
Terminological Reasoning and Conceptual Modeling
for Datawarehouse

David Rudloff1

1 ERIC-LIIA (ENSAIS), and Neurone Informatique, Strasbourg, F

24, boulevard de la Victore 67000 Strasbourg

Tel: (33) 88.14.47.43. Email: rudloff@.eric.u-strasbg.fr

Abstract. This paper analyses some useful enhancements required by
datawarehouse systems. This concerns the conceptual modeling
representation and visualisation, the query definition and optimization.
A general framework is proposed to integrate terminological reasoning
and a natural language interface in a flexible knowledge representation
system in order to meet datawarehouse needs.

INTRODUCTION

Nowadays, database access is not exclusively reserved to
computer scientists. Many people want to consult directly
databases and exploit the data. For these reasons,
datawarehouse concerns systems that try to give to non-
specialist end-users a simpli fied view of complex database.
Such systems involve database abstraction, query formulation
and result analysis. This notion is partially covered by some
other business terms, li ke Enterprise Information System,
Business Intelli gence, Corporate Analysis System, Online
Analytical Processing etc... Let us consider that Datawarehouse
involves all the efforts to give a transparent and natural
database access for non-specialist end-user. Especially, the aim
is to help end-user to search relevant information, to analyze it
and edit it , without having to learn some specific database
syntax. Concerning relational database, usual access is provided
with SQL. It is based on a strong and quite simple theory, the
relational model. However, it implies a good knowledge of the
relational table structure. Furthermore a simple question can
imply a complex query with many joins because of data
scattering across the database. In addition, the user may not
detect a wrong query with a result that seems right. Thus, user
query should be constructable in a natural form, even in natural
language. With datawarehouse, we need to construct an
conceptual layer upon the physical database structure. This
abstract database representation can be customized for each
user with a restricted view and appropriate terminology.
Another datawarehouse front-end concerns multidimensional
information. In this way, hypercubes give the user the abilit y to
aggregate numeric data among various dimensions. Hypercube
are usually constructed upon an existing relational database.
Then, it could be interesting to explore theoretical aspects of
such an abstract layer and the services required to improve
current datawarehouse developments. Actually, we would like
to integrate the conceptual modeling usually made during the
database design in a datawarehouse system. This presents some
advantages for consistency check, query optimization, database
access improvement and natural language.
The first section of this paper will show some specific lacks in
current datawarehouse systems from the end-user point of view.
Then, we will propose, in the second section, a general
framework that could reach these requirements.

USEFUL REQUIREMENTS FOR
DATAWAREHOUSE

One important datawarehouse requirement concerns the
conceptual model. We will first present some ambiguities
concerning the distinction between concept and relation implied
by naming convention. We will t hen see that a powerful
conceptual representation should show to the end-user the
connections between database entities in a natural and flexible
form. Next, the subject of query construction and optimization
will be tackled in the natural language perspective. Finally, this
first section will end with data analysis requirements in
datawarehouse systems.

Concepts and Relations

First of all , it is important to note that the meaning of the
words"concept" or "entity" or "object" is not well defined and is
not the same in the litterature though they are largely used in
datawarehouse systems. In the following we will use them
indifferently with the general meaning of complex or structured
piece of information. Sometimes a concept will be exactly
represented by a table in the relational database, and sometimes
it will aggregate information scattered in many tables.
The two first step of the database design process is usually as
follows: the domain analysis and its representation in an Entity-
Relationship model [1].
During the domain analysis, the relevant concepts of the real
world and the relation between these concepts are defined. This
distinction between concepts and relations is in some aspects
arbitrary and usually depends on the Universe of Discourse
(UoD). Briefly, nouns are concepts and verbs are relations.
Then, a relationship could be viewed as a concept if the context
changes, for instance if a new user have another naming
convention. These considerations may seem subtle but it occurs
very often that a same query will be conceived in various form
by several users.
In other words, the problem is the following: Can a relation be
considered as a concept, and vice versa, can a concept
definition denote the conjunction of other concepts in the same
context and then be regarded as a relation ? By example, the
concept "employee" in a company can be linked to another
employee by the relation "married with". This relation can also
be regarded as a concept named "Marriage" that contains
references to 2 persons, the wedding date, marriage settlement,
etc.
Nowadays, datawarehouse systems show the data model as it
was designed for the database implementation. We think that

this representation should not completely depend on the first
modeling choice but should be customizable to a new user
naming convention. Such a possibilit y is partially offered with
the NIAM methodology [2].
The distinction between Concept and Relation is not the only
diff icult point for an end-user access. The visualisation of the
relations is also important. Indeed, the question is: how to show
the links between two objects selected by the user and at which
detail level ?

Visualization of links

One of the useful aspects of a database front-end is that end-
users do not need to learn SQL for accessing relational
database. Many programs automatically construct query joins
between tables. In this manner, end-users only have to select the
piece of information they want to collect without worrying
about the concerned tables and the required SQL joins.
However, the invisibilit y of the links between columns during
query definition can lead to misunderstanding of the real
meaning of the query.
For instance, let us consider that an end-user wants to know the
list of clients that have bought one specific article. He may not
see that this query represents the list of clients who sent an
invoice that contains an invoice line that refers to the specified
article reference.
Firstly, it is important to give the user the abilit y to visualize the
path between client and article in a graphical or a natural
language form.
Secondly, the user may want to name "to buy" the relation
between clients and articles. In this way, the link path between
these two concepts could be recorded in the form of a direct
link with the appropriate end-user naming convention.
In this example, the client relational table usually does not
contain references to article or even to invoice. Only the invoice
table contains a client reference and indirectly an article
reference through the invoice-line table. At the conceptual
level, the link between client and invoice should be present in
both the concept definitions, possibly with different names.

Query management

It is well -known that, for complex nested queries, it can be
diff icult to verify that the query the user has in mind is correctly
constructed and thus translated in SQL. It is important to define
a clear representation of the query in a form that allows the
user to verify its correctness.
The internal logical query representation should then be
viewable in a natural language form. At any moment, the user
should be able to see the path link between selected objects or
direct link with the appropriate denomination.

Beside query definition consideration, it is interesting to
examine optimization needs. One important problem with
datawarehouse is that end-users usually may not be aware of the
complexity of SQL query he produces and then risks to
degradate the database performance. Usually, a datawarehouse
system tries to minimize the database access. However
datawarehouse users often have to take a previous query result

to define another one until they obtain the good information.
This interactivity can be very costly for database performance.
That is the reason why the query result is stored on the user
local station and reporting or analyzing activities are made on
the local result. It is then important to store local result in a
comprehensive and reusuable form. Thus, a datawarehouse
system needs optimization during SQL translation and result
management.
Once the data retrieved, the user needs to analyse them to
extract meaningful information. This data analysis phase is a
very important part of datawarehouse.

Data analysis

The datawarehouse market is much concerned with business
activities. Usually data analysis consists of filtering and
examing the retrieved data from different points of view. In this
way much research is pursued on multidimensional structure,
named hypercube. Hypercube can, for instance, contain the
company turnover for many different years, different clients and
different regions. Many datawarehouse systems propose to
navigate through this hypercube with automatic aggregate
results. Typically, you can see the turnover for a certain year,
"drill down" into quarters and then months. The 12 rules of
OLAP (OnLine Analytical Processing) - coined by E.F. Codd in
a White Paper funded by a vendor [3] - enumerate the minimal
requirement for multidimensional systems. Briefly the main
requirements concern accessibilit y, transparency, and
navigabilit y into hypercube. The OLAP specification is still
rarely integrated in a general datwarehouse system because of
the lack of a theoretical foundation.
In a more general view, data analysis consists of building
various queries, compare queries between each other and
extract meaningful information from the result. It is important
to give the user the tools to caracterize the features of the
searched information and to compare it to previous result or to
target result.
As a matter of fact, such requirements concerning
datawarehouse systems imply a strong theoretical base. We will
see in the following section a datawarehouse architecture. This
framework will propose reasoning capabiliti es upon a
conceptual modeling and query representation system. Natural
language will be integrated as an useful interface component.

A FRAMEWORK FOR DATAWAREHOUSE

In this part, we propose some ideas to handle the presented
datawarehouse requirements. We have decided to integrate
description logics capabiliti es in the conceptual layer
representing relational database information. This may be also
useful for natural language processing in a query construction
interface. Another interesting consequences of a classification-
based system will be semantic query optimization.

Description logics for conceptual modeling

Usually, relational database design is based on the Entity-
Relationship model. This model is very suitable for relational
database but it lacks of expressivity concerning the kind of

relation. Indeed, it is not easy with this model to define is-a
relationships or aggregation relationships.
We have decided to describe our model with a frame language
associated to terminological reasoning [4] [5]. Briefly,
description logics or terminological reasoning associate
structural classification capabiliti es to a logical knowledge
represention formalism . Structural classification works on the
intensional definition of concepts. The subsumption algorithm
realises this classification by inducing generalisation-
specialisation relation between concepts. For instance, the
concept A is subsumed by the concept B if its intensional
definition represents a subclass of the instances defined by the
intensional definition of B.
In the context of datawarehouse, classification capabiliti es may
lead to some enhancements. Hence, we would like to handle the
possible ambivalence between concept and relation. In this
manner, in the client-invoice-article example, we want to define
a direct link between client and article as a generalisation (is-a
relationship) of the client->invoice->invoice line->article path
link. Thus, a subsumption algorithm should be developped to
classify such path link.
In the E-R model, certain relationships contain attributes. For
instance, Invoice-line may be considered as relationship
between Invoice and Article with a Quantity attribute. Actually,
this choice depends on naming convention during the design
process. If in current use, end-user manipulates a relationship
more usually as a concept, the relationship will be objectified
and then placed in the concept hierarchy. In this way, we will
study logical consequences of such objectification. It is
important to note that these considerations take place in the
context of natural language. The aim is to allow the system to
adapt its own knowledge representation to the user preferences
and especially naming convention.
By the way, other particularities from relational database will
influence the specification of our description logics-based
conceptual modeling formalism. We can quote key values,
specific domain restriction, inverse relation, nested queries.
Hypercubes, that concern aggregation relationships for numeric
values, could also be represented by this formalism [6].

A Natural Language interface

We argue that if natural language is only considered in the
restricted context of database with a compact grammar, it can
lead to powerful improvements for datawarehouse systems and
more generally for database front-ends. Let us present our
natural language interface project integrated in a description
logics-based conceptual modeling system.
Actually every datawarehouse software system has a natural
language layer. This is usually restricted to renaming columns
and tables from the database with more comprehensive words
for end-users. Several commercial systems propose to name the
relation links (that is foreign key columns in relational tables)
with verbs and create inverse relation names. We would like to
go further and to name a path link like a normal simple link.
For instance, let us consider the following textual query
representation:
"List of the client

that have bought the article

 named X".

If some links have already been defined, a datawarehouse
system will be able to calculate the path between client table
and article table, that is:
client->invoice->invoice line>article.
If the buy verb is used for the first time, it would be interesting
that the system proposes:
"Do you mean that:

a client that have bought an article

 is a client

 that issued an invoice

 containing an invoice line

 containing an article ?".

If the user agrees, the system will record the buy direct link
between client and article. This new link will be a
generalisation of the long path link. Note that the new direct
link will not have immediate correspondance with a SQL join
but only through its specialized path link.
The natural language interface will be integrated in a multi -
modal interface that will i nvolve natural language input and
graphical object view for the query construction. The aim is to
incrementally build a query in natural language with the
assistance of the conceptual model to handle ambiguities and to
propose choice lists. At any moment of the query construction,
the system should be able to know possible following words
and to verify the query consistency.

Query optimization

One useful feature for a modern datawarehouse system
concerns query optimization. We have explained above that an
end-user does not know the complexity of the SQL query he
produces and then risk to degradates the database performance.
Furthermore, for data analysis, the user wants to have quick
answer in order to easily navigate through data and eventually
formulate a new query.
As end-users build query at a conceptual level, the maximum of
semantic optimization should be done. If an inconsistency is
detected in the query formulation, the system should indicate
the source of error and help the user to correct the query.
Inconsistency can come from invalid object association or from
value constraint violation.
The subsumption algorithm provided by a terminological
reasoning system is one possible way to semantically optimize
database queries [7]. We consider two queries semantically
equivalent if they represent the same result, that is for a
relational database, the same set of rows. The result set of the
query is then the extensional set of required columns that verify
the search conditions. The aim of semantic query optimization
is to convert the intensional description of the query into the
conceptual model formalism and to simpli fy the description
according to the concept hierarchy. The integrity constraints of
each database concept can be propagated to reduce the number
of possible instances. If it can be logically deduced that the
result set will be empty, the database will not unnecessarily
accessed. Furthermore, in the case of inconsistent query, the
system may help the user to understand why the result is empty,
due to logical inconsistency or lack of information. This
correction phase will of course involve the natural language
interface.

Another domain of query optimization concerns result local
storage. A query can be considered as an intensional concept
definition of possible instances. Since we define our conceptual
model formalism on description logics, we can define a query in
this formalism. In such a way, each query can be structurally
compared with each other and then classified in a query
hierarchy. Then if a query Q1 subsumes a query Q2, the result
set of Q2 will be contained in the result of Q1. Therefore, query
classification implies query result classification. In a relational
database context, suppose you have locally stored the result of
Q1, you do not need, in certain conditions, to submit Q2 to the
database since you can restrict your search in the Q1 result
table. As a matter of fact, it is possible to construct a local table
hierarchy of query results, indexed by the description logics-
based query definition. This mecanism may be especially useful
for multidimensional data that imply local hypercube storage.

CONCLUSION

In this paper, we have presented some useful requirements for
datawarehouse. Indeed, it is important to improve end-user
access faciliti es and to avoid some diff iculties during query
construction and result exploitation.
We have argued that a database front-end based on a conceptual
model with terminological reasoning services can give some
enhancements in this direction. Since the modeling phase is
compulsory for information system design, it is useful to reuse
this model during the database exploitation. We have decided to
integrate terminological reasoning in the conceptual modeling
formalism. In this way, semantic query optimization and local
result storage method will be studied. Furthermore, we would
like to give flexibilit y for the representation of conceptual
information with customizable end-user naming convention
concerning concepts and relations. As a matter of fact, a natural
language interface will directly participate to query definition.

REFERENCES

[1] P. Chen. The Entity-Relationship Model - towards a unified
view of data. ACM Transactions on Database Systems, 1, 1
(1976), pp.9-36.

[2] G.H.W.M. Bronts, S.J. Brouwer, C.L.J. Martens and H.A.
Proper. "A Unifying Object Role Modelli ng Approach."
Information Systems Vol.20, n°3 (1995) pp.213-235.

[3] E.F. Codd, S.B. Codd and C.T. Salley. Providing OLAP
(On-line Analytical Processing) to User-Analysts: An IT
Mandate. White Paper funded by Arbor Software. 1993.

[4] T. Kessel, O. Stern and F. Rousselot. "From frames to
concepts: building a concept language on a frame-based
system." Int. Workshop on Description Logic (DL-95) (Rome,
1995) pp. 140-142.

[5] P. Bresciani. "Querying Databases from Description
Logics." KI'95 Workshop in KRDB'95 (Bielefeld, Germany,
1995) pp.1-4.

[6] S. Bergamaschi and C. Sartori. "On Taxonomic Reasoning
in Conceptual Design." ACM Transactions on Database
Systems Vol.17, n°3 (1992) pp.385-422.

[7] D. Benevenato, S. Bergamaschi, S. Lodi and C. Sartori.
"Using Subsumption in Semantic Query Optimization." (CIOC-
CNR, Bologna, Italia, 1993).

