
Semantic-Based Visualization forParallel Object-Oriented ProgrammingIsabelle Attali, Denis Caromel, Sidi O. Ehmety, Sylvain LippiINRIA Sophia AntipolisCNRS - I3S - Univ. Nice Sophia AntipolisBP 93, 06902 Sophia Antipolis Cedextel: 33 93 65 79 10, fax: 33 93 65 76 33, email: First.Last@sophia.inria.frhttp://www.inria.fr/croap/ei�el-llAbstractWe present a graphical environment for parallel ob�ject-oriented programming. It provides visual toolsto develop and debug object-oriented programs aswell as parallel or concurrent systems. This envi�ronment was derived from a structural operationalsemantics of an extension of the Ei�el language,Ei�el//. Object-related features of the language(inheritance, polymorphism) are formalized usinga big-step semantics, while the interleaving modelof concurrency is expressed with small-step seman�tics.Without user instrumentation, the interactive envi�ronment proposes features such as step-by-step ani�mated executions, graphical visualization of objectand process topology, futures and pending requests,control of interleaving, deadlock detection.1 IntroductionWe present a graphical environment for parallelobject-oriented programming. This environmentprovides visual tools to develop and debug ob�ject-oriented programs as well as concurrent sys�tems. This environment has been derived from aformal semantics of an extension of the Ei�el lan�guage [41], named Ei�el// (pronounce Ei�el paral�lel) [17].

We adopt a structural operational semantics [55]for both the Ei�el language itself, and the con�current primitives. More speci�cally, we use theNatural Semantics [33] within the Centaur system[23], and the Typol formalism [21] which providesus with executable speci�cations. While currentlyused on a speci�c model of concurrency, other mod�els could be speci�ed, and visualization tools woulddirectly follow from the semantic description. More�over, the approach of applying formal semantics tovisualization can be used for other object-orientedlanguages.Graphical techniques have been used in programdevelopment in the setting of object-oriented pro�gramming on one hand [14], and parallel program�ming on the other [36]. Concurrent object-orientedprogramming uncovers speci�c aspects such as thevisualization of active objects, requests, futures,synchronizations, etc.Our work is speci�cally concerned with thegraphical visualization of hand-written applica�tions; method-based environments for interactivedesign with source code generation are slightly outof the scope of this paper. Our contribution is �rstto demonstrate that it is actually possible to derivevisualization and debugging tools1 directly from aformal semantics; secondly, the environment doesnot require any instrumentation from the user. The1For a color version of the �gures, see at the end of thisvolume.



outcome of such an approach is twofold: (i) a ped�agogic environment to demonstrate concepts of ob�ject-oriented programming, actor computation, andformal semantics; (ii) a step towards environmentsfor the formal study of parallel object-oriented pro�gramming.Our interactive environment, based on a con�current model of execution of parallel activitiesthrough interleaving, presents features such asstep-by-step animated executions, graphical visual�ization of object and process topology, futures andpending requests, control of interleaving, deadlockdetection.The next section of this paper is a discussion ofrelated work. Section 3 illustrates, with a simpleexample, the language and model used for concur�rent programming. Section 4 focuses on the op�erational semantic de�nition. From the formal se�mantic de�nition, graphical and interactive visual�ization tools are derived (Section 5). In Section6, we compare and discuss our technique and toolswith closely-related approaches. Finally, Section 7brie�y discusses our contribution and outlines fu�ture work.2 Related WorkOur system being concerned with both semanticsof concurrency and program visualization, relatedwork in these two domains is presented and dis�cussed here.The seminal works of Hoare (csp [30]) and Milner(ccs [42]) play a fundamental role for proceduralprogramming, but they occurred to be not suitedfor object-oriented programming, where the con�g�uration of systems changes dynamically. Milnerhas then proposed the �-calculus [43] as an exten�sion of ccs; in the �-calculus, channels (for interac�tion between agents) can be dynamically generatedand transmitted from one agent to another. Onthe other hand, object-based models for concurrentsystems have been explored [29, 1, 73]. The actormodel is an extension of the �-calculus (well-suitedto functional programming) and is based on the no�

tion of con�guration of actors. Autonomous actorscommunicate via asynchronous message-passing;each actor has its own behavior, reacts to a mes�sage and changes its con�guration.Models have been used and extended in many dif�ferent ways: for instance, Honda and Tokoro pro�posed in [31] an object calculus for asynchronouscommunication built on Milner �-calculus. On theother hand, Nierstrasz and Papathomas combinedthe concurrency models from ccs, csp and the ac�tor models into a computational model of communi�cating agents [51]. More recently, Satoh and Tokorodeveloped RtCCS [59], a formalism for real-time ob�ject-oriented computing based on ccs.For these di�erent approaches, sound type sys�tems were developed [4, 49, 65, 35] and formalsemantics have been described in di�erent frame�works (denotational [6], operational [5, 48, 3, 19],based on the �-calculus [67], or traces [64]).Based on a formal model or not, several concur�rent object-oriented programming languages havebeen designed, such as ConcurrentSmalltalk [72],Distributed Smalltalk [11], Hybrid [45], Pool [4],ABCL [68], Ei�el// [16], DROL [63], and more re�cently Java [26].Program visualization is an active research areain several domains such as software design, perfor�mance monitoring, software training. Representa�tive systems are Zeus [12] for algorithm animation,Polka [62] for program animation on parallel archi�tectures and Pavane [22] for visualization of con�current program execution (see [36] for a survey onparallel programs visualization). One interestingexample is ToonTalk [34]: K. Kahn shows that con�current constraint programming with an interactiveanimation becomes suitable for children.Speci�cally related to the object paradigm, somesystems are not directly language-based, but ratherprovide independent environments for interactivevisualization. For instance, Object Design Ex�ploratorium (ODE) [57] o�ers a learning environ�ment for design principles. A few products, moreoriented towards modeling methodologies and inter�active environments, provide animated execution



and code generation. Based on the Shlaer-Mellormethod [61], SES/objectbench [60] takes advantageof a simulation engine to provide animated simu�lations and BridgePoint [56] has a model veri�erfor execution and a translation engine to generatesource code. ObjecTime [39], using the ROOMmethod (Real-time Object-Oriented Modeling), in�cludes visualization with active and passive objects.Among systems more directly connected to pro�gramming languages, the visualization and probingof class/program structure represent a �rst cate�gory � the display of static program information,along the line of graphical browsers. CIA++ [27]builds a database of information of C++ programswhich is used to display various views of the pro�gram structure. GraphLog [20], a generic toolwith a visual query language, allows visualizing andquerying software structures. Object Explorer [10]by Kent Beck is dedicated to SmallTalk.Another important category features the visu�alization of dynamic information: an actual rep�resentation of objects created when executing aprogram. ObjView [24], a system for the de�sign of electronic boards based on a model writ�ten in C++, o�ers an interface with both a realis�tic view of problem-domain objects and represen�tation-domain C++ objects with visualization ofinstances, member data and functions. Haarslevand Moeller, in [28], propose a framework for bothclass hierarchies and objects using the CLOS [52]meta-level architecture; an explicit association ofvisualization objects with application objects isneeded in that case. Object Visualizer [53, 54]and HotWire [37] are based on program instru�mentation mechanisms. Object Visualizer is accu�mulative, based on an event space, and need ren�derer classes for displaying and changing graphicalelements, while HotWire is a visual debugger forC++ with custom visualization based on a script�ing language. Recently, Lange and Nakamura, in[38], proposed to use interactive visualization to un�derstand � and reuse � frameworks. They coupleprogram instrumentation with a modeling of bothstatic and dynamic program information (within alogical framework, using a Prolog notation). Stored

in a database, the information can then be selectedand �ltered out for speci�c display. Program Ex�plorer, their program visualization tool for C++,applies these principles.A state of the art of applications of visual tech�niques in object-oriented programming is presentedin [14]. Experiences are reported concerning two or�thogonal issues: communication from the program�mer to the computer (visual syntax, language is�sues) and vice-versa (visual environment, presen�tation of static and dynamic information, with anemphasis on animation). In this paper, we are onlyconcerned with this second aspect.Providing an interactive graphical environmentfor concurrent object-oriented programming leadsto more speci�c visualization issues � e.g. how toshow active objects (agents, actors), asynchronousand synchronous message passing, synchronizationsbetween objects. More fundamentally, an impor�tant issue is to be able to ensure the consistencybetween the program execution and the visualiza�tion. A few early works can be found in [70], while anumber of approaches have been explored in recentresearch.One orientation consists of the development of alibrary. BEE++ [13] provides dynamic analysis ofdistributed systems through a library of classes tobe extended by the end-users in order to monitorand to visualize applications. Vion-Dury and San�tana, in [66], propose a 3D interactive animationsfor spatial visualization where objects have polyhe�dral colored shapes. The system is built on top of adebugging tool of Guide [9] using record and replay.With a di�erent approach and goal, the ObjChartformalism and environment [25] proposes to specifyreactive objects directly in a visual framework. Theenvironment is founded on an executable composi�tional semantics. Based on equations over traces,it does not allow dynamic object creation.Other systems are more integrated within a spe�ci�c language. Agha and Astley [2] propose a vi�sualization system for an extension of the actormodel [1]. An abstraction for visualization, visual�izer, monitors a list of the system components, and



ensure consistency by calling themselves visualiza�tion functions. Implemented using synchronizersand re�ection, the system does not require explicitmodi�cation of the application code.The system we present focuses on the visualiza�tion of dynamic aspects, and shows the actual ob�jects of the program during execution with two rep�resentations: textual and graphical. The systemis based on a formal operational semantics, needsno instrumentation, and does not require the userto write any code or script. It permits an interac�tive visualization of both sequential and concurrentobject systems.3 Model and Language for Con�current Programming: Ei�el//In this section, we give a quick overview of a con�current language, Ei�el// [17], de�ned as an ex�tension of Ei�el [40] to support programming ofparallel applications. These extensions are notconcerned with syntax, but are purely semantic,which gives to both languages the same syntacticdescription (see Figure 1). Both are strongly typed,statically-checked class-based languages. Our pur�pose here is not to discuss the rational of Ei�el//,and issues related to object-based concurrent lan�guages (the reader can refer to a recent and re�lated design (C++// [18]), and to related research[47, 69, 15, 50, 71]).3.1 Syntactic ConstructorsSyntactic constructors are presented in Figure 1,and used in the semantic speci�cations in their con�crete form. An expression e 2 Expr is a variable, afeature-call, an arithmetic or logic expression or aconstant. A statement s 2 Stmt is an assignment,a sequence of statements, a selection, an iteration,a routine call2, including the object creation. Theidenti�er x is an attribute, a local variable, a for�mal parameter or one of the two pseudo-variables2The non-quali�ed feature-call m(e1; : : : ; en) is equivalentto the quali�ed call current � m(e1; : : : ; en).

current and result. The identi�er y denotes an at�tribute or a local variable (including the result). kdesignates a constant value (integer, boolean, void(null reference), etc.) and Op1 and Op2 the usualunary and binary operators.� Expressions � Statementse ::= x s ::= y := ej e:m(e1; : : : ; en) j s1; sj Op1 e j if e then s1 else s2 endj e1 Op2 e2 j until e loop s endj k j e:m(e1; : : : ; en)Figure 1: Statements and Expressions3.2 Concurrent featuresThe Ei�el// model uses the following principles:- heterogeneous model with both passive andactive objects (processes, actors);- sequential processes;- uni�ed syntax between message passing andinter-process communication;- systematic asynchronous communicationstowards active objects;- wait-by-necessity (automatic and transparentfutures);- no shared passive objects (call-by-value betweenprocesses);- centralized and explicit control by default;- polymorphism between objects and processes.As in Ei�el, the text of an Ei�el// program (a sys�tem) is a set of classes, with a distinguished class,the root class. Parallelism is introduced via a par�ticular class named Process. Instances of classesinheriting (directly or not) from the Process classare processes. Processes inherit a default behav�ior (which ensures that requests to the process en�try points are treated in a �fo order), but thisbehavior can be rede�ned with the overriding ofthe live routine. All other objects are passive; aprocess is an object but not every object is pro�



cess. Polymorphism between objects and processesis possible: an entity which is not declared of atype process can dynamically refer to a process.In that case, a feature-call dynamically becomesan asynchronous communication between processes(Inter-Process Communication).Cohabitation of active and passive objects leadsto an organization in subsystems. Each subsystemcontains a root process and the passive objects itreferences. Within a subsystem, the execution is se�quential and communications are synchronous: thetarget object immediately serves the request andthe caller waits for the return of the result. Be�tween subsystems, the executions are parallel andcommunications are asynchronous: the target ob�ject (a process) stores the request in a list of pend�ing requests, and the caller carries on execution.There is no shared object between subsystems: ref�erences on passive objects are passed by copy be�tween subsystems. As a consequence, when poly�morphism between an object and a process occurs,two changes happen: asynchronous calls and copytransmission of parameters. Of course, this modi��es the local semantics of the call (re�ected in theformal description, Figure 5, rules (I11) to (I15)).However, this is often a desired change when par�allelizing and, in many cases, does not a�ect theglobal semantics of the application (see for instancethe speech recognition application, Figure 13).Synchronization is handled via the wait-by-ne-cessity, a data-driven mechanism which automat�ically triggers a wait when an object attemptsto use the result of an awaited value (transpar�ent future). The wait-by-necessity, by automati�cally adding some synchronization, tends to main�tain the behavior of a sequential program whendoing the parallelization. Explicit synchroniza�tions can be expressed with the prede�ned routineWait (v.Wait triggers a wait if v is a future).Another primitive Awaited, is a boolean featurewith returns true when the considered object isawaited (if v.Awaited then �do something inthe meantime�). It is also possible to wait for re�quests: the prede�ned routine wait_a_requestpermits to block a process until a new request ar�

rives, e.g. inside a loop construct of a server.3.3 An exampleAs an illustration, Figure 2 presents an Ei�el// sys�tem. It provides a parallel version of the sequen�tial class binary_tree, which describes the man�agement of a sorted binary tree with two routinesinsert and search: each node of the tree has twoclass BINARY_TREEexport insert, search, left, rightfeaturekey : INTEGER;info : INTEGER;left, right : BINARY_TREE;insert (k : INTEGER; i : INTEGER) is... � inserts information i with key ksearch (k : INTEGER) : INTEGER is... � searches for the value of key kend � BINARY_TREEclass P_BINARY_TREEexport insert, search, left, rightinherit PROCESS;BINARY_TREE redefine left, right;featureleft, right : P_BINARY_TREE;end � P_BINARY_TREE(a) Sequential and Parallel Binary Treesclass EXAMPLEfeature v: INTEGER; bt: BINARY_TREE;create islocal p_bt: P_BINARY_TREE;dop_bt.create;bt := p_bt; � polymorphismbuild_binary_tree(bt);v := bt.search(2);v.print � wait-by-necessityend; � Createbuild_binary_tree(bt: BINARY_TREE) isdo � building the binary treebt.insert(3, 6);bt.insert(1, 2);bt.insert(2, 4);bt.insert(4, 8);bt.insert(6, 12);end ; � build_binary_treeend � EXAMPLE (b) Using Active ObjectsFigure 2: An Ei�el// system



children (left and right), an information (info)and an associated key (key); keys of the left (resp.right) subtree of a node are smaller (resp. greater)than the key of this node.To parallelize the binary tree we de�ne thep_binary_tree class. It inherits from the pro�cess class and the binary_tree class; no otherprogramming is necessary; the full version of theclass is actually shown in the Figure 2.a. Poly�morphism between processes (p_bt) and objects(bt) makes it possible to reuse existing sequentialcode (here build_binary_tree for instance). Inthat example, the default �fo behavior and thewait-by-necessity ensure that all insertions are han�dled in a correct order, and before the search; theparallel system preserves the semantics of the se�quential one.4 Operational SemanticsIn this section, we describe the operational seman�tics of Ei�el//. This operational semantics simu�lates parallelism with a non-deterministic interleav�ing of (activities of) concurrent objects.The semantics of inheritance and dynamic bind�ing is expressed in Natural Semantics [33]. Al�though, the modules describing the actual exe�cution of statements (loops, feature calls, assign�ments, ...) are expressed in Structural OperationalSemantics (SOS) [55]).Natural Semantics (big-step semantics) is op�posed to SOS (small-step or transitional semantics)in the sense that intermediate steps of the execu�tion of programs are hidden in a big-step semantics.The general idea of a semantic de�nition in NaturalSemantics is to provide axioms and inference rulesthat characterize semantic behaviors to be de�nedon language constructs. Behaviors are expressedwith sequents in a logical style. These two stylesof semantic description cohabit well in the logicalframework of the Typol formalism [21].We assume that the source program, an abstractsyntax tree noted �, is correctly type-checked. Webrie�y present the semantics related to inheritanceand dynamic binding (Section 4.2), as it is de�ned

for Ei�el (the reader can refer to a detailed versionof the semantics of Dynamic Binding [7]).We need to de�ne some structures which describethe global con�guration of a system. During exe�cution, an Ei�el// system is composed of objects.Each object in the system has a con�guration (at�tribute values, activity, pending requests); the col�lection of all object con�gurations is the con�gu�ration of the system. For modeling objects (withtheir activity) during execution, we need a struc�ture (based on an abstract syntax). We also needa structure to store the futures and their values.We then describe the operational semantics ofthe language in terms of a transition system, mod�eling possible transitions (global actions) from onecon�guration to another. We present rules describ�ing global actions of a system; these global actionsare expressed in terms of local actions on objectsor interactions between objects.4.1 Semantic StructuresWe present the semantic structures used to modelobjects: static type, attributes, local variables,pending requests, and their activity (a list of clo�sures).4.1.1 ObjectsWe model a system of objects 
 2 Objs with a listof objects 
 ::= f
ig�. Each object 
i 2 Obj is aquintuplet: 
i ::= h�; �; �;c;ri, de�ned as follows:The value � 2 OName is the identi�er of the ob�ject, � 2 CName is the name of the object class (itsstatic type), � is a list of pairs (attribute, value),c 2 Clrs is a list of closures (modeling object activ�ity) and r 2 Rqsts a list of requests to serve.A closure ci = hs; �i is de�ned by a sequence ofstatements s of Stmt and a context �, formed bytwo lists of pairs: � = h�1; �2i.The lists �1 and �2, respectively manage the as�sociation between formal and e�ective parametersand local variables and their values.Finally, a request ri 2 Rqst is modeled by aquadruplet ri = hm; ev; �; �i with m the name of



routine to serve, ev = (v1; : : : ;vn) the e�ective pa�rameters, � the future for the value of result afterthe routine completion and � the sender identi�er.4.1.2 FuturesFor modeling futures we add a new value, theawaited value �, so we can distinguish between anawaited value and the e�ective returned value atany time.The environment of futures � ::= f�ig�, isshared by all objects; each future �i = h�;vi is de��ned with a name � 2 FName, and a value v 2 Val,de�ned as an e�ective value v 2 EVal (integer,boolean, reference) or a future �.4.1.3 ContinuationsIn a small step operational semantics, it is necessaryto describe continuations: the actions an objet hasto perform. This leads us to de�ne new construc�tors.e ::= ::: j v j ( j e; m(e1; : : : ; en) j e � clone(�)s ::= ::: j null j e) j e) � j clone_attrs(�; �)Intuitively, e) and e( are used to transmit thecurrent result between closures, in a single object;e ) � returns the result of a service between ob�jects; e ; m(e1; : : : ;en) is used for modeling theevaluation of parameters (transmitted by copy orby reference); we also use the notation ee for thelist of parameters (e1;e2; : : : ;en); null is the state�ment which does nothing; e�clone(�) makes a copyof the expression e and clone_attrs(�; �) makesa copy of each attribute value in �.4.2 Inheritance and Dynamic BindingWe do not build, for every class, an intermediatedata structure for all inherited features, attributes,etc. Instead, we use the source program, lookingfor information in the current class, or in ancestors(see [7] for more details). From the semantics ofEi�el, we use the following predicates:� feature(m; �;�) =m0(Decs1) : t is local Decs2 do sM end;

determines in the program �, the e�ective dec�laration of the routine m according to possiblerenamings and rede�nitions (m0 is the versionof the routine named m in the class �).� bind(Decs; ev) = �1builds the �1 environment: the list of pairs (for�mal parameter, value) where each value comesfrom the list of e�ective parameters ev.� init(Dec) = �2builds the �2 environment: the list of pairs (lo�cal variable (including result), initial value)where each initial value depends on the typeof the variable (0 for integer, void for refer�ences, etc.).We also de�ne a new predicate inheritpro-cess(�;�) simply based on the existing predicateinherit(�; �0) which states whether a class � inher�its from class �0; it will be used, at object creation,to specify if an object is active.4.3 The Transition SystemOur operational semantics is based on a transitionsystem whose states represent global con�gurationsof a set of objects. The execution of a program ismodeled by a sequence of con�gurations, startingfrom a suitable initial con�guration. A global con��guration changes into another global con�gurationwhen a global action is applied on the whole systemof objects. A global action is for instance a commu�nication between objects or the creation of a newobject. A global action is de�ned in terms of alocal action in a given object. This object is deter�mined arbitrarily in the set of objects (see Section5.4 for more details) to perform some activity (thisobject is actually working during one elementary in�terleaving transition). A local action of the workingobject may be an internal action or an interactionwith another object.The semantics of a program is given by a transi�tion system which represents all its possible execu�tions. A global con�guration of a system is a tripleth�; �; 
i where � is the source program, a listof classes, � is the environment of futures and 
 isthe list of objects.



The transitions between con�gurations aregiven with rules which describe global actionsof the system. These rules are of the form:hSystem; Ftrs; Objsi �! hSystem; Ftrs; Objsiwhich is interpreted as follows:A system in a con�guration h�;�;
i performsa global action and changes its con�gurationinto h�;�0;
0i.Note that during execution, the system � is nevermodi�ed. Execution of a system is a sequence oftransitions:h�; �0; 
0i �! h�; �1; 
1i �! � � �where the initial con�guration is given by:h�;�0;
0i = h�; [ ]; fh�0;root; �0;fhcreate; h[ ]; init(Decs)iig; [ ]igiIn the initial con�guration, the list of objects con�tains one object (the root object, instance of theroot class of �). Attribute values are initializedin �0. The root object has to execute its createprede�ned routine and has no request to serve.4.3.1 Global ActionsThe global actions of systems are given in Figure 3;they show how a con�guration evolves according tolocal actions of objects.Rule (G1) describes how the global con�gurationmay change as a result of an internal action in oneobject. It reads as follows, from bottom to top: anEi�el// system �, a list of futures �, a list of ob�jects 
 with a selected object h�; �; �;c;ri to be ac�tivated, are changed into a new con�guration (rightof the arrow) where only �0; c0; r0 (attributes, clo�sures, and requests) are possibly di�erent if andonly if the top part of the rule can be proved, i.e.the selected object can perform an internal actionand change its state with the values �0; c0; r0.Rules (G2) and (G3) deal with the creation of ob�jects: a new identi�er is generated and a new pro�cess (resp. object) is created depending on whetherthe de�nition class �1 of the object to create inher�its from the Process class (the predicate ss, whenapplied to an object identi�er, returns its root pro�cess).

Rule (G4) describes the deep copy of a passiveobject  asked by the � object (copy of the ob�ject itself and all the referenced passive objects).A new object is created in the subsystem of object� (given as a parameter of the action cln), witha new identi�er �. The �elds Cname, Attrs andRqsts of � are those of . The activity of the �object starts by making a copy of its attributes(clone_attrs(� ; �)), and a future continuation(� ) �) for the object �. Then, � waits for thefuture � (see (I15)), and receives the identi�er �.Rule (G5) describes the synchronization be�tween send(m; ev; �; �) (action performed by �) andrcv(�;m; ev; �) (action performed by �). All com�munications are semantically speci�ed with a newfuture � which handles the wait-by-necessity. Asynchronous communication is then modeled withan immediate wait on the future.�; � ` h�; �; �; c; ri int�! �0; c0; r0 (G1:internal)h�; �; 
 [ fh�; �; �; c; rigi �! h�; �; 
 [ fh�; �; �0; c0; r0igi�; � ` h�; �; �; c; ri new(�1;�)�! �0; c0; r0h�; �; 
 [ fh�; �; �; c; rigi �! (G2:process creation)h�; �; 
 [ fh�; �; �0; c0; r0i; h�; �1; [ ]; [(s; ())]; [ ]igiprovided inheritprocess(�1;�); gen(�)where feature(live; �1;�) = live : t is do s end; ss(�) = ��; � ` h�; �; �; c; ri new(�1;�)�! �0; c0; r0h�; �; 
 [ fh�; �; �; c; rigi �! (G3:object creation)h�; �; 
 [ fh�; �; �0; c0; r0i; h�; �1; [ ]; [ ]; [ ]igiprovided not inheritprocess(�1;�); gen(�);where ss(�) = ss(�)�;� ` h�; ��; ��;c�;r�i cln(;�;�)�! �0�;c0�;r0�h�; �; 
 [ fh�; ��; ��; c�; r�igi �! (G4:clone)h�; h�; �i ��; 
 [ fh�; ��; �0�; c0�; r0�i; h�; � ; � ; c; rigiprovided9h; � ; � ;c ;ri 2 
[fh�; ��; ��;c�;r�ig; gen(�); gen(�)where c = hclone_attrs(� ; �); �) �; ()i; ss(�) = ss(�)�;� ` h�; ��; ��;c�;r�i snd(�;m;ev;�)�! �0�;c0�;r0��;� ` h�; ��; �� ;c� ;r�i rcv(m;ev;�;�)�! �0� ;c0� ;r0� (G5:comm.)h�;�;
 [ fh�; ��; ��;c�;r�i; h�; �� ; �� ;c� ;r�igi �!h�;�0;
[fh�; ��; �0�;c0�;r0�i; h�; ��; �0� ;c0� ;r0�igiprovided gen(�); where �0 = h�; �i ���;� ` h�; �; �; c;ri rep(�;v)�! �0;c0;r0 (G6:result)h�;�;
 [ fh�; �; �; c;rigi �! h�;�[� v];
 [ fh�; �; �0;c0;r0igiFigure 3: Semantic Rules for Global Actions



Finally, Rule (G6) assigns the result value v tothe associated future � in the futures environment.4.3.2 Local ActionsDue to space limitation, we can not present the fulldescription of local actions but focuse on the mostspeci�c aspects. The reader can refer to [8] for moredetails. Semantic rules describing local actions areof the form:System; Ftrs ` Obj local�! Pairs; Clrs; Rqstswhich is interpreted as follows:An object performs some local action andmodi�es its con�guration (attributes, closures,requests).Semantics of StatementsWe focus in Figure 4 on the rules for assignment,selection, and message passing, which can be de�composed into elementary actions (both internal toan object, and serving a communication betweentwo objects).For instance, the rule assign describes an elemen�tary step during the execution of an assign state��; � ` h�; �; �; he; �i � c; ri l�! �0; he0; �i � c; r0�; � ` h�; �; �; hy := e; �i � c; ri l�! �0; hy := e0; �i � c; r0(assign)�; � ` h�; �; �; he; �i � c; ri l�! �0; he0; �i � c; r0�; � ` h�; �; �; hif e then s1 else s2 end; �i � c; ri l�!�0; hif e0 then s1 else s2 end; �i � c; r0 (selection)�; � ` h�; �; �; he; �i � c; ri l�! �0; he0; �i � c; r0�; � ` h�; �; �; he �m(ee); �i � c; ri l�! �0; he0 �m(ee); �i � c; r0(call object)�; � ` h�; �; �; he; �i � c; ri l�! �0; he0; �i � c; r0�; � ` h�; �; �; h� ; m(ee); �i � c; ri l�! �0; h� ; m(ee0); �i � c; r0(call param)�; � ` h�; �; �; he; �i � c; ri l�! �0; he0; �i � c; r0�; � ` h�; �; �; he) �; �i � c; ri l�! �0; he0 ) �; �i � c; r0(result)Figure 4: Rules for statements

ment: the right-hand side of the assign is still anexpression to be evaluated e. An elementary stepconsists in evaluating one step of e, which gives anew expression e', so the continuation is an assignstatement with e' in the right-hand side.Semantics of Internal ActionsAxioms for internal actions are given in Figure 5.Axioms for evaluation (resp. assignment) of anattribute (I4) (resp. (I17)) are straightforward.The axiom (I7) describes the evaluation of a fu�ture �. This axiom does not apply if the value of� is the value � itself; the future is unknown. Inthis case, the absence of any action for the object(other than receipt of requests or results) modelsthe wait-by-necessity.Axioms (I8) and (I9) describe the local call of aroutine. In this case, a new closure is created withthe routine body plus the continuation result )with its context. After the completion of the rou�tine, the result value will be sent to the next closure.The axiom (I10) describes the explicit Wait:when the value of an expression is an e�ective valuev the wait terminates and the value is returned.Axioms (I11) to (I15) present the transmissionof parameters, depending on the type of the call.For a synchronous call (I11), parameters are passedby reference. For an asynchronous call (I12), pa�rameters are passed by copy. Axioms (I13) to (I15)deal with the actual copy of parameters dependingon whether it is a constant (I13), a process (I14),or a passive object (I15) for which a deep copy isrequired.The axiom (I21) expresses the creation of an ob�ject of type �1 (the type of y). The new objectis referenced by y (as expressed in the assignmentstatement returned as a continuation). The axiom(I23) is a terminal action for sending back a result(the continuation is null).Semantics of CommunicationsFigure 6 gives axioms for the description of commu�nications. Axioms (C1) and (C2) may be appliedwhen all subexpressions have been evaluated andrespectively describe a call between objects of two



�Axioms for expressions�; � ` h�; �; �; hI; �i � c; ri int�! �; h�[a]; �i � c;r (I4)�; � ` h�; �; �; h�; �i � c; ri int�! �; h�[�]; �i � c; r (I7)provided �[�] 6= ��; � ` h�; �; �; h�; m(ev); �i � c; ri int�! (I8)�; hsM ; result); �M i � h(; �i � c; nrwherefeature(m; �;�) = m0(Decs1) : t is local Decs2 do sM end;bind(Decs1;ev) = �1; init(Decs2) = �2; �M = h�1; hresult;voidi��2i�; � ` h�; �; �; hv); �i�h(; �1i�c; ri int�! �; hv; �1i�c; r (I9)�; � ` h�; �; �; hv �Wait; �i � c; ri int�! �; hv; �i � c; r (I10)�;� ` h�; �; �; h� �m(ee); �i�c;ri int�! �; h� ; m(ee); �i�c;r (I11)provided � 6= void; ss(�) = ss(�)�;� ` h�; �; �; h��m(ee); �i�c; ri int�! �; h� ; m( ge � clone(�)); �i�c;r(I12)provided � 6= void; ss(�) 6= ss(�)�;� ` h�; �; �; hk � clone(�); �i � c;ri int�! �; hk; �i � c;r (I13)�;� ` h�; �; �; h � clone(�); �i � c;ri int�! �; h; �i � c;r (I14)provided  6= void; ss() = �;� ` h�; �; �; h�clone(�); �i�c; ri cln(;�;�)�! �; h��Wait; �i�c; r(I15)provided  6= void; ss() 6= � Axioms for instructions�;� ` h�; �; �; hI := v; �i � c;ri int�! �[I  v]; hnull; �i � c;r(I17)�;� ` h�; �; �; hy � create; �i � c;ri new(�1;�)�! �; hy := �; �i � c;r(I21)where feature(y; �;�) = Decs : �1; y 2 Decs�;� ` h�; �; �; hv) �; �i � c;ri rep(�;v)�! �; hnull; �i � c;r (I23)Figure 5: Axioms for internal actionsdi�erent subsystems and a call between objects ofthe same subsystem. In both cases, a request iscreated and sent to the callee, and a new future �represents the return value.On the caller side, in the case of two di�erentsubsystems, an asynchronous call occurs and thecaller carries on its execution. On the other hand,within a subsystem, a synchronous call is achieved:the caller immediately waits for the value of the

future (explicit Wait).On the callee side, when a request is received, ifit comes from a di�erent subsystem (asynchronouscall, axiom (C3)), the request is appended to thecurrent list of pending requests, and will be treatedlater. On the other hand, when the request comesfrom the same subsystem (synchronous call, axiom(C4)), it is immediately treated. This is possiblebecause within a subsystem, at most one object isready for execution. This technique is also used todeal with recursion within a subsystem.�; � ` h�; �; � h� ; m(ev); �i � c; ri snd(�;m;ev;�)�! �; h�; �i � c; r(C1)provided ss(�) 6= ss(�)�;� ` h�; �; �; h� ; m(ev); �i�c; ri snd(�;m;ev;�)�! �; h��Wait; �i�c; r(C2)provided ss(�) = ss(�)�; � ` h�; �; �; c; ri rcv(m;ev;�;�)�! �; c; r � hm;ev; �; �i (C3)provided ss(�) 6= ss(�)�;� ` h�; �; �;c;ri rcv(m;ev;�;�)�! �; hsM ; result) �; �mi � c;r(C4)provided ss(�) = ss(�)wherefeature(m0; �;�) = m(Decs1) : t is local Decs2 do sM end;bind(Decs1;ev) = �1;init(Decs2) = �2;�M = h�1; hresult;voidi � �2iFigure 6: Axioms for communications5 Semantics to VisualizationFrom the syntactic and semantic de�nition of Eif�fel//, using the Centaur system and the Typol for�malism, we derive an interactive environment forparallel object-oriented programming. Note thatthis environment is also suitable for sequential ob�ject-oriented programming and includes all of stan�dard Ei�el (since Ei�el// semantics includes the se�mantics of Ei�el).The principle which permits to go from seman�tics to visualization is as follows. First, the se�mantic structures (semantic domains) are directlyused in the visualization. The list of objects, fu�tures, and continuations (speci�ed in section 4.1)



will be directly used as an intermediate formatby two visualization engines (one textual and onegraphical, detailed below). Second, the seman�tics is equipped with noti�cations for the visual�ization engines. On appropriate semantic rules,when a rule is successfully applied (proved), thenoti�cation (if it exists) is triggered and the vi�sualization engines become aware of some modi��cation in the semantic structures. For instance,on rule (G1) Figure 3, the new list of objectshas changed and is transmitted as a noti�cation:�;�`h�;�;�;c;riint�!�0;c0;r0h�;�;
[fh�;�;�;c;rigi�!h�;�;
[fh�;�;�0;c0;r0igi (G1)notify 
 [ fh�; �; �0;c0;r0igAltogether, less than 10 semantic rules needed tobe equipped with such noti�cations.The environment obtained can be used by two kindsof users:� novice programmers can build basic programs(without actually knowing the syntax of thelanguage), compute their result using the gen�erated interpreter, and visualize program exe�cution with animation tools, including activeobjects;� language designers can express and understandoperational semantics of various concurrent ob�ject-oriented models.In this section, we focus on the functional aspectsof the program development and debugging envi�ronment: we present the structure editor, the inter�preter, with two di�erent granularities of interleav�ing. We also describe the visualization tools thatallow animation and debugging of programs (tex�tual and graphical presentation of objects, controlover the execution, etc). Finally we explain howlanguage designers can access and visualize the se�mantic model during execution of a given program.5.1 Editing and InterpretingThe programming environment includes a parserand a pretty-printer which compose a structure ed�itor (see Figure 7). This syntactic editor providesa guided editing mode (based on abstract syntax,

via tree manipulation) as well as an in-line textualediting mode (based on concrete syntax, using aparsing process).

Figure 7: Editing and Visualizing a ProgramThe main window (�p_binary_paper.ep")shows, after parsing, a concrete representation ofthe abstract syntax tree of the example programpresented in Figure 2. This concrete representa�tion uses speci�c fonts and colors for keywords andcomments. During editing, placeholders can be eas�ily introduced (using the "Ins Meta" button in the"editing" box on the right). Placeholders can thenbe �lled up by selection of an abstract syntax oper�ator (the window on the left-hand side shows onlypossible operators of type INSTRUCTION, the cur�rent selection in the program window). The ab�stract syntax de�nition ensures that the whole ab�stract syntax tree for the program is syntacticallycorrect. Finally, the editing window on the rightprovides help for navigation in the tree, changingthe level of details, cut-and-paste operations, andso on. Program editing and visualization is partof the so-called editing server (possibly running onone machine) as opposed to the semantic serverwhich handles execution of the semantics (possiblyrunning on another machine); the model is basedon a client-server architecture, with asynchronouscommunications.



To trigger the interpretation of a program, weprovide a speci�c popup menu, which is a call tothe operational semantics of the language. The ab�stract syntax tree of the source program is transmit�ted from the editing server to the semantic server.The result of the execution is an abstract syntaxtree modeling the �nal list of objects which is sentto the servers for visualization.5.2 Visualization and Animation ToolsWe provide two di�erent visualizations of objects,using two visualization engines, both of them basedon the semantic structure for modeling the list ofobjects presented in Section 4.1.In one window, we present a textual represen�tation of objects with their con�guration: pro�cess or object, static type, current attribute val�ues, current activity, current pending requests. Fig�ure 8 shows the root object and a process of typep_binary_tree. The left and right attributevalues are references to other objects (]3 & ]4 arenot shown here, the scroll-bar must be used). Thisprocess has currently 2 pending requests (in red,between h and i). Last, its current activity (thehighlighted continuation), is a if statement. Thequestion mark `?' in object ]1 is discussed in Sec�tion 5.3.Such a presentation does not give a global viewof the graph of objects. So, in another window,we show the complete topology of the system in agraphical representation. This graph is visualizedthanks to the graph displaying package of Centaur[32]. Nodes and edges of the graph are built usinga traversal of the abstract syntax tree representingthe list of objects: for each object, a node repre�senting an object is created, and for each attributevalue which is a reference, an edge is created be�tween two object nodes. Two kinds of object nodesexist, distinguished with speci�c colors: objects inblue and processes in green. Figure 9 displays allprocesses during execution of the binary tree exam�ple.A zooming process makes it possible to show, onrequest, attribute values of a given object node.

Figure 8: Textual Visualization of Objects

Figure 9: Graphical Visualization of ObjectsThis is done with an expansion of an object nodeinto a subgraph made up with the object node itselfand attribute nodes (containing attribute name and



value, possibly a reference). References noted inFigure 8 are shown with arrows between the rootprocess and its two sons (p_binary_tree ]3 &]4).We also provide a selection mechanism in thegraphical representation for modeling subsystems.Selecting an object highlights its root process (pos�sibly itself) and related passive objects. This maybe useful for a better understanding of concurrencyaspects (communications, transmission of param�eters, etc). For readability, no other information(such as pending requests, or activity) is availablein the graphical representation.These two visualizations are based on the samesemantic structure modeling the list of objects andcan be displayed after execution of the program.This technique also provides animation to visual�ize objects during program execution, and so havea better understanding of the behavior of the pro�gram.One thing we chose to highlight is the current ac�tive object and activity, in the textual presentation(with a particular selection) and in the graphicalpresentation (with a thick blue border). This isdone with a noti�cation expressed in the semanticspeci�cation as a side e�ect of the application ofrule (G1). This noti�cation is sent from the seman�tic server to the editing server each time an objectis selected for execution.To visualize objects during execution and provideanimation, it is also necessary to show the changesthat occur (creation of a new object, update of anattribute value, etc). This is done with a noti��cation in the appropriate semantic rule. For in�stance, axiom (I17) dealing with the assignmentof an attribute, when applied, noti�es the editingserver that a change has occurred. Then, it is up tothe textual and graphical presentations to show thechange with an incremental redisplay (so the useris not bothered with screen �ashes) and permits tofocus the attention on the change (a new value, anew object) which is highlighted.

5.3 Visualizing SynchronizationsOur environment makes it possible to visualize au�tomatic futures which are data-driven synchroniza�tions. An example, from the binary tree examplein Figure 2, is illustrated in Figures 8 and 9, with aquestion mark `?8' as the value of the attribute v.When the root object executes the statement v:=bt.search(2), bt refers to a process object of typep_binary_tree. The rule (G5) for communica�tion is applied. Then the environment of futures� is updated by a new pair h�; �i and the future� is transmitted to bt (which will later update onthe future with the result). In the root object, thevalue � (identi�ed by the number 8), is assigned tothe attribute v).Execution continues, with the state�ment v.print, which starts by the evaluation ofthe attribute v (axiom (I4)). Because the value ofv is the future �, the continuation � � print will bereturned. The axiom for the evaluation of a future(I7) then may be applied, depending on whetheror not the side condition of the axiom is veri�ed.The value of the future � may still be �, otherwise,the value is an e�ective value (the integer 4). Inthe �rst case the root object is then waiting for thevalue of v and the execution continues with otherprocesses. In the second case, the value is returnedand the continuation is 4.print.5.4 Termination and DeadlockBecause operational semantics simulates paral�lelism with non-deterministic interleaving, there isonly one working object at a time, chosen amongall active objects. We use the following terminologyfor objects:active: has an activity to complete (non-emptylist of closures).terminated: has no activity to carry on (emptylist of closures).waiting: is currently waiting either for the returnof a future value (wait-by-necessity) or for arequest (wait_a_request primitive).In the initial con�guration, only one object (root)



exists and is active. To decide which object willproceed its execution (for one elementary step), wearbitrary (non deterministically) choose among ac�tive objects (see Section 5.7 for other alternatives).Activation and deactivation of objects occur, ac�cording to the following principles:� when an object is created, it is activated withthe create routine as continuation;� after one transition step, one active object isdeactivated if either this object is blocked, wait�ing for a request, or this object attempts toaccess the value of a future � which is not yetreturned (failure of axiom (I7)); in both cases,the object becomes waiting;� after one transition step, a waiting object isactivated if this object received a request (rule(G5) applies) or if this object received the valueassociated to a future � (rule (G6)) applies).Note that the deactivation of an object permits tohandle waits without consuming cputime (passivewait).With this terminology, we can state terminationand deadlock properties. An execution:terminates: when every object is terminated;deadlocks: if there is no more active object andat least one waiting object on a future.Our semantic-based environment handles suchproperties and reports a message during executionwhen a deadlock is detected. Figure 10 illustratesthe deadlock detection in a classical problem of re�source allocation: the philosophers. In this versionof the philosophers, as shown in the �gure, it is pos�sible that each philosopher grabs a fork and waitsfor the second one (the continuation is stopped ona future: ?i.wait), and a deadlock occurs.However, the fact that a program terminates nor�mally (without deadlock) during one execution doesnot prevent from a deadlock occurring in anotherexecution. To statically detect that a program isdeadlock-free, we would have to consider all pos�sible executions (with the combinatorial explosionproblem) and make sure that no execution can leadto a deadlock.

Figure 10: Detecting a deadlock5.5 Controlling the executionTo control the execution, it is necessary to suspend(and resume) the semantic server on user request.This is done with the de�nition of a communica�tion protocol between the editing server (user in�teractions) and the semantics server (program ex�ecution). Each transition of the system is condi�tioned by the reception of a message from the edit�ing server. On the other hand, messages from thesemantic server can be emitted to the editing server(to give information on the execution progress).With these communications, it is quite straight�forward to add a debug box to control execution(see Figure 11.a). Four buttons are provided inthis tool:� go: execution resumed without stopping;� stop: execution stopped in the next con�gura�tion of the transition system;� step: execution resumed for one transition (ap�plication of one global rule of Figure 3);� abort: execution aborted.So, during the interpretation of a program, onecan stop the execution, inspect the current stateof the system (attribute values, requests, activitiesof objects), and resume execution, step by step, or



continuously. Nothing in our approach prevents usfrom changing attribute values during execution;this possibility will be added in the future.
(a)Globalcontrol (b) Control of gran�ularity

(c) Control of in�terleavingFigure 11: Control over the execution5.6 Changing the granularityOur semantics is based on a very �ne-grain inter�leaving: every statement is decomposed into a largenumber of elementary steps (local actions, see Sec�tion 4.3.2); of course, a method execution is notatomic. This means that the number of systemcon�gurations during execution is important (e.g.551 transitions for the binary tree example).This kind of granularity is useful when the userwants to see the detailed execution, inside an objector a process for instance. However, this granularitymight be too �ne in some cases, especially when theuser is interested into the global behavior of the sys�tem, and interactions between processes. For thisreason, we also provide a coarse-grain interleaving,which is handled just by providing a new set of

rules for global actions; these rules are as expressedin Figure 3 except for the rule (G1), to be replacedwith the following rule (G1'):�;�`h�;�;�;c;ri int���!� �0;c0;r0h�;�;
[fh�;�;�;c;rigi�!h�;�;
[fh�;�;�0;c0;r0igi (G1')Previously, atomic actions were object creation, ob�ject copy, communication, or an elementary inter�nal action (every action dealing with only one ob�ject). In this coarse-grain version of the semantics,a suite of internal actions can be executed withoutinterleaving until a global action involving two ob�jects is reached. This is expressed by adding thetransitive closure (�) of the internal action relation(int�!) in rule (G1').The number of global con�gurations during exe�cution is considerably reduced in coarse-grain exe�cution (e.g. 73 transitions for the binary tree exam�ple instead of 551); note that method execution isstill not atomic, but the interleaving is of a coarsergrain. These two di�erent sets of rules for globalactions are accessible via two distinct entry points.One can then choose between these two modes ofinterleaving as shown with the menu of Figure 11.b.5.7 Exploring the interleaving spaceThe selection of the next object to execute is, bydefault, arbitrary in the set of active objects.This random selection can be changed on the pro�grammer's request, after stopping the execution.This is done via a menu (see Figure 11.c); the usercan decide to suspend (or resume) a given object,objects of a given class, or all objects. When click�ing on object entries, the user is asked to select anobject (in the textual or graphical presentation).When clicking on class entries, the user is asked toselect a class in the program source.Any action has a straightforward e�ect on the sta�tus of (individual or sets of) objects, switching anactive object to inactive or the reverse. With thispossibility, one can simulate fast or slow processes,di�erent priorities on di�erent families of processes,etc. For instance, one useful exploration is to sus�pend all objects and to resume one particular ob�ject. Thus, only this object can proceed with its



activity as far as it does not access some awaitedvalue. Thanks to this mechanism, very speci�c in�terleaving can be explored, e.g. looking for poten�tial deadlock.5.8 Understanding the semanticsThanks to a particular compilation mode of the se�mantic description, one can visualize the semanticrules: a speci�c window shows the inference rulecurrently applied (see Figure 12 for the applica�tion of rule (G1)). The skip button is an attemptto prove the rule without displaying the completeproof. One can control over the semantic interpre�tation; for instance, the fail button provokes a fail�ure which has a direct impact on non-determinismand determines one particular execution path, atthe meta-level of semantics. It is also possible toset breakpoints in the semantics and see the currentvalue of a given variable (with the examine button).
Figure 12: Visualizing the SemanticsTo conclude this section and as a general illus�tration of our environment, we show the sequentialexecution of an application in speech recognition[16] in Figure 13.a, and a parallel execution in Fig�ure 13.b. We can deduce from both �gures thatthe four knowledge sources became active objectsand that some passive objects were duplicated (e.g.signal) because of the construction of several sub�systems (no shared objects).6 DiscussionThe technique we used, as presented in Sections 4and 5, o�ers two main advantages:

(a) Sequential Execution

(b) Parallel ExecutionFigure 13: A Speech Recognition Application(1) the environment generated is general enoughso that programmers can develop and debug ob�ject-oriented programs in a sequential as well as ina concurrent framework;(2) visualization tools are based on the semantic de�scription of the concurrent object-oriented model,so the programmer is not required to instrument hisprograms to get a visualization of the execution.If we take as a reference criteria proposed in thetaxonomy of program visualizations [58], our sys�tem can be quali�ed as following. All aspects ofthe program, the scope criterion in [58], are visual�ized (code, data and control state, behavior): the



source code is displayed and animated in one win�dow, objects are displayed and animated in otherwindows. The level of abstraction is based on di�rect and structural representations: references areabstracted as an arc in the graph of objects. Thespeci�cation method relies on logical predicates (asin Pavane [22]) at the semantics level (not at thecode level). The graphical interface provides simpleobjects, events, multiple worlds, and control inter�action: the graph server we use not only providesan abstract representation of objects (an output)but it also reacts to user actions (input): select anobject, move an object, zoom, etc. Last, the presen�tation of the visualization is analytical and explana�tory: we visualize concurrent computations as theyoccur, and also we can focus the attention of theuser on a particular event (for instance, a synchro�nization is shown when the computation accessesan awaited value presented as a red question mark`?').Agha et al. suggested to use predicate transitionnets [44], and de�ned the so-called causal interac�tion model which captures causal behavior and co�ordination between actors [2]. In the latter work,one of the key points is the consistency betweenthe events as they occur and the visualization; theauthors developed a model that preserves this con�sistency (causal connection restriction). We do nothave to deal with such questions because a seman�tic-based visualization is by de�nition consistentwith the interpretation of the semantics. For thesame reason, we do not need observers and coor�dinators, everything is centralized in the semanticsde�nition and interpretation. The two approachesare rather complementary: [2] well-adapted for ob�servation in situ and optimization, our approach forinvestigation of all possible behaviors and formalveri�cations.In [46], Nierstrasz develops an executable nota�tion, Abacus, allowing the speci�cation of variousconcurrent object languages. The intended goal isto o�er a generic platform; as an illustration, a spec�i�cation of SAL [1] (a Simple Actor Language) isdescribed within Abacus, and SAL programs canbe interpreted using an Abacus to Prolog transla�

tion. Techniques similar to those described herecould be used to provide Abacus with graphical vi�sualization � a semantics of Abacus would have tobe de�ned in Typol, leading to both genericity onthe concurrent model, and non instrumented graph�ical visualization. However, since Abacus modelingoccurs in term of agents and events which are com�posed to specify the semantics of a particular ac�tor model, a general purpose visualization would re��ect those building bricks. While interesting whendesigning and comparing concurrent models, theymight not be relevant when experimenting with onegiven system3. Thus, an interesting direction forimprovement might consist to add to the speci�ca�tion of a system, directly within the Abacus nota�tion for instance, the necessary speci�cation of howto visualize the concurrent language being modeled.This extra speci�cation would provide an abstrac�tion, relevant to the user of a concurrent language,over the agents and events being used to model it.7 Conclusion and Future WorkIn this paper, we presented how we can build agraphical visualization environment from an oper�ational semantics of a (concurrent) object-orientedlanguage. The visualization is not obtained fromcode instrumentation but automatically, using thesemantic description. The graphical environmentfocuses on objects and their interactions (objecttopology, attribute values, concurrent activities,subsystems, synchronizations), provides a set ofprimitives for controlling and probing the execu�tion (granularity of interleaving, step-by-step exe�cution, control over the interleaving), and detectsdeadlock con�gurations when they occur. Due tonon-determinism of concurrency, it is crucial to pro�vide the user with the possibility to investigate theinterleaving space of all possible executions.An important issue with visualization environ�ment is scalability. Based on a formal semantics,our approach might raise some concerns. However,3A similar phenomenon occurs when modeling parallellanguages with the �-calculus: far too many agents are gener�ated, not well representing the actor structure of a program.



the technique is viable, and our current system isactually operational; applications with more than600 objects were handled and visualized graphi�cally, and the execution speed is such that it is oftennecessary to slow down interpretation for the sakeof visualization. To further improve these aspectsand enable the user to apprehend complex systems,several paths are possible. Regarding visualization,a solution is to ask the user extra information inorder to customize the layout. A �rst possibilityconsists in giving a partial view of the graph ofobjects (only processes, only objects from a givenclass, etc.); this solution is quite straightforward toadd to our system, and we are currently workingon that aspect. More sophisticated strategies, thatshows an abstraction of the system topology, arealso considered. Within our semantic framework,we see two possibilities for the speci�cation of thisvisualization information: at the formal level us�ing semantics rules, or at the target language level,writing visualization classes. These two options areprobably complementary since they do not concernthe same kind of user.Another important improvement would be toprovide a framework generic on the programmingmodel, and especially the model used for concur�rency. One possibility would be to use the ap�proach discussed at the end of Section 6. Regard�ing visualization, if one describes the semantics ofanother model of concurrency, for instance usingquasi-parallel and parallel processes, the visualiza�tion would directly follow from the new semantics,i.e. several continuations would be added to eachactive object.Finally, expressing the behavior of a parallel sys�tem with transitional semantics inherently repre�sents all possible executions, which can then beused to study program properties such as absenceof deadlock, liveness, or equivalence using classi�cal techniques based for instance on traces [30] orbisimulation [42]. A semantic-based visualizationshould permit to provide an integrated environmentwhere users can both visualize program executionand study formal properties.
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