
Smodels with CLP—A Treatment of Aggregates in ASP

Enrico Pontelli Tran Cao Son

Department of Computer Science
New Mexico State University
Las Cruces, NM 88003, USAfepontelljtsong@cs.nmsu.edu

1 Introduction
In recent years we have witnessed a renovated interest towards the development of practical, effective, and efficient
implementations of different flavors of logic programming.A significant deal of research has been invested in the
development of systems that support logic programming under answer set semantics, favoring the creation of a novel
programming paradigm, commonly referred to asAnswer Set Programming (ASP)(e.g. [13]).

Nice practical and efficient systems have been proposed to support execution of ASP programs, e.g.,smodels[16],
dlv [9], cmodels[1], andASSAT[14]. The logic-based languages provided by these systems offer a variety of syntactic
structures, aimed at supporting the requirements arising from different application domains.

The objective of this work is to investigate the introduction of different types ofaggregatesin ASP. Database query
languages (e.g., SQL) use aggregate functions—such assum, count, max, andmin—to obtain summary information
from a database. Aggregates have been shown to significantlyimprove the compactness and clarity of programs in
various flavors of logic programming [12, 7]. We expect to gain similar advantages from the introduction of different
forms of aggregations in ASP. In the next two examples, we demonstrate the use of aggregates in ASP.
Example 1.Consider the simplest problem in job scheduling where we have a total number of available machines
(resource(Max)) and a number of jobs to be scheduled. Each job uses one machine and lasts for a certain du-
ration (duration(Job,Time)). Once a job starts, it has to be completed. Intuitively, we can define a predicatea
tive(Job; T ime) and use the aggregate
ount to record thatJob is active and to calculate the number of active jobs
at the time instanceT ime, respectively. The number of active jobs cannot be greater than the number of machines at
any time. This can be represented by the next two rules:

active(Job,Time) :- time(Time), duration(Job, Len), start(Job,Init), Time>= Init, Time< Init+Len.
:- time(T), resource(Max), count(T, active(Job,T))>Max.

We note that a previous encoding of the job scheduling problem in ASP has been developed in [3]. The encoding is,
however, quite complicated due to the lack of aggregates.
Example 2.(From [15], demonstrating the need of aggregates in recursive definition)
Let owns(X;Y;N) denote the fact that companyX owns a fractionN of the shares of the companyY . We say that a
companyX controlsa companyY if the sum of the shares it owns inY together with the sum of the shares owned inY by companies controlled byX is greater than half of the total shares ofY .1

control(X, X, Y, N) :- owns(X,Y,N). %% X directly owns N of Y
control(X, Z, Y, N) :- control(X,Z), owns(Z,Y,N). %% indirect
fraction(X,Y,N) :- sum(M,control(X,Z,Y,M)) = N.
control(X,Y) :- fraction(X,Y,N), N>0.5.

A significant body of research has been developed in the database and in the constraint programming communities ex-
ploring the theoretical foundations and, in a more limited fashion, the algorithmic properties of aggregation constructs
in logic programming (e.g. [12, 18, 15, 6]). More limited attention has been devoted to the more practical aspects re-
lated to computing in logic programming in presence of aggregates. In [2], it has been shown that aggregate functions
can be encoded in ASP. The main disadvantage of this proposalis that the obtained encoding contains several inter-
mediate variables, thus making the grounding phase quite expensive in term of space and time. Recently, a number of
proposals to extend logic programming with aggregate functions have been developed. We list them below:� A preliminary investigation of aggregation in ASP has been proposed by Gelfond [11] in the ASET system—a

version of A-Prolog enriched with aggregation on sets.� Manipulation of grouping facilities in logic programming have been studied by various authors (e.g., [17]); a
semantic characterization of grouping under answer set semantics, along with algorithms for efficient reduction of
grouping and aggregates, have been recently proposed by theauthors [8].

1 For the sake of simplicity we omitted the domain predicates required bysmodels.

� Very recently Dell’Armi et al. [5] have proposed an implementation of aggregates in thedlv ASP engine. The
proposal provides syntactic capabilities analogous to theones proposed in this paper. We employ a different
execution model—which has the potential of covering a slightly larger set of program than those dealt with in [5].

The specific approach proposed in this work is aimed at accomplishing the same objectives as similar proposals
recently appeared in the literature [5, 11]. The novelty of our approach lies in the technique adopted to support aggre-
gates. Following the spirit of our previous efforts [8, 4, 7], we rely on the integration of different constraint solving
technologies to support the management of different flavorsof sets and aggregations. In particular, in this work we
describe a backend inference engine, obtained by the integration ofsmodelswith a finite-domain constraint solver, ca-
pable of executingsmodelsprogram with aggregates. The backend is meant to be used in conjunction with front-ends
capable of performing high-level constraint handling of sets and aggregates (as described in [8]).

2 Integrating a Constraint Solver to An Answer Set Solver
We now describe the most relevant aspects of our system that will be referred assmodels–aghereafter. The gen-
eral idea of our solution is to employ finite domain constraints to encode the aggregates present in a program. Each
atom appearing in an aggregate is represented as a variable with domain0::1; the whole aggregate is expressed
as a constraint involving such variables. E.g., given a program containing the atomsp(1); p(2); p(3), the aggregatesum(A; p(A))<3 will lead to the overall constraintX [1℄::0::1; X [2℄::0::1; X [3℄::0::1; X [1℄�1+X [2℄�2+X [3℄�3#<3
whereX [1℄; X [2℄; X [3℄ are constraint variables corresponding top(1); p(2); p(3) respectively.

2.1 Syntax
The input language accepted by thesmodels-agsystem is analogous to the language used bysmodels, with
the exception of a new class of comparison literals—theaggregateliterals. Aggregate literals are of the formF (X; �Y ;Goal[X; �Y ℄)OpResult, where� F is the aggregate function—currently the system accepts theaggregate functionssum,
ount, min, max;� X is the grouped variable;� �Y are variables that are meant to be existentially quantified in the aggregate operation;� Goal[X; �Y ℄ is either a simple atom (and in such case�Y should be empty) or an expression of the typeatom1[X; �Y ℄ : atom2[�Y ℄;� Op is one of the relational operators drawn from the setf=; ! =; <;>;<=; >=g;� Result is either a variable or a numeric constant.
The variablesX; �Y are locally quantified within the aggregate. At this time, the aggregate literal cannot play the role of
a domain predicate—thus any other variables appearing in anaggregate literal are treated in the same way as variables
appearing in a negative literal in the body of a rule.

It is worth noticing that insmodels-agwe have opted for relaxing the stratification requirement present in [5,
11], which avoids the presence of recursion through aggregates. The price to pay is the possibility of generating
non-minimal models [8]; on the other hand, the literature has highlighted situations where stratification of aggregates
prevents from expressing natural solutions to problems (e.g., [15]).

2.2 System Architecture
The overall structure ofsmodels-agis shown in Figure 1. The current implementation is built using thesmodels
system (vers. 2.27) and the ECLiPSe constraint solver (vers. 5.4). At this stage it is a prototype aimed at investigating
the feasibility of the proposed ideas.
Preprocessing.The Pre-processing module is composed of three sequential steps. In thefirst step, a program – called
Pre-Analyzer– is used to perform a number of simple syntactic transformations of the input program. The transforma-
tions are mostly aimed at rewriting the aggregate literals in a format acceptable bylparse. Thesecondstep executes
the lparseprogram on the output of the pre-analyzer, producing a grounded version of the program encoded in the
format required bysmodels(i.e., with a separate representation of rules and atoms). Thethird step is performed by the
Post-Analyzerprogram whose major activities are:� Identification of the dependencies between aggregate literals and atoms contributing to such aggregates; these

dependencies are explicitly included in the output file. (The lparseoutput format is extended with a fourth section,
which accommodates a description of these dependencies.)� Generation of the constraint formulae encoding the behavior of each aggregate; for example, an entry like
57 sum(x,use(8,x),3,greater)in the atom table (describing the aggregate literalsum(X,use(8,X))> 3) is converted to

57 sum(3,[16,32,48],“X16 * 2 + X32 * 1 + X48 * 4 + 0 #> 3”) (16; 32; 48 are the indices of the atoms contributing to
the aggregate).� Simplification of the constraints making use of the truth values discovered bylparse.

Pre-processing Module Models Computation Module

sm
od

el
s-

ag
 in

pu
t p

ro
gr

am

P
re

-A
na

ly
ze

r

Lp
ar

se

P
os

t-
A

na
ly

ze
r

ECLiPSe Constraint
Solver

Smodels

ECLiPSe Constraint
Solver

Fig. 1.Overall System Structure

p(1) true

choose

choose

p(2) true

sum(X,p(X))<4

X[12] #= 1

choice
point

X[13] #= 1

 X[12]*1+X[13]*2 + X[14]*3 #< 4

Smodels Model
Construction Constraint Store

choice
point

post

post

post

X[14] #= 0p(3) false

Fig. 2. Communicationsmodelsto ECLiPSe

Models Computation.The Model Computation module (Fig. 1) is in charge of generating the models from the input
program. The module consists of a modified version ofsmodelsinteracting with an external finite domain constraint
solver (in this specific instance, the ECLiPSe solver).

Following the spirit ofsmodels, each atom in the program has a separate internal representation—including aggre-
gate literals. In particular, each aggregate literal representation maintains information regarding what program rules it
appears in. The representation of each aggregate literal issimilar to that of a standard atom, with the exception of some
additional fields; these are used to store an ECLiPSe structure representing the constraint associated to the aggregate.
In addition, each standard atom includes a list of pointers to all the aggregate literals that depend on such atom.

The main flow of execution is directed by thesmodelsengine. In parallel with the construction of the model, our
system builds aconstraint storein the ECLiPSe engine. The constraint store maintainsone conjunctionof constraints,
representing the level of aggregate instantiation achieved so far. Each time a standard (i.e., non-aggregate) atom is
made true or false, a new constraint is posted in the constraint store. Ifi is the index of such atom withinsmodels, and
the atom is made true (false), then the constraintX [i℄#=1 (X [i℄#=0) is posted. (Fig. 2, first twopost operations).

The structure of the computation developed bysmodelsis reflected in the structure of the constraints store (see Fig.
2). In particular, each timesmodelsgenerates a choice point (e.g., as effect of guessing the truth value of an atom), a
corresponding choice point has to be generated in the store.Similarly, wheneversmodelsdetects a conflict and initiates
backtracking, a failure has to be triggered in the store as well. Observe that choice points and failures can be easily
generated in the store using, for example, the Prologrepeatandfail predicates.

Since aggregate literals are treated bysmodelsas standard program atoms, they can be made true, false, or guessed.
The only difference is that, whenever their truth value is decided, a different type of constraint will be posted to the
store—i.e., the constraint that encodes the aggregate (Fig. 2, third posting). If the aggregate literal is made false, then
a negated constraint will be posted (negated constraints are obtained by applying the#n+ ECLiPSe operator).

Theexpandprocedure ofsmodelsrequires some minor modifications as well. Aggregate literals may become true
or false not only as the result of the declarative closure computation, but also because enough evidence has been
accumulated to prove its status. E.g., if the truth value of all the atoms involved in the aggregate has already been
established, then the aggregate can be immediately evaluated.

It is important to observe that the constraints posted to thestore have an active role during the execution:� constraints are used in a forward manner to prunesmodelsexecutions (failure in the store leads to failure in
smodels)� constraints can also provide feedback tosmodelsby forcing truth or falsity of previously uncovered atoms (truth
value is unknown at that time). E.g., if the constraintX [12℄�1 +X [13℄�2 +X [14℄�3#<4 is posted to the store
(corresponding to the aggregatesum(X; p(X))<10) andX [12℄#=1 andX [13℄#=1 have been previously posted
(e.g.,p(1) andp(2) are true), then it will forceX [3℄#=0, i.e.,p(3) to be false (Fig. 2, last step).� constraints may lead to failures in the constraint store; inthis case, the failure has to be propagated back to the
smodelscomputation.

2.3 Discussion
The first prototype implementing these ideas has been completed and successfully used on a pool of benchmarks.
Performance is acceptable, but we expect to obtain significant improvements by refining the interface with ECLiPSe.
Combining a constraint solver tosmodelsbrings a number of advantages. We list some of them below:� since we are relying on an external constraints solver to effectively handle the aggregates, the only step required to

add new aggregates (e.g.,times,avg) is the generation of the appropriate constraint formula during preprocessing;� the constraint solvers are very flexible; for example, by making use of Constraint Handling Rules (CHR) [10] we
can easily implement different strategies to handle constraints as well as new constraint operators;� the constraint solvers allow certain optimizations to be done automatically (see [5] for desirable optimizations in
presence of aggregates);� it is a straightforward extension to allow the user to declare certain aggregate instances aseager; in this case,
instead of posting only the corresponding constraint to thestore, we will also post alabeling, forcing the immediate
resolution of the constraint store (i.e., guess the possible combination of truth values of the atoms involved in the
aggregate). In this way, the aggregate will act as a generator of solutions instead of just a pruning mechanism.

3 Conclusions
In this work we have explored an alternative approach to the problem of handling aggregates in ASP. We developed
a system which interfacessmodelswith an external constraint solver (ECLiPSein this particular case). The power
of smodelsis preserved by treating aggregates as standard literals; on the other hand, each aggregate is concurrently
manipulated as a constraint within the constraint solver.smodelsand the constraint solver interact (in a bi-directional
way) by exchanging information about truth values of program atoms and information about success and failure
of the current computation. The generality of the constraint solver allows us to use aggregates not only as pruning
mechanisms but also as generators of solutions.

We believe this approach has advantages over previous proposals. The use of a general constraint solver allows us
to easily understand and customize the way aggregates are handled (e.g., allow the user to select eager vs. non-eager
treatment); it also allows us to easily extend the system to include new form of aggregates, by simply adding new type
of constraints. Furthermore, the current approach relaxessome of the syntactic restriction imposed in other proposals
(e.g., stratification of aggregations). The implementation requires minimal modification to thesmodelssystem and
introduces insignificant overheads for regular programs.

The prototype provided us with a confirmation of the feasibility of this approach. Future work includes:� further relaxation of some of the syntactic restrictions. For example, the use of labeling, during constraint solving,
allows the aggregates to “force” solutions, thus allowing the aggregate to act as a generator of values and removing
the need to include domain predicates to cover the result of the aggregate (e.g., thesafetycondition used indlv).� development of an independent grounding front-end; the useof a pre-analyzer in the current implementation is
dictated by the need to overcome the limitations oflparsein dealing with syntactic extensions.

References
1. Y. Babovich and V. Lifschitz. Computing Answer Sets UsingProgram Completion.
2. C. Baral.Knowledge Representation, reasoning, and declarative problem solving with Answer sets, Cambridge Uni. Press.
3. C. Baral et al. Reasoning about actions in presence of resources: applications to planning and scheduling, Proc. of ICIT, 2001.
4. A. Dal Palu’, A. Dovier, E. Pontelli, G. Rossi. Integrating Finite Domain Constraints and CLP with Sets. PPDP, ACM, 2003.
5. T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, G. Pfeifer. . Aggregate Functions in Disjunctive Logic Programming. IJCAI, 2003.
6. M. Denecker et al. Ultimate well-founded and stable semantics for logic programs with aggregates. InICLP, 212–226. 2001.
7. A. Dovier et al. Constructive Negation and Constraint Logic Programming with Sets.New Generation Computing, 19(3).
8. A. Dovier, E. Pontelli, and G. Rossi. Intensional Sets in CLP. Int. Conference on Logic Programming, Springer, 2003.
9. T. Eiter et al. The KR Systemdlv: Progress Report, Comparisons, and Benchmarks. InKRR, pages 406–417, 1998.

10. T. Frühwirth. Theory and Practice of Constraint Handling Rules. Journal of Logic Programming, 37(1–3), 1998.
11. M. Gelfond. Representing Knowledge in A-Prolog. Computational Logic: Logic Programming and Beyond, Springer, 2002.
12. D. B. Kemp and P. J. Stuckey. Semantics of Logic Programs with Aggregates. InILPS, pages 387–401. MIT Press, 1991.
13. V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence, 138(1–2):39–54, 2002.
14. F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of A LogicProgram By SAT Solvers. InAAAI, 2002.
15. K. A. Ross and Y. Sagiv. Monotonic Aggregation in Deductive Databases.JCSS, 54:79–97, 1997.
16. P. Simons, N. Niemelä, and T. Soininen. Extending and Implementing the Stable Model Semantics.AIJ, 138(1–2):181–234.
17. O. Shmueli, S. Tsur, and C. Zaniolo. Compilation of Set Terms in the Logic Data Language (LDL).JLP, 12(1/2):89–119.
18. A. Van Gelder. The Well-Founded Semantics of Aggregation. In 11th PODS, pages 127–138. ACM Press, 1992.

