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Abstract 

We see a trend toward extending object-oriented 
languages in the direction of databases, and, at the 
same time, toward extending database systems 
with object-oriented ideas. On the surface, these 
two activities seem to be moving in a consistent 
direction. However, at a deeper level, we see dif- 
ficulties that may inhibit their ending up at the same 
point. We feel that many of these difficufties are a 
result of the underlying assumptions that are 
inherent in the fields of programming language and 
database systems research. Many of these 
assumptions are historical and contribute to a set 
of cultural biases that often prevent the two 
communities from interacting as effectively as pos- 
sible. 

The purpose of this paper is to try to uncover some 
of the cultural presuppositions that have inhibited 
development of a fully integrated database 
programming language. We have identified 
database and language features that seem to be 
difficult to reconcile. We try to uncover the basic 
problems in these two areas that these features 
were intended to solve. In order to resolve these 
problems, we attempt to distinguish fundamental 
differences from historical artifacts. 

1. lntroductlon 

The database and the programming language 
communities seem to be moving toward each other 
in terms of the problems that they are addressing. 
Database systems have been attempting to 
increase their power by associating more and more 
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functionality with the data. Object-oriented 
databases, in particular, differ from their more 
conventional relational counterparts in that they 
incorporate notions of type, data abstraction, and 
inheritance [19,35]. These ideas have been studied 
extensively in the programming language domain 
for some time. Conversely, many modern 
programming language research efforts [2,18,22] 
are attempting to add notions of persistence and 
sharing, two ideas that are fundamental to 
databases. A result of these activities would be a 
database programming language in which there is a 
single model of data for both persistent and non- 
persistent data. 

The fields of programming language design and 
database system design are both quite broad. 
Different styles of system have developed in 
response to different application needs. For 
example, languages like FORTRAN are suited to 
scientific and numerical applications while various 
dialects of LISP were designed to meet the needs 
of symbolic computation. Similarly, CODASYL 
database systems have addressed Cobol-compliant 
business applications while relational databases and 
their query languages were developed as decision 
support tools. The comments in this paper relate to 
merging two very specific subparts of these 
communities. We are concerned with languages that 
are designed to support software engineering and 
programming-in-the-large (e.g., CLU) and 
databases that are concerned with complex, non- 
standard applications such as software 
environments (e.g., ENCORE). 

A result of these activities could be a database 
programming language in which there is only a single 
type system for both persistent and non-persistent 
data. There are several benefits of a database 
programming language. First, the programming 
process is simplified if the programmer does not 
have to be aware of two distinct systems, each 
with its own language. Second, we believe that 
there are opportunities for increased performance 
if a single system manages storage. That system 
can apply optimizations that the separate systems 
approach might not have available. 
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There has been much previous work analyzing 
problems of integrating databases and 
programming languages [8,30,36]. [5] has 
suggested that the fundamental problem in these 
systems has been in making two very different type 
systems coexist. Until now there has been little 
agreement among the communities about what a 
suitable unified type model might be. The object- 
oriented data model seems to provide many of the 
characteristics needed by both databases and 
programming languages. For this reason, there 
seems to be great promise in marrying the two 
technologies. 

Although the object-oriented model seems to solve 
the type problems described by [5], there are still 
differences that exist between object-oriented 
databases and object-oriented programming 
languages that need to be explored. In this paper, 
we begin by describing some of the basic 
assumptions that have influenced the direction of 
the two fields. On the database side these include 
persistence and fine-grained sharing, while on the 
programming language side they include reliable 
software construction and programming-in-the- 
large. We then discuss a number of areas in which 
these assumptions lead to differing and sometimes 
conflicting approaches. 

2. Culture 

In this section we will briefly sketch some of the 
assumptions that seem to permeate the world of 
databases and the world of programming 
languages. Many of these assumptions predate the 
development of object-oriented systems, yet we 
will argue that these assumptions are responsible 
for many of the problems that exist in creating 
database/programming language hybrids. These 
assumptions make perfect sense when each of the 
areas is examined in isolation. When one is trying to 
put the two areas together, however, one must be 
aware of the assumptions because it is often the 
clash between the two points of view that leads to 
difficulties. 

2.1 Database Design Principles 

Database system technology has primarily grown 
up in an environment of commercial data 
processing. Initially, databases were designed to 
address primarily accounting and bookkeeping 
applications in large organizations. The fundamental 
requirements of these applications are persistence 
and sharing of data. By persistence we mean that 
all objects remain in existence beyond the duration 
of the application program. By sharing in this 

persistent environment, we mean that inde- 
pendent, possibly concurrent applications may use 
the same data. All of the assumptions in this 
section stem either directly or indirectly from these 
two requirements. 

Because independent applications needed access to 
the same shared data and because databases were 
not prepared to include programs, the basic 
architecture of database systems placed the data 
under the control of a separate process called the 
database management system (DBMS). In this 
environment, data was separate from function. 
Applications ran in a process of their own and 
accessed the data through a standard data 
manipulation language that expressed none of the 
semantics of the applications. This separation has 
profound implications on the functionality required 
of the database. As we shall see, these 
requirements include declarative constraint 
mechanisms, query languages, and transaction 
processing. It also leads to assumptions about the 
way in which a database is used, such as the notion 
that the data is under control of a centralized 
administrator. 

A database system should be designed with the 
needs of all present and future applications of the 
organization carefully balanced. It is the job of the 
database administrator (DBA) to perform this task 
of centralized development The DBA is 
responsible for designing the logical views of the 
data as well as the underlying physical structures 
upon which these views are implemented. 

The choices that are made at both the logical and 
the physical levels must be made very carefully. One 
application may need to have an employee file 
sorted by employee number, while another may 
need to have the same file sorted by job category. 
These conflicting requirements are mediated by the 
DBA. The DBA uses additional information about 
the relative priorities of these applications to make 
these decisions. 

It is important to notice that decisions like these 
are made somewhat independently from the 
application programs that will make use of the data. 
The cultural assumption is that the database is 
designed first. Programs are written after the 
database has been designed, and they must abide by 
the decisions of the DBA. 

This is in sharp contrast to the programming 
language view of the relationship between data and 
programs. Programming languages lack the notion 
of external control of the data. All data is 
considered to be internal to some module of a 
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program. An application program is free to set up 
its environment in any way that optimizes its own 
requirements. The program comes first: the data is 
viewed as part of the program. 

A database is intended to stand as a model of the 
application environment. There has been a 
movement within the database field to incorporate 
more and more semantics jnto the data model so 
that the database can more closely reflect an 
application. Constraints and automatic side-effects 
are examples of proposed database mechanisms 
that address this need. Some data models [14] go a 
long way in this direction by including, for example, 
inverse attribute declarations, derived attributes, 
and attribute-value derived subclasses. We will see 
that some of these mechanisms are difficult to 
integrate with programming language facilities. 

Object-oriented databases extend data semantics 
by adding type extensibility. This is accomplished by 
including notions of data abstraction and type- 
specific operations, thus bringing databases closer 
to their programming language counterparts. The 
conflict between constraint-based semantics and 
type-based semantics remains. 

Databases have traditionally addressed data- 
intensive business applications. Experience with 
these applications has shown that efficient 
handling of large amounts of data on slow 
secondary storage media is extremely important. 
The need for flexible control over storage 
management choices has led to a technology that is 
absent from programming languages. This 
technology includes explicit data clustering 
capability, indexes on collections (i.e. relations), 
and sophisticated query optimization techniques. 

The types of applications for which databases were 
initially built can be characterized by large volumes 
of uniformly-structured data items, without much 
internal structure. As a result, the successful data 
models developed were similarly uniform and 
simple in structure. They tended to be record-ori- 
ented, where the contents of a field was a single 
atomic piece of data. This simple model allowed for 
development of such features as ad-hoc query 
languages, query optimization, constraint checking, 
and control over underlying storage management. 
As we will discuss in section 3, these features do 
not easily carry over to more complex models. 

2.2 Language Design Principles 

Programming languages have historically focussed 
on processing, rather than on data. The concern 
has been with improving the tools available to 

programmers to build complex systems involving 
large amounts of code, and relatively small amounts 
of data ( compared with databases). On the other 
hand, languages have been incorporating support 
for more complex structuring of data, including 
graphical structures and complex inter- 
relationships, for some time. The emphasis has 
clearly been on local data however. The language 
facilities provided for handling large amounts of 
data on secondary storage have been minimal. They 
are usually limited to file-level access leaving the 
programmer with the responsibility of managing 
the organization of these complex data objects in 
the files. Sharing of data among programs has in 
general been accomplished through sharing of 
these files, with none of the support provided by 
databases. 

Object-oriented programming has shifted the focus 
considerably closer to that of databases, by 
emphasizing the organization of software around 
the data objects, rather than around flow of 
control. Note however, that there is still a 
noticeable difference between the emphasis in 
object-oriented programming languages and that in 
databases, even object-oriented databases. While 
the languages now focus on the data objects, the 
important aspect of objects is what behavior the 
objects exhibit: what operations they provide or 
what messages they accept. in databases, the 
emphasis remains on applications that require large 
amounts of shared, persistent data. Behavior 
includes the operations but also extends to other 
kinds of declarative semantics. 

Overall however, we see that object-oriented 
languages and object-oriented databases are 
natural complements of one another: one 
emphasizing processing, complex structuring and 
local data; the other focussing on a more 
declarative approach, shared data outside the 
domain of applications, and support for very large 
amounts of data. in the remainder of this section, 
we discuss the perspective, and set of language 
design principles, which language designers bring 
to a joint language/database design venture. 

We believe that a clean fusion of languages and 
databases would greatly simplify the programming 
of certain applications. In particular, we are 
interested in large, complex applications that 
require shared, persistent data in a production 
setting. A schematic editor for electronic CAD is 
one such application. In a production programming 
environment, we are dealing with application 
development divided among a group of 
programmers. The life-cycle for these applications is 
usually quite long, and many modifications will be 
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made during its lifetime. Detailed specifications of 
the software exist and must be met by the im- 
plementation. 

There is no single set of language design principles 
adhered to in all current language designs. 
Different languages focus on different aspects of 
the programming process, or on different 
application domains and hence consider different 
issues to be of primary importance. In this 
discussion, we focus on supporting large software 
projects in which the resulting software is to be 
used in a production environment. Because we are 
interested in producing an integrating database 
programming language, we look here at the prin- 
ciples by which language designers evaluate 
whether a construct should be added to a 
language, and what combination of constructs is 
sufficient. We do not claim this list to be 
exhaustive; we present those guideliries we have 
found to be at issue in our discussions of database 
programming languages. 

The object-oriented approach provides for modular 
construction and independent interfaces so 
important for programming in the large. 
Unambiguous specifications of these interfaces 
is an important goal in the design of languages for 
large-scale production programming. Bringing the 
level of programming closer to that of the 
application domain by building application-specific 
types lowers the complexity the programmer must 
handle by making the translation from application 
requirements to code easier. 

Reliability is enhanced because only operations in 
the type module can access the object 
representation, and so it is easier to guarantee that 
data isn’t corrupted accidently. Abstraction also 
helps to ensure that local modifications can be 
made without unexpected side-effects in other 
parts of the application. In building production 
software, it is important to understand all of the 
interactions among different parts of the ap- 
plication, so that unexpected side-effects don’t 
arise. 

When evaluating whether a given construct should 
be included in a language, several criteria are used. 
One is the utility of the mechanism. A language 
should incorporate a few, general COnStrUCtS, 
rather than many special-purpose ones. In general, 
there is no need for two different ways to do the 
same thing. Mechanisms should be added to the 
language only if they provide expressive power 
sufficiently greater than that which can be achieved 
in their absence. 

Another consideration is the interaction with 
other constructs in the language. Different 
mechanisms should not interact in complex or un- 
expected ways. It should be possible to describe 
the meaning of one construct independently of 
others. If including a construct changes the 
meaning of other mechanisms when used together, 
the complexity of the interactions must be carefully 
considered. Finally, language constructs are often 
evaluated in terms of how easy they are to use, or 
how prone they are to misuse or error. 

These principles, among others, come into play 
when we consider merging common programming 
language and database features into a unified 
database programming language. Later in this 
paper, we discuss several standard database 
features in terms of their interaction with standard 
language features. We use these criteria to analyze 
the conflicts that might stand in the way of 
integrating the two worlds. 

3. Comparison 

While the database and programming language 
fields agree on high-level goals such as correctness 
and efficiency, differing requirements have led to 
different cultural assumptions. As a result of such 
differences in philosophy, mechanisms developed 
within the two areas that do not interact well. This 
section presents the major areas in which database 
and programming language assumptions lead to 
conflicts. 

3.1 Triggers and Constraints 

One aspect of database technology that needs to 
be reexamined is the role of declaratively specified 
knowledge about the application in the form of 
constraints or triggers. This knowledge is specified 
with the data and will be monitored by the 
database system at all times. A trigger can be 
defined as a predicate and a body. The meaning of 
a trigger is intuitively whenever the predicate 
becomes true, execute the body. A constraint is 
intended to describe a predicate that must always 
be maintained. One could think of a constraint as a 
trigger whose predicate is the negation of the 
predicate that is to be maintained and whose body 
raises an exception. In summary, we have: 

-1 Predicate and body 
Constraint: Trigger with raise exception as body 

Constraints might be expressed in terms of 
predicate calculus, or they might be captured in 
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some specialized part of the DDL (data definition 
language). 

As an example, consider an employee database, 
with employee, and department types. With a 
constraint mechanism, we might choose to express 
the fact that no employee can make more than 
his/her manager. 

[For all e in employee] 
(e.salaty < e.dept.manager.salary) 

A constraint like this causes a check every time the 
employee salary is changed, an employee is added, a 
manager is changed, a manger salary is changed, or 
an employee is moved to a new department. The 
system can determine when checks should be per- 
formed, so that it is not necessary at commit of 
every transaction. 

In a language without a constraint mechanism, 
every operation that might violate a constraint 
must explicitly check that constraint. In languages 
that provide exception handling, the possibility of 
violating a constraint appears in the interface. of 
the operations as well. For example: 

raise-salary = 
operatlon(e:employee, 

new salarylinteger) 
signals (too-high) 

if new-salary > 
e.manager.salary 

then signal too-high 
else e-salary := new-salary 

end 

An example of a trigger that is supported by some 
semantic data models is that of an inverse 
relationship. Here we might declare that employees 
are related to departments by a works-in 
relationship and departments are related to 
employees by an emp/oys relationship. We might 
declare that these two relationships must always be 
connected in the obvious way. 

Type employee 
works-in: department 

Type department 
employs (inverse works-in): 

set of employees 

As a result, changing the works-in relationship for 
an employee e to be department d would 
automatically update the employs relationship for d 
to include the employee e. 

Triggers and constraints are important tools in 
database design. They ensure that the many 
applications running on the database cannot violate 
the integrity of the data. The mechanisms are 
declarative and associated with the data, not the 
processing. This structure allows the database to 
maintain integrity constraints across various parts 
of the schema even though various applications use 
views that hide some of those related parts. 

The trigger mechanism also performs some of the 
job that applications programmers would otherwise 
have to assume. For example, when the value of an 
employee’s works-in relationship is changed to be 
shoe-department, the database system 
automatically inserts that employee in the set of 
employees that is the value of the employs 
relationship for the shoe-department object. 

The notion of associating constraints with the 
data, and declaring them only once is also appealing 
to language designers. Hence, the fundamental 
notion of constraints is not at odds with language 
design goals. 

The trigger mechanisms seem less useful, in that 
programmers will have to be aware of what 
relationships are maintained automatically and 
which are not, so as to write correct 
implementations of the operations. Performing the 
update automatically thus does not free the 
programmer from having to pay attention to the 
relationships among the data objects. Not only 
could updates be missed if the programmer 
assumes a trigger exists when it does not, but also, 
there might be situations in which the programmer 
explicitly performs an action that is then performed 
again by a trigger. While this can be assumed to be 
an error in the trigger’s predicate, it is unclear how 
prone to such errors a trigger mechanism would be 
as part of a complete programming language. 

Constraint mechanisms might also interact with 
exception handling in some languages. In 
databases, typically, if a constraint is violated, then 
the transaction responsible is aborted. In languages 
that provide support for exception handling, the 
constraint violation would typically signal an 
exception, in addition to, or instead of aborting the 
transaction. (While the transaction cannot commit 
in that state, raising an exception gives the caller a 
chance to correct the problem and continue.) Our 
requirements for well-defined module interfaces 
indicate that if a given operation might signal an 
exception, that information should be specified in 
the interface, so that callers can be prepared to 
handle the expected exceptional conditions. This 
requirement conflicts with the requirement that 
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constraints be specified in only one place. In the 
example above, the information about the given 
constraint must appear in the interfaces to 
operations raise-salary, change-dept-manager, 
change-emp-dept, hire-emp, and probably others. 
Language designers consider it important from a 
methodological viewpoint that programmers be 
aware of which operations might violate which 
constraints, and of what the requirements are for 
arguments to those operations. A similar conflict 
arises with specifying the side-effects that might 
result from triggers being activated as a result of 
invoking an operation. We are therefore left with a 
question of how a constraint mechanism, and 
possibly a trigger mechanism, can be designed to 
be part of a database programming language in a 
way that preserves the declarative nature of the 
mechanism without conflicting with requirements 
for operation specification. 

Finally, we have to examine how these mechanisms 
will function in an object-oriented environment. It is 
essential to the practicality of the declarative 
mechanism that static analysis can be used to 
determine when the predicate of a trigger or 
constraint need be checked. It is infeasible to check 
every trigger before commit of every transaction, 
or (worse yet) before any activity might see an 
inconsistent state that should have been detected 
by a trigger. In an object-oriented environment in 
which any operation may be user-defined, and the 
system cannot automatically determine which 
operations can see the effects of which others, or 
what the side-effects of a given operation might 
be, is it possible to sufficiently narrow the points at 
which trigger predicates must be checked? This 
issue is not one of conflicting language and 
database principles; it is an issue of how to extend 
a relational database mechanism to an object- 
oriented environment. 

Thus, we have identified two problems here that 
must be addressed in designing a database 
programming language: one is an implementation 
issue, minimizing trigger and constraint checking, 
and the other a design issue, handling the 
interaction between exception handling 
mechanisms and constraint mechanisms. 

3.2 Query Optimization 

When dealing with large amounts of data, it 
becomes imperative to be able to search the 
database as efficiently as possible. The relational 
database community depends heavily upon 
automatic query optimization for this purpose, and 
there is concern about any model that does not 
support such optimization. 

In moving toward an object-oriented model, some 
of the properties upon which query optimization 
depends have changed. In particular, in relational 
databases, query optimization depends upon the 
algebraic properties of the relational operations, as 
well as on the physical structure of relations. For 
example, it is known that join and select commute. 
The uniform structure across all data also allows 
heuristics such as selecting first on fields for which 
indexes exist, thus narrowing the set over which a 
join must be performed. 

In an object-oriented system, there is no standard 
set of operations across all data, since operations 
are defined on a per-type basis. The definition of 
“=I’ can be different for different types. 
Furthermore, there is no way to determine in 
general whether any two operations commute. 
Hence, the standard query optimization techniques 
are not useful. 

On the other hand, it is difficult to compare 
efficiency in the two models. Undoubtedly, in the 
object-oriented model, there will be cases in which 
direct links between two kinds of objects exist, 
where previously a join would have been necessary. 
The more sophisticated structures possible in the 
new model may thus make some optimizations 
unnecessary. It is also possible to design type- 
specific optimizations and implement them as a part 
of the operation code. This requires more 
programmer time, but can take advantage of type- 
specific information like commutativity and other 
semantic knowledge. Finally, we do not know the 
utility of standard compiler optimization techniques 
in the database programming language world. 

Overall, it is likely that more work will be needed to 
find appropriate optimization techniques for this 
environment. However, we do not yet understand 
the requirements in this domain. 

3.3 Persistent Data 

Persistent data is a fundamental property of 
database syste,ms. Persistence is used by databases 
in a number of ways. Data is kept external to 
applications, in non-volatile storage, so as to 
divorce the data’s lifetime from the lifetime of any 
application. The data can be shared among 
applications concurrently, or sequentially. 
Applications are thought of as short-lived; any 
state needed for longer than the lifetime of an 
application process is stored in the database. 

The notion of persistent data is relatively new to 
languages. Historically, languages have 

446 OOPSLA '87 Proceedings October 4-8,1987 



concentrated on supporting manipulation of data data, the system cannot make such deductions. 
local to a process, and often provide loopholes for Overall, the approach of considering data to be 
maintaining data for longer than a process lifetime. local to a persistent process is consistent with an 
These loopholes usually consist of file access object-oriented approach. Since the operations on 
operations. Data can be moved into files as objects should be associated with the objects, and 
“uninterpreted bags of bits”; the application is all access to an object should be through in- 
responsible for translating from the file format vocation of its operations, objects and their 
back into the form used for local data. Overall, operations can be encapsulated in an active entity 
languages have provided little support for long- which mediates access to the objects and defines 
lived data. the object’s lifetimes. 

The lack of support for persistence has been 
recognized as a shortcoming of language designs, 
and we are now seeing languages that address the 
problem. The model of persistence in various 
languages does not always directly match the 
database model. PS/AIgol [3] supports persistence 
primarily for “process continuity”. The aim seems to 
be to allow the user to terminate a session and 
continue later from where the application left off. 
In some sense, the goal is to support long-lived 
processes: The fine-grained concurrency control 
needed for sharing data among concurrent 
applications is lacking, at least in the early versions 
of which these authors are aware. It is therefore 
assumed that the goals differ some from those of 
traditional databases. The language allows for 
declaring data to be persistent, and the system 
handles the transfer between volatile and non- 
volatile storage, so the application program is freed 
from having to translate between file format and 
local format. 

We thus have seen different uses for persistent 
data, and somewhat different structuring of the 
control over persistent data. It must be decided 
which model is best suited to object-oriented 
database languages. 

3.4 Large Amounts of Data 

Argus is another language that has addressed the 
issue of persistence. Argus still treats data as local 
to applications. However, applications are now 
seen as long-lived, and hence the data that 
constitutes the application’s state must be long- 
lived. Of course, stable storage and transaction 
facilities are needed to support the appearance of 
application processes that exist forever, in spite of 
crashes and various other failures. The difference 
between this view and the database view is in 
whether the static data or the active application 
process is the persistent entity. The database view 
could be described as a centralized, persistent 
database manager process whose state is the 
entire database, and hence is not inherently 
inconsistent with this language view. In practice, 
differences arise because a single database manager 
has little semantic knowledge about the data, 
whereas when data is controlled by the application 
level, more semantic information is available. One 
example of this difference is that in Argus, it can be 
determined when a persistent object is no longer 
accessible from the application and can be removed 
from stable storage or garbage collected. When the 
data management is separated from the use of the 

The language approach in which data objects are 
treated as local to a persistent process was not 
designed with the goal of handling large amounts 
of data. There are implementation problems that 
arise in supporting large databases with this 
structure, and some of those problems are not as 
yet solved. The problems we describe here are 
primarily those that have arisen in the first Argus 
implementation, since that is the one case with 
which the authors have detailed knowledge of 
implementation. These problems are very similar to 
those encountered by database designers a decade 
ago, when they started addressing the issues of 
very large databases. They discovered that to get 
efficient access they had to circumvent the 
operating system and handle their own disk 
accesses. Persistent languages are finding similar 
problems with virtual memory. 

In a database system, the primary copy of the data 
is in stable secondary storage. Updates are 
maintained in a log, and when recovering from a 
crash, the primary copy is returned to a consistent 
state by traversing the log and undoing updates 
from incomplete transactions then redoing trans- 
actions that have been committed, but whose 
results had not yet been written to the primary 
copy. 

The Argus implementation, since it considers the 
data to be process state, keeps the primary copy of 
the data in virtual memory. Stable copies are kept 
for use in case of a crash. The major problem with 
this structure is the efficiency of recovery after a 
node crash. When the primary -copy is in virtual 
memory, and the system considers virtual memory 
to be volatile in a crash, then the entire state must 
be reconstructed in virtual memory from some 
combination of checkpointed state and log 
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information. For large states, this process can be 
very slow. Realize however, that most of the data 
in virtual memory will actually be intact on a disk (in 
swap space) after a crash. Work is currently 
underway on how to recover virtual memory 
following crashes [16]. The problem of very large 
virtual memories still exists. Boundaries in real 
systems must be dealt with. Argus currently runs up 
against limits in the size of swap space that limits 
how much data can be stored at a single node. 
There are also limitations in the ability to cluster 
data on physical storage so as to improve access 
time. 

There are a number of alternatives for solving these 
problems, but investigation is still underway. Until 
the issues are resolved, a virtual memory model for 
large amounts of data is unsuitable. For a database 
programming language, we need to understand 
better how solutions from the database world 
might be applied. 

3.5 Classes 

The notion of class has a different meaning and 
different usage in the database and language 
communities. Language designers tend to use the 
word class to mean data type. A class is the 
definition of the behavior and structure of a set of 
objects. In the database view, class is used to refer 
to the set of objects themselves rather than, or in 
addition to, such a definition. Some database lan- 
guages, like Galileo, include both types and classes, 
so as to distinguish between the collection of 
objects and their definition. Merging the two 
notions of class leads to difficulties, which we 
discuss in this section. 

In the database view, classes are used as a primary 
means of grouping objects and searching for 
objects [14]. In some sense, classes take the place 
of relations. There is an assumption that there must 
be system-supported mechanisms for grouping 
objects into collections automatically. It is consid- 
ered an undue burden on the programmer to have 
to create and manage such collections. It is 
important that the system automatically insert 
objects into appropriate collections at their 
creation. Furthermore, it is thought to constrain 
ad-hoc querying if the only way to access objects is 
through collections anticipated by the type 
manager or other applications. Automatically 
supported class/collections enable applications to 
reach any existing objects of interest, without 
acquiring explicit references to those objects. 
Assuming objects are grouped into these classes 
(i.e., collections) automatically also allows some 
query optimization techniques to be carried over 

from relational databases. In particular, the type 
definer (akin to the database administrator) can 
determine the best access paths. For example, the 
type designer can declare that the class should be 
stored as a B-tree with appropriate keys. 

Programming languages have not typically thought 
of classes as providing access to all of the objects 
of the class. From a language design viewpoint, 
several questions arise about use of such a 
mechanism, whether as part of the existing class- 
as-type, or as a parallel construct. We examine 
three issues here: 

(1) Is such a mechanism needed; do the benefits 
justify the added complexity? 

(2) Does class-as-collection interfere with the use 
and meaning of class-as-type? 

(3) What is the interaction with other language 
facilities; in particular, can languages support 
automatic storage management (with garbage 
collection) if class/collections are supported? 

Providing a collection associated with each type, 
without a built-in mechanism requires explicit action 
in every type definition. Every creation operation 
(in Smalltalk, the new operation), would have to 
explicitly insert the new object into the collection. 
And, initially, the collection would have to be ex- 
plicitly created as well. A type definer could of 
course choose not to provide such a collection. 

From the database perspective, relieving the type 
designer from this chore is more than just a 
convenience; it is a kind of integrity constraint. It 
ensures that a class is always present for all types, 
and this class will be used by ad hoc queries. From 
the programming language perspective, it seems 
like a good idea to let the type definer decide 
whether objects of the type should be accessible in 
this manner. 

Does providing access to all objects of a type via 
such a class mechanism interact with the use of 
types as definitions? There are two potential 
problems here. One is a methodological 
consideration. Providing these special collections 
encourages programmers to depend on these 
standard groupings instead of deciding how best 
to organize the objects used in given applications. 

The second issue is one of abstraction and the 
scope of type definitions. Language designers tend 
to think of type definitions as global in scope. 
There is little need to hide the definition of a type 
as long as the scope of given objects of a type can 
be controlled. Globally available type definitions 
enhance reusability of code and increase the 
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benefits of modularization. However, if all of the 
objects of a type are accessible through the type 
(or an automatically associated class object), then 
we might inadvertantly allow access to objects that 
are serving as representations (i.e., analogous to 
the instance variables). This would allow users to 
break data abstraction. 

For example, suppose we define a hash-tab/e type. 
Any application that requires a hash table should be 
able to use that definition. However, there may be 
no meaningful relationship between hash tables in 
different application domains. Why should it be 
possible to locate all hash tables through a hash- 
fable class object? In addition to not always making 
sense, it provides a protection problem in that one 
application can get to the underlying representation 
of another application’s data. If hash-tables are 
being used to represent ordered-sets, it is possible 
to access a hash-tab/e that should only be visible 
through the ordered-set interface. It violates 
abstraction in that there now exists a path to the 
representation of an object that does not go 
through the abstract layer. 

From the database perspective, the proper way to 
protect objects from such unauthorized access and 
solve the problem of not seeing objects that make 
sense to a particular application is through a view 
mechanism. To solve the problem of violating 
abstraction, we need some kind of scoping 
mechanism that only allows appropriate class 
members to be visible. For example, inside the 
ordered-set class definition, one sees hash-tables 
that are representations of ordered-sets. Outside 
the class only the hash-tables that were created as 
direct instances would be visible. More work is 
needed to determine how a view mechanism can be 
used to guarantee levels of abstraction in access 
through classes. 

It also seems clear that part of the conflict in goals 
here stems from different historical assumptions 
about the types involved. In the database world, 
the types are usually domain-specific and higher- 
level, like type person, or type ship, and abstraction 
issues don’t arise in these “top-level” types. It is 
only recently with the emergence of object-oriented 
databases that the notions of abstract and 
concrete types have appeared as a part of the 
database culture. 

The final language design concern is an im- 
plementation issue, but if unresolved, will be 
reflected in language semantics. Experience has 
shown that automatic storage management, and in 
particular automatic storage reclamation are crucial 
for managing software complexity, enhancing 

software reliability and reducing programming time. 
Without automatic storage management, dangling 
pointers cause hard-to-find bugs, and 
programmers waste large amounts of time figuring 
out the best storage management strategies for 
every program. When every object is always 
accessible through its class, garbage collection is 
impossible, because objects never become 
inaccessible. Various strategies to overcome this 
problem have been proposed, but to the authors’ 
knowledge none avoid anomalous behavior and 
retain the benefits of the class/collections. 

One solution is to remove the class pointers as 
roots for the garbage collector - then if no other 
references to an object exist, the object can be 
reclaimed. Unfortunately, this also eliminates the 
ability to depend on the class for access to the 
objects, since an object might disappear directly 
after it is created. If you have to keep duplicate 
pointers, then the utility of the class mechanism 
drops substantially. Also, with such a scheme, it 
becomes impossible for an application to ensure 
that an object is made inaccessible. 

From the database viewpoint, explicit deletion is an 
acceptable alternative; from the language 
viewpoint, it is not. Possibly, this difference is due 
to the fact that in relational databases, the only 
access to an object (i.e. record) was through the 
relation, and hence dangling references did not 
exist, and it could always be determined if a 
referenced object no longer existed. Such is not 
the case in programming languages. (White perhaps 
not entirely infeasible, maintaining information on 
deleted objects presents formidable implementation 
issues.) 

Hence, trying to merge class-as-type with class-as- 
collection provides another example in which 
related features from the two worlds are difficult to 
combine because fundamental principles are 
violated by the combination, if not by each feature 
in isolation. 

4. Conclusions 

This paper describes some of the cultural 
assumptions that stand in the way of a seamless 
integration of databases and programming 
languages. Such a hybrid must retain the 
advantages of both styles of system. An 
understanding of both cultures is essential if the 
issues raised by the cultural clashes are to be 
resolved. 

We have tried to raise the issues that need to be 
considered. We have described these issues and 
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some of the conflicts that arise from them. This 
paper is intended as a springboard for further 
discussion. As such, we have tried to crystalize the 
arguments on both sides. 

It appears that none of these problems is 
insurmountable, however, it is our feeling that more 
research is needed to determine the right design 
decisions that properly balance requirements from 
both communities. 
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