

DRAFT

1

Design and Implementation of a Workflow Rendering Engine

Jason A. Pamplin Ying Zhu

Georgia State University
Atlanta, Georgia

Abstract
Business visualization is an effective tool for business
decision making and problem solving. Despite its
obvious benefits, 3D visualization is far less common
in practice than it should be due to the lack of
software support. To address this problem, we have
developed a workflow rendering engine that
facilitates the 3D visualization of business process
information for organizational process analysis and
efficiency studies. The workflow information is
represented in XML format to be compatible with the
new Web graphics standard X3D. The rendering
engine is implemented using C++ and OpenGL in
order to take full advantage of modern 3D graphics
hardware. The object-oriented design makes this
engine highly extensible.

Keywords: business visualization, workflow,
rendering engine, XML, OpenGL,

1. Introduction1

In many organizational situations, it is desirable to
be able to look at the business processes and
determine where the main inefficiencies are. Such
processes are often referred to as workflow .
Currently, most workflow diagrams are rendered and
manipulated solely in two dimensions. This is
because the software packages that draw such
diagrams lack the support for 3D visualization.

3D graphical representation of abstract business
data has a number of benefits over 2D
representations, or rows and columns of numbers.
The added dimension allows user to combine more
information into a single scene. Complex information
can therefore be conveyed in an easy-to-understand
manner. 3D visualization also allows for more
flexible and sophisticated computer-human
interactions.

1 The contact author is

In this paper, we present the design and
implementation of a workflow rendering engine that
can be used for 3D visualization and manipulation of
workflow information in organizational process
analysis and efficiency studies. Workflow is
represented in XML format so that the information
can be visualized over the Web. The rendering
engine is implemented using C++ and OpenGL in
order to take full advantage of modern 3D graphics
hardware.

The paper is organized as follows. In section 2 we
discuss the background of business information
visualization and related work. Section 3 and 4 focus
on the workflow representation and rendering engine
design. Section 5 presents our experiment result.
Section 6 concludes the paper.

2. Background

Business information visualization is a relatively
new field but has gained adoption among business
users because it supports a variety of business tasks,
including decision-making, problem solving,
knowledge management, and business performance
management [2][7]. It has been shown that
visualization can aid business decision makers to deal
with information overflow and therefore enhance
their problem solving capabilities [5]. The positive
impact of business visualization has been felt in
many industries, including finance, marketing, retail,
manufacturing, consumer product goods
[1][3][4][5][6][8].

Improving business process is a common theme in
many organizations. Decision makers often want to
review the process and determine where the main
inefficiencies are. Business process is often
visualized using workflow diagrams, where business
actions are depicted as 2D artifacts linked by arrows
that indicate the direction of information flow. Figure
1 shows a sample 2D business workflow diagram.

DRAFT

2

The amount of information that can be presented

in two-dimensional space is limited. The user
manipulation of the 2D workflow diagram is also
limited. A key feature of effective business
visualizations is to allow users to easily manipulate
different views [2]. Therefore, it is desirable to
expand the workflow visualization to 3D space.

Schonhage et al. [4] have presented a 3D business
process visualization program developed using
Java3D. The business process is represented using
VRML format, which is already superceded by a
newer XML based Web graphics standard X3D. The
program is developed for the process visualization of
a specific organization and therefore the workflow
and rendering are closely coupled. This makes it
unsuitable for generic workflow visualization.

We have designed and implemented a workflow
rendering engine for business process visualization.
The business process is stored in a XML format file,
making it compatible with the new X3D standard and
suitable for Web application. At runtime, the XML
file is processed and translated into a scene data
structure appropriate for visualization. The rendering
part and workflow representation is therefore
decoupled for flexibility and information hiding.

Figure 1 2D representation of a sample workflow

3. Workflow representation

The XML specification of workflow consists of a
task section and a flow section. Flows are the objects
which connect two tasks together. Appendix A
contains the XML specification for the workflow
diagram in Figure 1.

Each task and flow is assigned a unique ID. A task
has a type which represents one of the four
acceptable types for a task in the diagram. Each task
also has an x and y coordinate which corresponds to
its physical location in the x and y plane. Note that
the specification comes from a 2D diagram so the
XML specification does not keep any z axis
information. This is important as we are reserving the
use of the z axis to display statistical information.

Each task also has a name which should be unique
across all tasks and should be descriptive of what the
task is. The name should be limited to no more than
20 characters. Spaces in the name are allowed and
encouraged. Finally, we can add many statistical
information fields. In the example shown in section
5, we only use the average_time field. The flow tag
simply has an ID and additional child tags which
indicate from which task and to which task the flow
is going. The tags are labeled from and to in
order to provide directional information.

4. Workflow rendering engine design

The rendering engine uses the following libraries:

Xercesc

This is the Apache Xerces C++
XML implementation. This is used for
parsing the XML file.

Xalanc

This is also an Apache module for
C++ for XML and XSL translations.

GLUT

the Graphics Library Utility Toolkit
for windowing and menu system creation.

OpenGL the 3D Graphics Library.

The engine is designed based on object-oriented
principles. There are a series of Objects that are all
derived from the Base class. There is also a Scene
object inherited from the Base class as well.
Basically, a Scene is itself a repositionable object that
contains a collection of Lights and Objects. The
Scene simply manages these objects allowing limited
access to them during the course of program
execution.

DRAFT

3

This model is extended for use in the workflow

rendering. We create a Task base class that is
inherited from the Object. Then each type of task is
extended from it. The Flow class is also extended
from the Object with additional data points and
methods for calculating the orientation and position
based on two end-points. The Flow and Task objects
have additional code for writing their own labels
during rendering.

Likewise, the Workflow class was extended from
the Scene since tasks and flows are collections of
Objects.

The class diagram of the rendering engine is
shown in Figure 2.

Figure 2 Class diagram of the rendering engine

5. Result

The rendering engine is developed using C++ and
OpenGL. Object-oriented design makes the rendering
engine highly extensible. For example, we can easily
add new tasks, flow, and graphics elements.
Compared with Java3D, OpenGL can take full
advantage of the latest graphics hardware and
therefore making the rendering much more efficient.

The program can be run from the command line
with one command line argument which should be
the path to the XML document that contains the
workflow information.

The following snapshots (Figure 3, 4 and 5) are
taken from 3D visualization of the same workflow
depicted in Figure 1.

Figure 3 3D visualization of workflow information

Figure 4 Time analysis view

Figure 5 Workflow can be viewed from any angle

DRAFT

4

In this example, user can easily switch between

workflow view and time analysis view. The
rendering engine smoothly transforms the 3D
representation from one view to the other. User can
freely walk through the 3D workflow structure,
viewing the workflow information from any angle,
and manipulating it in 3D space. This makes it
extremely easy to identify the slow points in the
workflow, particularly in the Time Analysis View.

6. Conclusion and future work

Business visualization is an effective tool for
business decision making and problem solving.
Despite its obvious benefits, 3D visualization is far
less common in practice than it should be due to the
lack of software support. To address this problem, we
have developed a rendering engine that facilitates the
3D visualization of business process information for
time analysis and efficiency improvement.

In our design, the workflow information is
represented in XML format to be compatible with the
new Web graphics standard X3D. The rendering
engine is implemented using C++ and OpenGL in
order to take full advantage of modern 3D graphics
hardware. The object-oriented design makes this
engine highly extensible.

In our 3D visualization, users can smoothly switch
among different views. The 3D workflow structure is
easy to read in either orientation, making it extremely
easy to identify the slow points in the workflow.

What we have presented in this paper is only the
first step towards a Web based, generic 3D workflow
visualization environment. In the future, we are
planning to improve our workflow rendering engine
in the following aspects.

Drill down a workflow to see its details,
allowing the user to navigate through workflow
details.

Zoom in on a specific task and see more detail
about it.

Add additional classifications such as
permissions, etc. The 3-D space could be used for
grouping based on attributes as well.

Allows for more flexible user manipulation of
the diagram in 3D space.

Develop an intelligent algorithm for placing
objects in the most visible spot.

7. References

[1] R. B. Dull and D. P. Tegarden, "Visualization of
Complex Multi- Dimensional Accounting Information."
in Proceedings of the Fourth Americas Conference on
Information Systems, Ellen D. Hoadley and Izak
Benbasat (eds.), AIS, pp. 6-8, 1998.

[2] Blender3D, http://www.blender3d.com/.

[3] B. Schonhage, A. van der Scheer, E. Treur, and A.
Eliens, Visualization and Simulation of Business
Information at Gak NL. Workshop on New Paradigms in
Information Visualization and Manipulation 1999.

[4] B. Schonhage, A. van Ballegooij, and A. Elliens, 3D
Gadgets for Business Process Visualization a Case Study,
Proceedings of the 5th symposium on Virtual Reality
Modeling Language, Monterey, California, pp. 131

138,
2000.

[5] D. P. Tegarden, Business Information Visualization,
Communications of the Association for Information
Systems, Vol. 1, Paper 4, 1999.

[6] W. Wright, Business Visualization Applications, IEEE
Computer Graphics and Applications, Vol. 17, No. 4, pp.
66-70, 1997.

[7] P. Zhang, Business Information Visualization:
Guidance for Research and Practice, Encyclopedia of
Microcomputers, Volume 27, 2001.

[8] P. Zhang and D. Zhu, Information Visualization in
Project Management and Scheduling, Proceedings of The
4th Conference of the International Society for Decision
Support Systems (ISDSS'97), Ecole des HEC, University
of Lausanne, Switzerland, July 21-22, 1997.

8. Appendix A XML representation of
the workflow depicted in Figure 1.

<?xml version="1.0" encoding="Windows-1252" ?>
<workflow>
 <tasks>
 <task id="1" type="terminator" x="-10" y="5">
 <name>Start</name>
 </task>
 <task id="2" type="workflow" x="-10" y="1">
 <name>New Job</name>
 <average_time>.3</average_time>
 </task>
 <task id="3" type="workflow" x="-10" y="-5">
 <name>Place an Order</name>
 <average_time>.2</average_time>
 </task>
 <task id="4" type="decision" x="-7" y="-1">

http://www.blender3d.com/

DRAFT

5

 <name>In Stock?</name>
 <yes>11</yes>
 <no>10</no>
 </task>
 <task id="5" type="workflow" x="-7" y="5">
 <name>Purchase Order</name>
 <average_time>5.1</average_time>
 </task>
 <task id="6" type="workflow" x="0" y="-2">
 <name>Delivery</name>
 <average_time>2.5</average_time>
 </task>
 <task id="7" type="simple" x="-3" y="5">
 <name>Inform Contractor</name>
 <average_time>1.4</average_time>
 </task>
 <task id="8" type="workflow" x="1" y="3">
 <name>Receive Shipment</name>
 <average_time>11.2</average_time>
 </task>
 <task id="9" type="workflow" x="5" y="4">
 <name>Invoice</name>
 <average_time>2.3</average_time>
 </task>
 <task id="10" type="workflow" x="10" y="5">
 <name>Receive Payment</name>
 <average_time>15.2</average_time>
 </task>
 <task id="11" type="decision" x="7" y="0">
 <name>Paid in Full?</name>
 </task>
 <task id="12" type="decision" x="4" y="-5">
 <name>Close Job?</name>
 </task>
 <task id="13" type="workflow" x="10" y="-5">
 <name>Close Job</name>
 <average_time>5.2</average_time>
 </task>
 <task id="14" type="terminator" x="10" y="0">
 <name>End</name>
 </task>
 </tasks>
 <flows>
 <flow id="20">
 <from>1</from>
 <to>2</to>
 </flow>
 <flow id="21">
 <from>2</from>
 <to>3</to>
 </flow>
 <flow id="22">
 <from>3</from>
 <to>4</to>
 </flow>
 <flow id="23" label="No">
 <from>4</from>
 <to>5</to>
 </flow>
 <flow id="24" label="Yes">

 <from>4</from>
 <to>6</to>
 </flow>
 <flow id="25">
 <from>5</from>
 <to>7</to>
 </flow>
 <flow id="26">
 <from>7</from>
 <to>8</to>
 </flow>
 <flow id="27">
 <from>8</from>
 <to>6</to>
 </flow>
 <flow id="28">
 <from>6</from>
 <to>9</to>
 </flow>
 <flow id="29">
 <from>9</from>
 <to>10</to>
 </flow>
 <flow id="30">
 <from>10</from>
 <to>11</to>
 </flow>
 <flow id="31" label="No">
 <from>11</from>
 <to>9</to>
 </flow>
 <flow id="32" label="Yes">
 <from>11</from>
 <to>12</to>
 </flow>
 <flow id="33" label="No">
 <from>12</from>
 <to>3</to>
 </flow>
 <flow id="34" label="Yes">
 <from>12</from>
 <to>13</to>
 </flow>
 <flow id="35">
 <from>13</from>
 <to>14</to>
 </flow>
 </flows>
</workflow>

