup code to always raise one of its
declared run-time errors in both versions of the program, we
were able to cause the unmodified version of the program to
drop all SMTP requests. The version using compensations
handled that cleanup failure correctly and proceeded nor-
mally. While this sort of targeted fault injection is hardly
representative, it does show that the errors we are address-
ing with compensations can have an impact on reliability.

The second case study, Sun’s Pet Store 1.3.2 [Sun01], is
a web-based, database-backed retailing program. The orig-
inal version was 34,608 lines of Java code. Annotations to
123 sites took about two hours. The resulting program was
168 lines smaller (about 0.5%). Most error handling an-
notations centered around database Connections. Using an
independent workload [CKF+02, CDCF03], the original ver-
sion raises 150 exceptions from the PurchaseOrderHelper’s
processInvoice method over the course of 3,900 re-
quests. The exceptions signal run-time errors related to
RelationSets being held too long (e.g., because they are
not cleared along with their connections on some paths) and
are caught by a middleware layer which restarts the applica-
tion.4 The annotated version of the program raises no such

4While updating a purchase order to reflect items shipped, the
processInvoice method creates an Iterator from a RelationSet
Collection that deals with persistent data in a database. Un-



exceptions: compensation stacks ensure that the database
objects are handled correctly. The average response times
for the original program (over multiple runs) is 52.06 mil-
liseconds (ms), with a standard deviation of 100 ms. The
average response time for the annotated program is 43.44
ms with a standard deviation of 77 ms. The annotated pro-
gram is both 17% faster and also more consistent because
less middleware intervention was necessary.

Together, these case studies suggest that stacks of com-
pensations are a natural and efficient model for this sort of
run-time error handling. The decrease in code size argues
that common idioms are captured nicely by this formal-
ism. The unchanging or improved performance indicates
that leaving some checks to run time is quite reasonable.
Finally, the checks ensure that cleanup code is invoked cor-
rectly along all paths through the program.

9. RELATED WORK
Beyond destructors and finalizers, previous related work

falls into five main categories: type systems, regions, ex-
ception schemes, ideas on error handling, and transactional
models.

Type systems. Flow-sensitive type systems check many
of the same safety properties that our system enforces. The
key difference is that a strong type system will reject a pro-
gram that cannot be statically shown to adhere to the safety
policy, whereas our system will use run-time instrumenta-
tion to ensure compliance. In addition, most such type sys-
tems work at the level of the resources themselves.

DeLine and Fähndrich [DF01] propose the Vault language
and static linear type system for enforcing high-level soft-
ware protocols. Vault represents a different point in the
design space, with more powerful properties but a more dif-
ficult programming model. It can verify that operations
are performed on resources in a certain order (e.g., that
open is called before read), while we cannot. It can also en-
sure that an operation is in a thread’s computational future
(e.g., that an opened resource is closed by the end of the
method). Vault’s variant keys (e.g., special objects that are
either empty or contain a key) can be used to free an object
early on one path and free it later on another. These vari-
ants require the programmer to make an explicit run-time
check to determine if the key has already been freed. Our
system handles this aspect slightly more naturally by per-
forming that check automatically. On the other hand, our
system lacks stateful keys.

Perhaps the greatest drawback of Vault is that it requires
much of the program to adhere to a linear type system.
Linear type systems are generally considered to be difficult
to work with, and structuring a program to fit a linear type
system is often a herculean task. Later work [FD02] extends
the Vault type system with additional features that ease the
burden of programming with linear types, but aliasing can
still be difficult.

Regions. Gay and Aiken [GA98] propose a sys-
tem for memory management using explicit first-class re-
gions [TT97]. Their regions are conceptually similar to our
compensation stacks. In their system, reference counts keep
programs from deleting regions too early. In our system,
stacks keep programs from forgetting to perform compensa-

fortunately, the transaction associated with the RelationSet has
already been completed.

tions. Regions allow one to express data locality, whereas
Putting compensations in the same stack allows the pro-
grammer to express the conceptual locality of a compound
transaction.

Exceptions. Most modern programming languages fea-
ture exceptions that behave according to the replacement
model [Goo75, YB85] (see also [Lev77, DHL90, MT97,
HA98, RM99]). Alonso et al. [AHA+00] believe that poor
support for exception handling is a major obstacle for large-
scale and mission-critical systems. Hagen et al. [HA00] claim
that exception handling must be separated from normal code
if processes are to be reused like libraries. This separation
is similar to our goal of annotating interfaces with compen-
sation information.

Common Lisp’s “unwind-protect body cleanup” behaves
like try-finally and ensures that cleanup will be ex-
ecuted no matter how control leaves body. To han-
dle a common case, the macro “with-open-file stream
body” opens and closes stream automatically as appro-
priate. Since Lisp comes with first-class funcitons and
macros, unwind-protect can be used more conveniently
than Java’s try-finally with respect to duplicate and
unique error handling. However, it still suffers from many
of the same limitations (e.g., no easy way to discharge obli-
gations early, one nesting level per resource, one global
stack). In Scheme “dynamic-wind before work after”
and call-with-open-file serve similar purposes, although
dynamic-wind is complicated by the presence of continua-
tions (e.g., the dynamic extent of work may not be a single
time period).

Dony [Don01] describes an object-oriented exception han-
dling system where all exception handlers have a dynamic
call-stack scope. Dony’s form of unwind-protect is simi-
lar to our approach, although it offers no support for dis-
charging obligations early or for a first-class handling of the
current set of pending obligations.

Cargill [Car94] argues that without extraordinary care ex-
ceptions actually diminish the overall reliability of software.
The hard part of exception handling is not raising exceptions
but writing the support code so that errors are handled cor-
rectly. Our technique is particularly well-suited to handling
the matched acquire-free behavior in his presentation.

Error handling. Valetto and Kaiser [VK02] note that
adaptation to errors usually involves several conditional or
dependent activities that may fail; the linear saga model we
support is rich enough to capture many dependent activities.

Cardelli and Davies [CD99] present a language for writing
programs with an explicit notion of failure. We have a less
holistic notion of run-time errors but have an easier time
integrating with existing code.

Demsky and Rinard [DR03] allow defects in key data
structures to be repaired at run-time based on specifica-
tions. Their technique works at the level of data struc-
tures and not at the level of program actions, and it may be
viewed as addressing an orthogonal problem. For example,
their approach does not lend itself naturally to I/O-based
repairs and ours does not handle logical errors in compen-
sation code.

The POSIX thread library (IEEE 1003.1c-1995)
provides a per-thread cancellation cleanup stack
(pthread cleanup push and pop). The cleanup rou-
tines are executed when the thread exits or is canceled.
However, the cleanup stack is not a first-class object, so



cleanup code must be associated with the thread and not
with an object. In addition, only the most recently-added
cleanup code can be executed early or removed from the
stack. Also, those two actions may only be taken inside the
same lexical scope as their corresponding push. The stack
uses C-style function pointers, so general error-handling
(like that of undo in Section 8) requires the creation
of separate functions. Finally, the mechanism can only
be used safely in “deferred cancellation mode” because
performing the action and pushing the cleanup code are
not done atomically with respect to thread cancellation.
Our compensate-with expression handles this issue in Java,
where thread cancellation is signaled via exceptions.

The VINO operating system [SESS96] uses software fault
isolation and lightweight transactions to address problems
like resource hoarding in user-defined kernel extensions.
This form is similar to our approach in that an interface
has been annotated with compensations that are called if
a fatal error occurs. However, in VINO there is only one
compensation stack per extension, and it is not a first-class
object. In addition, there is no support for nested transac-
tions without defining additional extensions.

Transactions. Database transactions provide a strong
and well-founded approach to error handling [Gra81]. How-
ever, many find the consistency and durability of transac-
tions to be too heavyweight for most programming purposes
(e.g., [AHA+00, LS83, DHL90]).

Restructuring a program to make use of transactions can
be a large, invasive change. Borg et al. [BBG+89] describe
a checkpointing system that allows unmodified programs to
survive hardware failures. Essentially, every system call is
intercepted and logged. Others (e.g., [LC98, SSF99]) pro-
vide similar services. Our compensation annotations are a
much less drastic change to the program semantics than the
incorporation of full-fledged transactions.

In addition, these transaction techniques address an or-
thogonal error handling issue. In Borg et al.’s system, a
buggy process that acquires a lock twice and deadlocks on
initialization will continue to deadlock no matter how many
times it is recovered. Lowell et al. [LCC00] formalize this
point by noting that the desire to log all events actually con-
flicts with the ability to recover from all errors. Such sys-
tems are very good at masking hardware failures and quite
poor at masking software failures; Lowell et al. suggest that
85–95% of application bugs cause crashes that would not be
prevented by a failure-transparent operating system. Our
technique hopes to address those sorts of bugs, although it
is less automatic.

Many researchers have found that advanced transac-
tional concepts fit closely with language-level error han-
dling (e.g., [LOLZ01]). One such concept, the compen-
sating transaction, semantically undoes the effects of an-
other transaction after that transaction has been commit-
ted [KLS90]. Designing a full compensating transaction that
completely undoes the effects of a previous action is often
difficult. Our system relaxes this requirement. Our system
is also slightly more general than a pure linear saga [KLS90]
and more closely resembles a form of nested or interleaved
linear sagas.

10. FUTURE WORK
Stack inference. In order to make this language feature

as useful as possible to existing programs, we hope to reduce

the annotation burden on the programmer. We can manu-
ally annotate the interfaces for several generally applicable
safety policies, as in Section 4. Such interfaces would then
be useful for any program that uses those libraries. A fur-
ther step would be to devise an inference algorithm for com-
pensation stack placement, similar to algorithms for region
inference [TT97]. The goal would be to place compensation
stack declarations so as to give them the smallest lifetime
possible without freeing any resources while they are still
in use (or otherwise invoking compensation code too early).
Function calls that require compensation stacks would use
the nearest enclosing stack. Given such an inference algo-
rithm and annotated interfaces, this technique could be ap-
plied automatically to existing programs for certain safety
policies.

Safety policies. We also plan to move to more inter-
esting safety policies. Since such policies are usually pro-
gram specific, we hope to mine specifications from the pro-
gram source code. Our experiments indicate that when pro-
grams consider a resource, they handle it correctly at least
some of the time. We hope to leverage existing techniques
(e.g., ABL02, HL02, ECC01]) to allow us to infer possible
specifications. Such specifications can then be presented to
the programmer and, if accepted, can be applied automat-
ically. Specification mining based on the source code gen-
erally yields an unacceptable number of false positives. In
this sort of application domain, however, where extra code
will be executed at run-time rather than having the project
rejected at compile-time, such false positives may be slightly
more acceptable.

Theoretical work. Finally, much theoretical work re-
mains to be done. We would like to have a formal proof of
our safety guarantees for a more flexible system: if a pro-
gram uses our features and type-checks according to our
rules, then it can be guaranteed that its actions will be
paired with compensations. We also hope to examine the in-
teractions between this language feature and other features.
For example, there are a number of known issues relating
finalizers, concurrency and deadlocks [Boe03]. We hope to
prove, for example, that using this method (or a restriction
to it) to keep track of compensations will not introduce any
concurrency problems that were not present in the original
code. We would also like to present a unifying framework
for compensation stacks and regions.

11. CONCLUSIONS
We have presented an analysis that discovers when ex-

isting programs fail to restore invariants or invoke cleanup
code in the presence of run-time errors. Using this analysis
we have discovered over 800 methods with mistakes in their
error-handling in almost 4 million lines of code. We then
analyzed those mistakes qualitatively and we have discussed
the strengths and weaknesses of exceptions, destructors and
finalizers for run-time error handling. Based on that analy-
sis, we have proposed a programming language feature based
on advanced transaction models. Stacks of compensations
are first-class objects that can be manipulated by the pro-
gram and used to store compensating actions. They behave
much like destructors but provide a more general stack struc-
ture, guarantees on heap objects, and easy early execution
and bookkeeping. Compensations themselves are recorded
and executed at run time. Case studies show that such
a feature can be used to achieve improved reliability with



minimal overhead. Since error handling is a large and im-
portant part of programs, finding error-handling mistakes
and suggesting features that would help to prevent them is
an important step toward making more robust programs.
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