Smodels with CLP—A Treatment of Aggregates in ASP

Enrico Pontelli Tran Cao Son

Department of Computer Science
New Mexico State University
Las Cruces, NM 88003, USA

{epontel | |t son}@s. nnsu. edu

1 Introduction

In recent years we have witnessed a renovated interestdewlae development of practical, effective, and efficient
implementations of different flavors of logic programmigsignificant deal of research has been invested in the
development of systems that support logic programming vadswer set semantickvoring the creation of a novel
programming paradigm, commonly referred tofaswer Set Programming (ASE).g. [13]).

Nice practical and efficient systems have been proposegimostiexecution of ASP programs, e.gmodelg16],
div[9], cmodelq1], andASSAT14]. The logic-based languages provided by these systéfersovariety of syntactic
structures, aimed at supporting the requirements arisom flifferent application domains.

The objective of this work is to investigate the introduataf different types ohggregatein ASP. Database query
languages (e.g., SQL) use aggregate functions—sushrascount max andmin—to obtain summary information
from a database. Aggregates have been shown to signifidamilpve the compactness and clarity of programs in
various flavors of logic programming [12, 7]. We expect torgsimilar advantages from the introduction of different
forms of aggregations in ASP. In the next two examples, wealestnate the use of aggregates in ASP.

Example 1.Consider the simplest problem in job scheduling where weehatotal number of available machines
(resour ce(Max)) and a number of jobs to be scheduled. Each job uses one meaghéhlasts for a certain du-
ration dur at i on(Job, Ti ne)). Once a job starts, it has to be completed. Intuitively, &g define a predicate
active(Job, Time) and use the aggregateunt to record that/ob is active and to calculate the number of active jobs
at the time instanc@ime, respectively. The number of active jobs cannot be grehtar the number of machines at
any time. This can be represented by the next two rules:

active(Job,Time) :- time(Time), duration(Job, Len), gt#ob,Init), Time>= Init, Time< Init+Len.

:- time(T), resource(Max), count(T, active(Job, B)Max.

We note that a previous encoding of the job scheduling proliteASP has been developed in [3]. The encoding is,
however, quite complicated due to the lack of aggregates.
Example 2(From [15], demonstrating the need of aggregates in regaidgfinition)
Letowns(X,Y, N) denote the fact that compary owns a fractionV of the shares of the compaiy. We say that a
companyX controlsa company” if the sum of the shares it owns ¥ together with the sum of the shares owned in
Y by companies controlled b is greater than half of the total sharesiof

control(X, X, Y, N) :- owns(X,Y,N). %% X directly owns N of Y

control(X, Z, Y, N) :- control(X,Z), owns(Z,Y,N). %% indire

fraction(X,Y,N) :- sum(M,control(X,Z,Y,M)) = N.

control(X,Y) :- fraction(X,Y,N), N-0.5.
A significant body of research has been developed in the dsgadind in the constraint programming communities ex-
ploring the theoretical foundations and, in a more limitaskfion, the algorithmic properties of aggregation comssru
in logic programming (e.g. [12, 18, 15, 6]). More limitedeattion has been devoted to the more practical aspects re-
lated to computing in logic programming in presence of aggtes. In [2], it has been shown that aggregate functions
can be encoded in ASP. The main disadvantage of this profsoselt the obtained encoding contains several inter-
mediate variables, thus making the grounding phase qugteresive in term of space and time. Recently, a number of
proposals to extend logic programming with aggregate fonsthave been developed. We list them below:

e A preliminary investigation of aggregation in ASP has beermppsed by Gelfond [11] in the ASET system—a
version of A-Prolog enriched with aggregation on sets.
e Manipulation of grouping facilities in logic programming¥e been studied by various authors (e.g., [17]); a

semantic characterization of grouping under answer seastos, along with algorithms for efficient reduction of

grouping and aggregates, have been recently proposed bythers [8].

! For the sake of simplicity we omitted the domain predicatggiired bysmodels

e Very recently Dell’Armi et al. [5] have proposed an implentaion of aggregates in thdlv ASP engine. The
proposal provides syntactic capabilities analogous tootfes proposed in this paper. We employ a different
execution model—which has the potential of covering a sljglarger set of program than those dealt with in [5].

The specific approach proposed in this work is aimed at actishipg the same objectives as similar proposals
recently appeared in the literature [5, 11]. The novelty of @pproach lies in the technique adopted to support aggre-
gates. Following the spirit of our previous efforts [8, 4, We rely on the integration of different constraint solving
technologies to support the management of different flagbsets and aggregations. In particular, in this work we
describe a backend inference engine, obtained by the attegrofsmodelswith a finite-domain constraint solver, ca-
pable of executingmodelgprogram with aggregates. The backend is meant to be usedhjarmion with front-ends
capable of performing high-level constraint handling dssend aggregates (as described in [8]).

2 Integrating a Constraint Solver to An Answer Set Solver

We now describe the most relevant aspects of our system tilldbewreferred assmodels—adnhereafter. The gen-
eral idea of our solution is to employ finite domain constimio encode the aggregates present in a program. Each
atom appearing in an aggregate is represented as a varidgblelemain0..1; the whole aggregate is expressed
as a constraint involving such variables. E.g., given a gnogcontaining the atoms(1), p(2), p(3), the aggregate
sum(A, p(A))<3 will lead to the overall constrainX’[1]::0..1, X [2]::0..1, X[3]::0..1, X [1]%14+ X [2]%24+ X [3]*3#<3
whereX|1], X[2], X[3] are constraint variables correspondingfa), p(2), p(3) respectively.
2.1 Syntax
The input language accepted by tBemodels-agsystem is analogous to the language usedsimodels with
the exception of a new class of comparison literals—#iggregateliterals. Aggregate literals are of the form
F(X,Y,Goal[X,Y]) Op Result, where
F' is the aggregate function—currently the system acceptaghesgate functionsum, count, min, max;
X is the grouped variable;
Y are variables that are meant to be existentially quantifigtié aggregate operation;
Goal[X,Y] is either a simple atom (and in such cageshould be empty) or an expression of the type
atom[X,Y] : atoms[Y];

¢ Op is one of the relational operators drawn from thefset! =, <, >, <=, >=};

e Result is either a variable or a numeric constant.
The variablesY, Y are locally quantified within the aggregate. At this times #ygregate literal cannot play the role of
a domain predicate—thus any other variables appearing #aggregate literal are treated in the same way as variables
appearing in a negative literal in the body of a rule.

It is worth noticing that insmodels-agve have opted for relaxing the stratification requirememspnt in [5,
11], which avoids the presence of recursion through agdesgd he price to pay is the possibility of generating
non-minimal models [8]; on the other hand, the literaturs highlighted situations where stratification of aggregate
prevents from expressing natural solutions to problents,(EL5]).

2.2 System Architecture
The overall structure ofmodels-ags shown in Figure 1. The current implementation is builtngsthe smodels
system (vers. 2.27) and the ECLiPSe constraint solver (8e43. At this stage it is a prototype aimed at investigating
the feasibility of the proposed ideas.
PreprocessingThe Pre-processing module is composed of three sequeteiie. $n thefirst step, a program — called
Pre-Analyzer- is used to perform a number of simple syntactic transfoionatof the input program. The transforma-
tions are mostly aimed at rewriting the aggregate litenala format acceptable Hparse The secondstep executes
the Iparse program on the output of the pre-analyzer, producing a giledrversion of the program encoded in the
format required bysmodeldi.e., with a separate representation of rules and atonmthird step is performed by the
Post-Analyzeprogram whose major activities are:
¢ |dentification of the dependencies between aggregatalbt@md atoms contributing to such aggregates; these
dependencies are explicitly included in the output file.parseoutput format is extended with a fourth section,
which accommodates a description of these dependencies.)
e Generation of the constraint formulae encoding the bemafieach aggregate; for example, an entry like
57 sum(x,use(8,x),3,greatdr) the atom table (describing the aggregate litstah(X,use(8,X)) 3) is converted to

57 sum(3,[16,32,48],“X16 *2 + X32* 1+ X48* 4 + 0 # 3") (16, 32,48 are the indices of the atoms contributing to
the aggregate).
e Simplification of the constraints making use of the truthues discovered biparse

/ p(1)true —POSt / X[12]#=1

Pre-processing Module Models Computation Module
3 ‘ i'"""'"""""""7"”"”"”"} ”””””” poi nt

post
Smodels : /D(Z)true - . /x[13]#-1
|
poi nt

po
sum(X,p(X))<d ————= | X[12]*1+X[13]2 + X[14]*3 #< 4

/

X[14] #= 0

7777777777

Lparse

5 9]
N N
> =
= [}
) c
< <
3 g
o o

ECLiPSe Constraint
Solver :

smodels-ag input program

p(3) false

Smodels Model

Construction Constraint Store

Fig. 1. Overall System Structure
Fig. 2. Communicatiorsmodeldo ECLiPSe

Models Computation. The Model Computation module (Fig. 1) is in charge of genegahe models from the input
program. The module consists of a modified versiosmbdeldnteracting with an external finite domain constraint
solver (in this specific instance, the ECLiPSe solver).

Following the spirit osmodelseach atom in the program has a separate internal représertancluding aggre-
gate literals. In particular, each aggregate literal repréation maintains information regarding what prografegit
appears in. The representation of each aggregate litesmhikar to that of a standard atom, with the exception of some
additional fields; these are used to store an ECLiIPSe stauptpresenting the constraint associated to the aggregate
In addition, each standard atom includes a list of pointedltthe aggregate literals that depend on such atom.

The main flow of execution is directed by temodelsngine. In parallel with the construction of the model, our
system builds @onstraint storén the ECLiIPSe engine. The constraint store maintamsconjunctioof constraints,
representing the level of aggregate instantiation acklieefar. Each time a standard (i.e., non-aggregate) atom is
made true or false, a new constraint is posted in the consstire. Ifi is the index of such atom withismodelsand
the atom is made true (false), then the constrAifif#=1 (X [i]#=0) is posted. (Fig. 2, first twpost operations).

The structure of the computation developedshyodelss reflected in the structure of the constraints store (sge Fi
2). In particular, each timemodelgyenerates a choice point (e.g., as effect of guessing ttievalue of an atom), a
corresponding choice point has to be generated in the Sordlarly, whenevesmodelgletects a conflict and initiates
backtracking, a failure has to be triggered in the store dk ®éserve that choice points and failures can be easily
generated in the store using, for example, the Prodpgatandfail predicates.

Since aggregate literals are treatedsbhyodelss standard program atoms, they can be made true, falsecssepll
The only difference is that, whenever their truth value isided, a different type of constraint will be posted to the
store—i.e., the constraint that encodes the aggregateZFiird posting). If the aggregate literal is made falbent
a negated constraint will be posted (negated constraiatsiaained by applying thg\ + ECLiPSe operator).

Theexpandprocedure obmodelgequires some minor modifications as well. Aggregate lisemzay become true
or false not only as the result of the declarative closure patation, but also because enough evidence has been
accumulated to prove its status. E.g., if the truth valuellofh@ atoms involved in the aggregate has already been
established, then the aggregate can be immediately egdluat

It is important to observe that the constraints posted tsthee have an active role during the execution:

e constraints are used in a forward manner to pram®delsexecutions (failure in the store leads to failure in
smodel}

e constraints can also provide feedbaclstoodeldy forcing truth or falsity of previously uncovered atomsith
value is unknown at that time). E.qg., if the constralfjfl2]x1 + X[13]x2 + X [14]x3#<4 is posted to the store
(corresponding to the aggregaten (X, p(X))<10) and X [12]#=1 and X [13]#=1 have been previously posted
(e.g.,p(1) andp(2) are true), then it will forceX [3]#=0, i.e.,p(3) to be false (Fig. 2, last step).

e constraints may lead to failures in the constraint stordhis case, the failure has to be propagated back to the
smodelsomputation.

2.3 Discussion

The first prototype implementing these ideas has been caetpénd successfully used on a pool of benchmarks.
Performance is acceptable, but we expect to obtain signtfiogprovements by refining the interface with ECLiPSe.
Combining a constraint solver simodeldrings a number of advantages. We list some of them below:

e since we are relying on an external constraints solver &ctiffely handle the aggregates, the only step required to
add new aggregates (e.tjmes, avg) is the generation of the appropriate constraint formuladLpreprocessing;

e the constraint solvers are very flexible; for example, by mgkise of Constraint Handling Rules (CHR) [10] we
can easily implement different strategies to handle cairgs as well as new constraint operators;

e the constraint solvers allow certain optimizations to baelautomatically (see [5] for desirable optimizations in
presence of aggregates);

e it is a straightforward extension to allow the user to dezlegrtain aggregate instanceseager in this case,
instead of posting only the corresponding constraint testbee, we will also post beling, forcing the immediate
resolution of the constraint store (i.e., guess the possibinbination of truth values of the atoms involved in the
aggregate). In this way, the aggregate will act as a genavhsmlutions instead of just a pruning mechanism.

3 Conclusions

In this work we have explored an alternative approach to teblpm of handling aggregates in ASP. We developed
a system which interfacesmodelswith an external constraint solveECLIiPSein this particular case). The power
of smodelds preserved by treating aggregates as standard literatdeoother hand, each aggregate is concurrently
manipulated as a constraint within the constraint solmiodelsaand the constraint solver interact (in a bi-directional
way) by exchanging information about truth values of progratoms and information about success and failure
of the current computation. The generality of the constragiver allows us to use aggregates not only as pruning
mechanisms but also as generators of solutions.

We believe this approach has advantages over previous gatspd he use of a general constraint solver allows us
to easily understand and customize the way aggregates agdeldg(e.g., allow the user to select eager vs. non-eager
treatment); it also allows us to easily extend the systemdtude new form of aggregates, by simply adding new type
of constraints. Furthermore, the current approach relame®e of the syntactic restriction imposed in other proposal
(e.g., stratification of aggregations). The implementatiequires minimal modification to themodelssystem and
introduces insignificant overheads for regular programs.

The prototype provided us with a confirmation of the feagipidf this approach. Future work includes:

o further relaxation of some of the syntactic restrictionst &xample, the use of labeling, during constraint solving,
allows the aggregates to “force” solutions, thus allowing &ggregate to act as a generator of values and removing
the need to include domain predicates to cover the resutteoaggregate (e.g., tlsafetycondition used irdiv).

e development of an independent grounding front-end; theofisepre-analyzer in the current implementation is
dictated by the need to overcome the limitation$pafrsein dealing with syntactic extensions.

References

. Y. Babovich and V. Lifschitz. Computing Answer Sets UsRrgpgram Completion.

C. Baral.Knowledge Representation, reasoning, and declarativblpro solving with Answer set€ambridge Uni. Press.
C. Baral et al. Reasoning about actions in presence ofiress: applications to planning and scheduling, Proc. 6F,12001.
A. Dal Palu’, A. Dovier, E. Pontelli, G. Rossi. Integrajiffinite Domain Constraints and CLP with Sets. PPDP, ACM 3200
T. Dell’Armi, W. Faber, G. lelpa, N. Leone, G. Pfeifer. . giggate Functions in Disjunctive Logic Programming. 1JCZ103.
M. Denecker et al. Ultimate well-founded and stable sdiosiufor logic programs with aggregates. IOLP, 212—-226. 2001.
A. Dovier et al. Constructive Negation and Constrainticd@rogramming with SetdNew Generation Computing9(3).

A. Dovier, E. Pontelli, and G. Rossi. Intensional Sets iPCint. Conference on Logic Programming, Springer, 2003.

T. Eiter et al. The KR Systent v: Progress Report, Comparisons, and BenchmarkKRR pages 406—417, 1998.

. T. Fruhwirth. Theory and Practice of Constraint HangllRules. Journal of Logic Programming, 37(1-3), 1998.

. M. Gelfond. Representing Knowledge in A-Prolog. Comagiohal Logic: Logic Programming and Beyond, Springer,200
. D.B. Kemp and P. J. Stuckey. Semantics of Logic PrograithsAggregates. INLPS pages 387—401. MIT Press, 1991.

. V. Lifschitz. Answer set programming and plan generatirtificial Intelligence 138(1-2):39-54, 2002.

. F.Linand Y. Zhao. ASSAT: Computing Answer Sets of A LoBirogram By SAT Solvers. 1AAAI 2002.

. K. A. Ross and Y. Sagiv. Monotonic Aggregation in DedueDatabasesICS$54:79-97, 1997.

. P. Simons, N. Niemela, and T. Soininen. Extending arpldmenting the Stable Model SemantiédJ, 138(1-2):181-234.

. O. Shmueli, S. Tsur, and C. Zaniolo. Compilation of Set&ein the Logic Data Language (LDLJLP, 12(1/2):89-119.

. A.Van Gelder. The Well-Founded Semantics of Aggregatin 11th PODS$pages 127-138. ACM Press, 1992.

CoNOUA®NE

PREPRRRRERR
ONOURAWNRO

