

Eliminating Noisy Information in Web Pages
for Data Mining

Lan Yi
School of Computing

National University of Singapore
3 Science Drive 2
Singapore 117543

yilan@comp.nus.edu.sg

Bing Liu
Department of Computer Science

University of Illinois at Chicago
851 S. Morgan Street

Chicago, IL 60607-7053

liub@cs.uic.edu

Xiaoli Li
Singapore-MIT alliance

National University of Singapore
3 Science Drive 2
Singapore 117543

lixl@comp.nus.edu.sg

ABSTRACT
A commercial Web page typically contains many information
blocks. Apart from the main content blocks, it usually has such
blocks as navigation panels, copyright and privacy notices, and
advertisements (for business purposes and for easy user access).
We call these blocks that are not the main content blocks of the
page the noisy blocks. We show that the information contained in
these noisy blocks can seriously harm Web data mining.
Eliminating these noises is thus of great importance. In this paper,
we propose a noise elimination technique based on the following
observation: In a given Web site, noisy blocks usually share some
common contents and presentation styles, while the main content
blocks of the pages are often diverse in their actual contents
and/or presentation styles. Based on this observation, we propose
a tree structure, called Style Tree, to capture the common
presentation styles and the actual contents of the pages in a given
Web site. By sampling the pages of the site, a Style Tree can be
built for the site, which we call the Site Style Tree (SST). We
then introduce an information based measure to determine which
parts of the SST represent noises and which parts represent the
main contents of the site. The SST is employed to detect and
eliminate noises in any Web page of the site by mapping this page
to the SST. The proposed technique is evaluated with two data
mining tasks, Web page clustering and classification.
Experimental results show that our noise elimination technique is
able to improve the mining results significantly.
Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]:
Information Search and Retrieval � clustering, information
filtering, selection process.

General Terms
Algorithm, Design, Experimentation, Theory.

Keywords
Noise detection, noise elimination, Web mining.

1. INTRODUCTION
The rapid expansion of the Internet has made the WWW a
popular place for disseminating and collecting information. Data
mining on the Web thus becomes an important task for
discovering useful knowledge or information from the Web [6][9].
However, useful information on the Web is often accompanied by
a large amount of noise such as banner advertisements, navigation
bars, copyright notices, etc. Although such information items are
functionally useful for human viewers and necessary for the Web
site owners, they often hamper automated information gathering
and Web data mining, e.g., Web page clustering, classification,
information retrieval and information extraction. Web noises can
be grouped into two categories according to their granularities:

Global noises: These are noises on the Web with large granularity,
which are usually no smaller than individual pages. Global
noises include mirror sites, legal/illegal duplicated Web pages,
old versioned Web pages to be deleted, etc.

Local (intra-page) noises: These are noisy regions/items within a
Web page. Local noises are usually incoherent with the main
contents of the Web page. Such noises include banner
advertisements, navigational guides, decoration pictures, etc.

In this work, we focus on detecting and eliminating local noises in
Web pages to improve the performance of Web mining, e.g., Web
page clustering and classification. This work is motivated by a
practical application. A commercial company asked us to build a
classifier for a number of products. They want to download
product description and review pages from the Web and then use
the classifier to classify the pages into different categories.

In this paper, we will show that local noises in Web pages can
seriously harm the accuracy of data mining. Thus cleaning the
Web pages before mining becomes critical for improving the data
mining results. We call this preprocessing step Web page cleaning.
Figure 1 gives a sample page from PCMag1. This page contains
an evaluation report of Samsung ML-1430 printer. The main
content (segment 3 in Figure 1) only occupies 1/3 of the original
Web page, and the rest of the page contains many advertisements,
navigation links (e.g., segment 1 in Figure 1), magazine
subscription forms, privacy statements, etc. If we perform
clustering on a set of product pages like this page, such items are
irrelevant and should be removed.

1 http://www.pcmag.com/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGKDD �03, August 24-27, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-737-0/03/0008�$5.00.

Despite its importance, relatively little work has been done on
Web page cleaning in the past (see our related work section). In
this paper, we propose a highly effective technique to clean Web
pages with the purpose of improving Web data mining.

Note that although XML2 Web pages are more powerful than
HMTL pages for describing the contents of a page and one can
use XML tags to find the main contents for various purposes,
most current Web pages on the Web are still in HTML rather than
in XML. The huge number of HTML pages on the Web are not
likely to be transformed to XML pages in the near future. Hence,
we focus our work on cleaning HTML pages.

Our cleaning technique is based on the following observation. In a
typical commercial Web site, Web pages tend to follow some
fixed layouts or presentation styles as most pages are generated
automatically. Those parts of a page whose layouts and actual
contents (i.e., texts, images, links, etc) also appear in many other
pages in the site are more likely to be noises, and those parts of a
page whose layouts or actual contents are quite different from
other pages are usually the main contents of the page.

In this paper, we first introduce a new tree structure, called style
tree, to capture the common layouts (or presentation styles) and
the actual contents of the pages in a Web site. We then propose an
information based measure to determine which parts of the style
tree indicate noises and which parts of the style tree contain the

2 http://www.w3.org/XML/

main contents of the pages in the Web site.

To clean a new page from the same site, we simply map the page
to the style tree of the site. According to the mapping, we can
decide the noisy parts and delete them.

Our experiment results based on two popular Web mining tasks,
i.e., Web page clustering and Web page classification, show that
our cleaning technique is able to boost the mining results
dramatically. For example, in classification, the average
classification accuracy over all our datasets increases from 0.625
before cleaning to 0.954 after cleaning. This represents a
remarkable improvement. We also compare our proposed method
with the existing template based cleaning method [2]. Our results
show that the proposed method outperforms this existing state-of-
the-art method substantially.

Our contributions

• A new tree structure, called Style Tree, is proposed to capture
the actual contents and the common layouts (or presentation
styles) of the Web pages in a Web site. An information (or
entropy) based measure is also introduced to evaluate the
importance of each element node in the style tree, which in
turn helps us to eliminate noises in a Web page.

• Experimental results show that the proposed page cleaning
technique is able to improve the results of Web data mining
dramatically. It also outperforms the existing template based
cleaning technique given in [2] by a large margin.

Figure 1: A part of an example Web page with noises (dotted lines are drawn manually)

①

②

③

2. RELATED WORK
Although Web page cleaning is an important task, relatively little
work has been done in this field. In [17], a method is proposed to
detect informative blocks in news Web pages. The concept of
informative blocks is similar to our concept of main contents of a
page. However, the work in [17] is limited by the following two
assumptions: (1) the system knows a prori how a Web page can
be partitioned into coherent content blocks, and (2) the system
knows a priori which blocks are the same blocks in different Web
pages.

As we will see, partitioning a Web page and identifying
corresponding blocks in different pages are actually two critical
issues in Web page cleaning. Our system is able to perform these
tasks automatically (with no user help). Besides, their work views
a Web page as a flat collection of blocks which correspond to
�TABLE� elements in Web pages, and each block is viewed as a
collection of words. These assumptions are often true in news
Web pages, which is the domain of their applications. In general,
these assumptions are too strong.
In [2], Web page cleaning is defined as a frequent template
detection problem. They propose a frequency based data mining
algorithm to detect templates and views those templates as noises.
The cleaning method in [2] is not concerned with the context of a
Web site, which can give useful clues for page cleaning.
Moreover, in [2], the partitioning of a Web page is pre-fixed by
considering the number of hyperlinks that an HTML element has.
This partitioning method is simple and useful for a set of Web
pages from different Web sites, while it is not suitable for Web
pages that are all from the same Web site because a Web site
typically has its own common layouts or presentation styles,
which can be exploited to partition Web pages and to detect
noises. We will compare the results of our method with those of
the method in [2] and give a discussion in the experiment section.

Other related work includes data cleaning for data mining and
data Warehousing [13], duplicate records detection in textual
databases [16] and data preprocessing for Web Usage Mining [7].
Our task is different as we deal with semi-structured Web pages
and also we focus on removing noisy parts of a page rather than
duplicate pages. Hence, different cleaning techniques are needed.

Web page cleaning is also related to feature selection in
traditional machine learning (see [18]). In feature selection,
features are individual words or attributes. However, items in
Web pages have some structures, which are reflected by their
nested HTML tags. Hence, different methods are needed in the
context of the Web.

[8][10] propose some learning mechanisms to recognize banner
ads, redundant and irrelevant links of Web pages. However, these
techniques are not automatic. They require a large set of manually
labeled training data and also domain knowledge to generate
classification rules.
[11] enhances the HITS algorithm [12] by using the entropy of
anchor text to evaluate the importance of links. It focuses on
improving HITS algorithm to find more informative structures in
Web sites. Although it segments Web pages into content blocks to
avoid unnecessary authority and hub propagations, it does not
detect or eliminate noisy contents in Web pages.

3. THE PROPOSED TECHNIQUE
The proposed cleaning technique is based on the analysis of both
the layouts and the actual contents (i.e., texts, images, etc.) of the
Web pages in a given Web site. Thus, our first task is to find a
suitable data structure to represent both the presentation styles (or
layouts) and the actual contents of the Web pages in the site. We
propose a Style Tree (ST) for this purpose. Below, we start by
giving an overview of the DOM (Document Object Model) 3 tree,
which is commonly used for representing the structure of a single
Web page, and showing that it is insufficient for our purpose. We
then present the style tree, which is followed by our entropy
measure for evaluating the nodes in the style tree for noise
detection.

3.1 DOM tree
Each HTML page corresponds to a DOM tree where tags are
internal nodes and the detailed texts, images or hyperlinks are the
leaf nodes. Figure 2 shows a segment of HTML codes and its
corresponding DOM tree. In the DOM tree, each solid rectangle is
a tag node. The shaded box is the actual content of the node, e.g.,
for the tag IMG, the actual contents is �src=image.gif�. Notice
that our study of HTML Web pages begins from the BODY tag
since all the viewable parts are within the scope of BODY. Each
node is also attached with its display properties. For convenience
of analysis, we add a virtual root node without any attribute as the
parent tag node of BODY in the DOM tree.

Figure 2: A DOM tree example (lower level tags are omitted)

Although a DOM tree is sufficient for representing the layout or
presentation style of a single HTML page, it is hard to study the
overall presentation style and content of a set of HTML pages and
to clean them based on individual DOM trees. Thus, DOM trees
are not enough in our cleaning work which considers both the
presentation style and real content of the Web pages. We need a
more powerful structure for this purpose. This structure is critical
because our algorithm needs it to find common styles of the pages
from a site in order to eliminate noises. We introduce a new tree
structure, called style tree (ST), which is able to compress the
common presentation styles of a set of related Web pages.

A style tree example is given in Figure 3 as a combination of
DOM trees d1 and d2. We observe that, except for the four tags (P,
IMG, P and A) at the bottom level, all the tags in d1 have their
corresponding tags in d2. Thus, d1 and d2 can be compressed. We
use a count to indicate how many pages have a particular style at
a particular level of the style tree. In Figure 3, we can see that
both pages start with BODY, and thus BODY has a count of 2.
Below BODY, both pages also have the same presentation style
of TABLE-IMG-TABLE. We call this whole sequence of tags
(TABLE-IMG-TABLE) a style node, which is enclosed in a dash-

3 http://www.w3.org/DOM/

bgcolor=red

bgcolor=white

IMG TABLE

BODY

root

width=800
height=200

TABLE

width=800

<BODY bgcolor=WHITE>
<TABLE width=800 height=200 >

�
</TABLE>

<TABLE bgcolor=RED>

�
</TABLE>

</BODY>

lined rectangle in Figure 3. It represents a particular presentation
style at this point. A style node is thus a sequence of tag nodes in
a DOM tree. In the style tree, we call these tag nodes the element
nodes so as to distinguish them from tag nodes in the DOM tree.
For example, the TABLE-IMG-TABLE style node has three
element nodes, TABLE, IMG and TABLE. An element node also
contains slightly different information from a tag node in a DOM
tree as will be defined later.

Figure 3: DOM trees and the style tree

In Figure 3, we can see that below the right most TABLE tag, d1
and d2 diverge, which is reflected by two different style nodes in
the style tree. The two style nodes are P-IMG-P-A and P-BR-P
respectively. This means below the right TABLE node, we have
two different presentation styles. The page count of these two
style nodes are both 1. Clearly, the style tree is a compressed
representation of the two DOM trees. It enables us to see which
parts of the DOM trees are common and which parts are different.

3.2 Style Tree (ST)
We now define a style tree, which consists of two types of nodes,
namely, style nodes and element nodes.

Definition: A style node (S) represents a layout or presentation
style, which has two components, denoted by (Es, n), where
Es is a sequence of element nodes (see below), and n is the
number of pages that has this particular style at this node level.

In Figure 3, the style node (in a dash-lined rectangle) P-IMG-P-A
has 4 element nodes, P, IMG, P and A, and n = 1.

Definition: An element node E has three components, denoted by
(TAG, Attr, Ss), where
• TAG is the tag name, e.g., �TABLE� and �IMG�;
• Attr is the set of display attributes of TAG, e.g., bgcolor =

RED, width = 100, etc.
• Ss is a set of style nodes below E.

Note that an element node corresponds to a tag node in the DOM
tree, but points to a set of child style nodes Ss (see Figure 3). For
convenience, we usually denote an element node by its tag name,
and a style node by its sequence of tag names corresponding to its
element node sequence.

Building a style tree (called site style tree or SST) for the pages of
a Web site is fairly straightforward. We first build a DOM tree for
each page and then merge it into the style tree in a top-down
fashion. At a particular element node E in the style tree, which
has the corresponding tag node T in the DOM tree, we check
whether the sequence of child tag nodes of T in the DOM tree is
the same as the sequence of element nodes in a style node S below
E (in the style tree). If the answer is yes, we simply increment the
page count of the style node S, and then go down the style tree
and the DOM tree to merge the rest of the nodes. If the answer is
no, a new style node is created below the element node E in the
style tree. The sub-tree of the tag node T in the DOM tree is
copied to the style tree after converted to style nodes and element
nodes of the style tree.

3.3 Determining the Noisy Elements in ST
In our work, the definition of noise is based on the following
assumptions: (1) The more presentation styles that an element
node has, the more important it is, and vice versa. (2) The more
diverse that the actual contents of an element node are, the more
important the element node is, and vice versa. Both these
importance values are used in evaluating the importance of an
element node. The presentation importance aims at detecting
noises with regular presentation styles while the content
importance aims at identifying those main contents of the pages
that may be presented in similar presentation styles. Hence, in the
proposed method the importance of an element node is given by
combining its presentation importance and content importance.
The greater the combined importance of an element node is, the
more likely it is the main content of the pages.

Figure 4: An example site style tree (SST)

In the example of Figure 4, the shaded parts of the SST are more
likely to be noises since their presentation styles (together with
their actual contents which cannot be shown in the figure) are
highly regular and fixed and hence less important. The double-
lined Table element node has many child style nodes, which
indicate that the element node is likely to be important. That is,
the double-lined Table is more likely to contain the main contents
of the pages. Specially, the double-lined Text element node is also
meaningful since its content is diverse although its presentation
style is fixed. Let the SST be the style tree built using all the
pages of a Web site.

100

Table Img Table

Body

Tr Tr Text Text A

Table

A

Img

A A A A

P

P P P A P Img A

100

100

100

100 35

25
25

root

15

bgcolor=red width=800
height=200

bgcolor=white

TABLE IMG TABLE

BODY

P P IMG A

root

width=800
height=200

bgcolor=white
BODY

P PBR

root

TABLE IMG TABLE

BODY

P P IMG A

root

P PBR

bgcolor=white

bgcolor=red width=800
height=200

TABLEIMG TABLE

d1 d2

2

2

1 1

Style tree

bgcolor=red

100

We need a metric to measure the importance of a presentation
style. Information theory (or entropy) is a natural choice.

Definition (node importance): For an element node E in the SST,
let m be the number of pages containing E and l be the number
of child style nodes of E (i.e., l = |E.Ss|), the node importance
of E, denoted by NodeImp(E), is defined by







=
>−= ∑

= 1
1

1

log)(1 mif
mifppEpImNode

l

i
imi (1)

where pi is the probability that a Web page uses the ith style
node in E.Ss.

Intuitively, if l is small, the possibility that E is presented in
different styles is small. Hence the value of NodeImp(E) is small.
If E contains many presentation styles, then the value of
NodeImp(E) is large. For example, in the SST of Figure 4, the
importance of the element node Body is 0 (llog100 l = 0) since l =
1. That is, below Body, there is only one presentation style Table-
Img-Table-Table. The importance of the double-lined Table is

-0.35log1000.35 - 2*0.25log1000.25-0.15log1000.15 = 0.292 > 0

However, we cannot say that Body is a noisy item by considering
only its node importance because it does not consider the
importance of its descendents. We use composite importance to
measure the importance of an element node and its descendents.

Definition (composite importance): For an internal element node
E in the SST, let l = |E.Ss|. The composite importance of E,
denoted by CompImp(E), is defined by

∑
=

+−=
l

i
ii

ll SCompImppENodeImpECompImp
1

))(()()1()(γγ (2)

where pi is the probability that E has the ith child style node in
E.Ss. In the above equation, CompImp(Si) is the composite
importance of a style node Si (∈ E.Ss), which is defined by

k

ECompImp
S

k

j
j

i

∑
== 1

)(
)(CompImp (3)

where Ej is an element node in Si.E, and k = |Si.Es|, which is
the number of element nodes in Si.

In (2), γ is the attenuating factor, which is set to 0.9. It increases
the weight of NodeImp(E) when l is large. It decreases the weight
of NodeImp(E) when l is small. This means that the more child
style nodes an element node has, the more its composite
importance is focused on itself, and the fewer child style nodes it
has, the more its composite importance is focused on its
descendents.

Leaf nodes are different from internal nodes since they only have
actual content with no tags. We define the composite importance
of a leaf element node based on the information in its actual
contents (i.e., texts, images, links, etc.)

Definition: For a leaf element node E in the SST, let l be the
number of features (i.e., words, image files, link references,
etc) appeared in E and let m be the number of pages
containing E, the composite importance of E is defined by









>

=

−
= ∑

=
1

1
)(

1

1

)(
1

mif

mif

l

aHECompImp
l

i
i

 (4)

where ai is an actual feature of the content in E. H(ai) is the
information entropy of ai within the context of E,

∑
=

−=
m

j
ijmiji ppaH

1

log)((5)

where pij is the probability that ai appears in E of page j.

Note that if m = 1, it means that only one page contains E, then E
is a very important node, and its CompImp is 1 (all the values of
CompImp are normalized to between 0 and 1).

Calculating composite importance (using the CalcCompImp(E)
procedure) for all element nodes and style nodes can be easily
done by traversing the SST. We will not discuss it further here.

3.4 Noise Detection
As mentioned earlier, our definition of noise is based on the
assumptions that the more presentation styles that are used to
compose an element node the more important the element node is
and that the more diverse that the actual contents of an element
node are, the more important the element node is. We now define
what we mean by noises and give an algorithm to detect and to
eliminate them.

Definition (noisy): For an element node E in the SST, if all of its
descendents and itself have composite importance less than a
specified threshold t, then we say element node E is noisy.

Figure 5 gives the algorithm MarkNoise(E) to identify noises in
the SST. It first checks whether all E�s descendents are noisy or
not. If any one of them is not noisy, then E is not noisy. If all its
descendents are noisy and E�s composite importance is also small,
then E is noisy.

Definition (maximal noisy element node): If a noisy element

node E in the SST is not a descendent of any other noisy
element node, we call E a maximal noisy element node.

Input: E: root element node of a SST
Return: TRUE if E and all of its descendents are noisy,

else FALSE

MarkNoise(E)
1: for each S ∈E.Ss do
2: for each e ∈ S.Es do
3: if (MarkNoise(e) == FALSE) then
4: return FALSE
5: end if
6: end for
7: end for
8: if (E.CompImp ≤ t) then
9: mark E as �noisy�

10: return TRUE
11: else return FALSE
12: end if

Figure 5: Mark noisy element nodes in SST

In other words, if an element node E is noisy and none of its
ancestor nodes is noisy, then E is a maximal noisy element node,
which is also marked by the algorithm in Figure 5.

Definition (meaningful): If an element node E in the SST does
not contain any noisy descendent, we say that E is meaningful.

Definition (maximal meaningful element node): If a meaningful
element node E is not a descendent of any other meaningful
element node, we say E is a maximal meaningful element node.

Notice that some element nodes in the SST may be neither noisy
nor meaningful, e.g., an element node containing both noisy and
meaningful descendents.

Similar to MarkNoise(EN), the algorithm MarkMeaningful(EN)
marks all the maximal meaningful element nodes. Note that in the
actual implementation, the function CalcCompImp(EN),
MarkNoise(EN) and MarkMeaningful(EN) are all combined into
one in order to reduce the number of scans of the SST. Here we
discuss them separately for clarity.

Since we are able to identify maximal meaningful element nodes
and maximal noisy element nodes in the STT, we need not
traverse the whole SST to detect and eliminate noises. Going
down from the root of the SST, when we find a maximal noisy
node, we can instantly confirm that the node and its descendents
are noisy. So we can simplify the SST into a simpler tree by
removing descendents of maximal noisy nodes and maximal
meaningful nodes in the SST.

Let us go back to the SST in Figure 4. Assume that we have
identified the element nodes in the shaded areas to be noisy and
the double-lined element nodes to be meaningful, the SST can be
simplified to the one in Figure 6.

Figure 6: A simplified SST

We now give the algorithm for detecting and eliminating noises
(Figure 7) given a SST and a new page from the same site. The
algorithm basically maps the DOM tree of the page to the SST,
and depending on where each part of the DOM tree is mapped to
the SST, we can find whether the part is meaningful or noisy by
checking if the corresponding element node in the SST is
meaningful or noisy. If the corresponding element node is neither
noisy nor meaningful, we simply go down to the lower level
nodes.

For easy presentation of the algorithm, we assume that the DOM
tree of the page is converted to a style tree with only one page
(called a page style tree or PST). The algorithm MapSST takes
two inputs, an element node E in the SST and an element node Ep
of the page style tree. At the beginning, they are the respective
root nodes in the SST and the page style tree.

3.5 The overall algorithm
Figure 8 summarizes all the steps of our Web cleaning algorithm.
Given a Web site, the system first randomly crawls a number of
Web pages from the Web site (line 1) and builds the SST based
on these pages (line 2-6). In many sites, we could not crawl all its
pages because they are too large. By calculating the composite
importance of each element node in the SST, we find the maximal
noisy nodes and maximal meaningful nodes. To clean a new page
P, we map its PST to the SST to eliminate noises (lines 10-13).

3.6 Further Enhancements
The algorithm introduced above is the basic algorithm. Some
minor tunings are needed to make it more effective.

1. For any two style nodes S1 and S2 belonging to the same
parent element node E in a SST, if e1∈S1.Es and e2∈ S2.Es, it
is possible that e1 and e2 are the same element node appearing
in different groups of Web pages (presented in different

1: Randomly crawl k pages from the given Web site S
2: Set null SST with virtual root E (representing the root);
3: for each page W in the k pages do
4: BuildPST(W);
5: BuildSST(E, Ew)
6: end for
7: CalcCompImp(E);
8: MarkNoise(E);
9: MarkMeaningful(E);

10: for each target Web page P do
11: Ep = BuildPST(P) /* representing the root */
12: MapSST(E, Ep)
13: end for

Figure 8: The overall algorithm

Input: E: Root element node of the simplified SST
Input: EPST: root element node of the page style tree
Return: The main content of the page after cleaning

MapSST (E, EP)
1: if E is noisy then
2: delete EP (and its descendents) as noises
3: return NULL
4: end if
5: if E is meaningful then
6: Ep is meaningful
7: return the content under EP
8: else returnContent = NULL
9: S2 is the (only) style node in EP.Ss

10: if ∃S1∈E.Ss ∧ S2 matches S1 then
11: e1,i is the ith element node in sequence S1.Es;
12: e2,i is the ith element node in sequence S2.Es;
13: for each pair (e1,i , e2,i) do
14: returnContent += MapSST(e1,i , e2,i)
15: end for
16: return returnContent
17: else EP is possibly meaningful;
18: return the content under EP
19: end if
20: end if

Figure 7: Map EP to E and return meaningful contents

Table Img Table

Body

Tr Tr Text

Table

root

presentation styles). In this case, it is logical to view the
element nodes e1 and e2 as one element node by merging
them. The merging is accomplished in the following manner:

If e1.TAG = e2.TAG and e1.Att r= e2.Attr, we compare their
actual contents to see whether they are similar and can be
merged. Let the characteristic feature set of ej be Ij = {featurek
| freq(featurek) ≥ γ, featurek occurs in the actual contents of
ej }, where j = 1, 2. freq(featurek) is the document frequency
of featurek within ej and γ is a predefined constant between 0
and 1. If |Ij| > 0 (j = 1, 2) and |I1∩I2|/|I1∪I2| ≥ λ, then e1 and e2
are merged to form a new element node (e1 and e2 are deleted).
Thus, in the process of building a SST, for any newly created
element node E, all the element nodes immediately below E
will be merged if possible and their corresponding tag nodes
in DOM trees are grouped together to build the sub-trees
under E. In our experiments, we set γ = 0.85 and λ = 0.85,
which perform very well. By doing so, the original element
nodes e1 and e2 become two pointers pointing to the newly
created element node in the SST. The rest of the algorithm
remains the same as in the basic algorithm.

2. The leaf tag nodes used for the algorithm should not be the
actual leaf tag nodes as they tend to overly fragment the page.
Instead, we use the parent nodes of the actual leaf tag nodes in
the DOM tree as the (virtual) leaf tag nodes in building the
SST and in computing the importance values of element nodes.

3. It is possible that although an element node in the SST is
meaningful as a unit, it may still contain some noisy items. So,
for each meaningful element node in the SST, we do not
output those locally noisy features whose information entropy
(see equation 5) is smaller than ε (ε = 0.01 is set as the default
value of our system, which performs quite well). Thus, in the
mapping algorithm of Figure 7, the contents in each
meaningful element node should be output by first deleting
those locally noisy features.

4. EMPIRICAL EVALUATION
This section evaluates the proposed noise elimination algorithm.
Since the purpose of our noise elimination is to improve Web data
mining, we performed two data mining tasks, i.e., clustering and
classification, to test our system. By comparing the mining results
before and after cleaning, we show that our cleaning technique is
able to improve mining results substantially. We also compare our
results with the mining results obtained after cleaning using the
template based technique proposed in [2]. To distinguish the
method proposed in [2] with our method in discussion, we denote
the method in [2] as the template based method and denote our
method as the SST based method. Note that we could not compare
our system with the technique in [17] as it is not suitable for our
task. It is designed specifically for identifying main news articles
in news Web pages, and it makes some assumptions that are not
suitable for general page cleaning (see Section 2).

Below, we first describe datasets used in our experiments and
evaluation measures. We then present our experiment results of
clustering and classification, and also give some discussions.

4.1 Datasets and Evaluation Measures
Our empirical evaluation is done using Web pages from 5

commercial Web sites, Amazon 4 , CNet 5 , PCMag, J&R 6 and
ZDnet7. These sites contain many introduction or overview pages
of different kinds of products. To help the users navigate the site
and to show advertisements, the pages from these sites all contain
a large amount of noise. We will show that the noise misleads
data mining algorithms to produce poor results (both in clustering
and in classification). However, our technique of detecting and
eliminating noise is able to improve the mining results
substantially.
The five Web sites contain Web pages of many categories or
classes of products. We choose the Web pages that focus on the
following categories of products: Notebook, Digital Camera,
Mobile Phone, Printer and TV. Table 1 lists the number of
documents downloaded from each Web site, and their
corresponding classes.

Since we test our system using clustering and classification, we
use the popular F score measure to evaluate the results before and
after cleaning. F score is defined as follows:

F = 2p*r/(p+r),

where p is the precision and r is the recall. F score measures the
performance of a system on a particular class, and it reflects the
average effect of both precision and recall. We will also include
the accuracy results for classification.

4.2 Experimental Results
We now present the experimental results of Web page clustering
and classification before and after cleaning and compare our
method with the template based method.

For the experiments, we implemented the template based method
given in [2]. This method first partitions all the parse trees of
HTML pages into flattened pagelets according to the number of
hyperlinks each HTML element contains (see Section 4.2.2 for
the definition of pagelet). Then it uses the shingle technique [5] to
determine the almost-similarities of pagelets. A shingle is a text
fingerprint that is invariant under small perturbations [2]. For our
application, we use the local template detection algorithm in [2] to
detect templates. According to the algorithm, a group of (no less
than 2) pagelets whose shingles are the same is treated as a
template and is deleted. Additionally, we use the template based
method to clean the Web pages in each individual site separately
rather than cleaning all the pages from all the 5 sites altogether,
which proves to be more effective.

For cleaning in our method, the site style tree of each Web site is

4 http://www.amazon.com/
5 http://www.cnet.com/
6 http://www.jandr.com/
7 http://www.zdnet.com/

Table 1. Number of Web pages and their classes

Web sites Amazon CNet J&R PCMag ZDnet
Notebook 434 480 51 144 143
Camera 402 219 80 137 151
Mobile 45 109 9 43 97
Printer 767 500 104 107 80
TV 719 449 199 0 0

built using 500 randomly sampled pages from the site. We also
tried larger numbers. However, we found that 500 pages are
sufficient and more sampled pages do not improve the cleaning
results. Our cleaning algorithm needs a threshold to decide noisy
and meaningful elements. We set the threshold for each Web site
as follows: For each Web site, we choose a small number of pages
(20), and then clean them using a number of threshold values. We
then look at the cleaned pages, and according to these cleaned
pages, we set the final threshold.

4.2.1 Clustering
We use the popular k-means clustering algorithm [1]. We put all
the 5 categories of Web pages into a big set, and use the
clustering algorithm to cluster them into 5 clusters. Since the k-
means algorithm selects the initial cluster seeds randomly, we
performed a large number of experiments (800) to show the
behaviors of k-means clustering before and after page cleaning.
The cumulative distributions of F scores before and after cleaning
are plotted in Figure 9, where X-axis shows 10 bins of F score
from 0 to 1 with each bin size of 0.1 and Y-axis gives the number
of experiments whose F scores fall into each bin. The F score for
each experiment is the average value of the 5 classes. It is
computed as follows: By comparing the pages� original classes
and the k-means clustering results, we find the optimal assignment
of classes to clusters that gives the best average F score for the 5
classes.

From Figure 9, we can clearly observe that clustering results after
our SST based cleaning are dramatically better than the results
using the original noisy Web pages. Our method also helps to
produce much better clustering results than the template based
method. Table 2 gives the statistics of F scores over the 800
clustering runs using the original Web pages, the pages cleaned
with the template based method and the pages cleaned with the

SST based method respectively. We observe that over the 800
runs, the average F score for the noise case (without cleaning) is
0.506, and the average F score for the template based cleaning
case is 0.631, while the average F score for the SST based
cleaning case is 0.751, which is a remarkable improvement.

More specifically, before cleaning, only 0.5% of the 800 results
(4 out of 800) have the F scores no less than 0.7, and 47.63%
lower than 0.5. After template based cleaning, 23.25% of the 800
clustering results have the F scores no less than 0.7, and 10.63%
lower than 0.5. While after the SST based cleaning, 78.13% of the
800 results have F scores no less than 0.7, and only 3.25% lower
than 0.5. Thus, we can conclude that our proposed noise
elimination method is much more effective than the template
based method for Web page clustering.

4.2.2 Classification
For classification, we use the Naive Bayesian classifier (NB),
which has been shown to perform very well in practice by many
researchers [14][15]. The basic idea of NB is to use the joint
probabilities of words and classes to estimate the probabilities of
classes given a document.

In order to study how Web page noise affects classification
accuracy and to better understand the situations where noise
elimination is most effective, we performed a comprehensive
evaluation with different training (TR) and testing (TE)
configurations.

Cumulative Distribution of F scores in clustering

0

50

100

150

200

250

300

350

400

450

Sorted
F score
zones

n
u
m
b
e
r

o
f

r
e
s
u
l
t
s

F(N)

F(T)

F(S)

F(N) 0 0 2 85 294 314 101 3 1 0

F(T) 0 0 0 5 80 213 316 124 62 0

F(S) 0 0 0 0 26 55 94 427 104 94

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 9: The distribution of F scores of clustering

(F(N) represents the F score of clustering using the original Web pages without cleaning; F(T) represents the F score of clustering after cleaning is
done using the template based technique in [2]; F(S) represents the F score of clustering after cleaning using the SST based method)

Table 2. Statistics of k-means clustering results

Method Ave(F) F < 0.5 F >= 0.7 F >= 0.8 F >= 0.9
F(N) 0.506 47.63% 0.50% 0.13% 0.00%
F(T) 0.631 10.63% 23.25% 7.75% 0.00%
F(S) 0.751 3.25% 78.13% 24.75% 11.75%

In each experiment, we build a classifier based on training pages
from two different classes, and then use the classifier to classify
the test pages. We denote the two classes by C1 and C2, e.g., C1
may be camera and C2 may be notebook. Let the five Web sites
be Site1, �, Site5. We experimented with three configurations of
training and test sets from different Web sites:

1. TR = {C1(Sitei) and C2(Sitej)}, and TE = {all C1 and C2 pages
except C1(Sitei) and C2(Sitej)}. This means that both classes of
training pages are from the same Web site. The test pages are
from the other sites.

2. TR = {C1(Sitei) and C2(Sitej)} (i ≠ j), and TE={all C1 and C2
pages except C1(Sitei), C2(Sitei), C1(Sitej) and C2(Sitej)}. This
means that we use C1 pages from Sitei and C2 pages from Sitej
(i ≠ j) for training and test on the C1 and C2 pages in the other
three sites.

3. TR = {C1(Sitei) and C2(Sitej)} (i ≠ j), and TE = {all C1 and C2
pages except those pages in TR}. This means that we use C1
pages from Sitei and C2 pages from Sitej (i ≠ j) for training and
test on the C1 and C2 pages in all five sites without the training
pages.

We tried all possible two class combinations of the 5 sites for the
three configurations. Table 3 and Table 4 respectively show the
average F scores and the average accuracies of the three
configurations before and after cleaning. In Table 3 and Table 4,

Fi (i = 1, 2, 3) and Ai (i = 1, 2, 3) respectively denote the average F
score and accuracy of classification under the i-th configuration.
The average F scores (or accuracies) are computed by averaging
the F scores (or accuracies) of all possible two class combinations
within 5 sites according to different configurations. Note that
since there are no TV pages in PCMag and ZDnet sites, so we
only averaged the results from those possible experiments. Again,
in Table 3 and Table 4, N stands for no cleaning, T stands for
cleaning using the template method, and S stands for the proposed
method.

From these two tables we can see that cleaning in general
improves F score and accuracy in all cases. We also observe that
in almost all cases the improvements made by our method are
more significant than those made by the template based method.
Below, we discuss the results of each configuration.

• In the first configuration, since site specific noisy items occur
in both C1 and C2 training data, the NB technique is able to
discount them to a large extent. Thus, even without cleaning
the classification results are reasonable. However, cleaning
still improves the classification results significantly.

• In the second configuration, cleaning makes a major
difference because the noisy items in C1 and C2 training data
(they are from different Web sites) are quite different, which
confuses NB. The proposed SST based method also

Table 3. Averaged F scores of classification

C1 C2 F1(N) F1(T) F1(S) F2(N) F2(T) F2(S) F3(N) F3(T) F3(S)
notebook camera 0.992 0.932 0.994 0.923 0.965 0.976 0.699 0.871 0.952
notebook mobile 0.946 0.977 0.954 0.779 0.903 0.911 0.672 0.836 0.886
notebook printer 0.991 0.996 0.991 0.832 0.973 0.979 0.634 0.834 0.954
notebook TV 0.967 0.984 0.998 0.724 0.935 0.976 0.559 0.847 0.961
camera mobile 0.979 0.985 0.996 0.767 0.872 0.963 0.629 0.800 0.938
camera printer 0.968 0.988 0.996 0.763 0.943 0.975 0.589 0.817 0.944
camera TV 0.794 0.943 0.986 0.694 0.916 0.974 0.542 0.796 0.946
mobile printer 0.984 0.983 0.998 0.783 0.923 0.987 0.581 0.866 0.941
mobile TV 0.677 0.872 0.977 0.649 0.819 0.959 0.537 0.801 0.944
printer TV 0.956 0.99 0.997 0.719 0.935 0.979 0.516 0.840 0.969

Average 0.918 0.965 0.989 0.763 0.918 0.968 0.596 0.831 0.944

Table 4. Averaged accuracies of classification

C1 C2 A1(N) A1(T) A1(S) A2(N) A2(T) A2(S) A3(N) A3(T) A3(S)
notebook camera 0.992 0.934 0.994 0.932 0.966 0.976 0.705 0.874 0.953
notebook mobile 0.961 0.985 0.971 0.805 0.940 0.941 0.734 0.894 0.925
notebook printer 0.991 0.996 0.991 0.861 0.973 0.979 0.639 0.838 0.956
notebook TV 0.967 0.984 0.998 0.745 0.937 0.977 0.583 0.857 0.962
camera mobile 0.985 0.990 0.997 0.823 0.913 0.973 0.674 0.852 0.954
camera printer 0.969 0.989 0.996 0.797 0.947 0.976 0.603 0.826 0.948
camera TV 0.821 0.943 0.986 0.722 0.922 0.974 0.567 0.806 0.947
mobile printer 0.991 0.991 0.999 0.819 0.957 0.992 0.639 0.924 0.967
mobile TV 0.690 0.884 0.985 0.659 0.843 0.971 0.565 0.823 0.958
printer TV 0.957 0.990 0.997 0.755 0.939 0.980 0.541 0.853 0.970

Average 0.932 0.969 0.991 0.792 0.934 0.974 0.625 0.855 0.954

outperforms the template based method in this configuration.

• In the third configuration, our SST technique still performs
very well. However, the results produced by the template
based method become significantly worse. The reason is that
the test set includes pages from the same sites as the training
sets. Since the template based method often under-cleans the
pages (see the detailed discussion below), the pages from the
same site are still more like each other although they may
belong to different classes.

We now explain why the template based method is not as
effective as the SST based method. The template based method
defines a pagelet as follows:

An HTML element in the parse tree of a page is a pagelet if
(1) none of its children contains at least k hyperlinks; and (2)
none of its ancestor elements is a pagelet [2].

The HTML elements in the parse tree are actually the tag nodes in
our DOM tree. The template based method gives the best results
on average when we set k = 3 (which is the same as that given in
[2]). However, since the granularity of partitioning the Web page
completely depends on the number of linkages in HTML elements,
the partitioning result may not coincide with the natural partitions
of the Web page in question. This can result in under cleaning due
to pagelets that are too large. For example, for k = 3, segment 2 in
Figure 1 is a pagelet P after partitioning. It is obvious that most
product pages from PCMag site have similar pagelets like P. The
words �Home� and �Product Guides� in this pagelet are actually
not useful for mining in our case. However, the pagelet P will not
be removed because its content (together with the words �Printer�
and �Samsung ML-1430�) are different from the pagelet contents
in other Web pages. In our SST based method, segment 2 is a tag
node T in the DOM tree of the page in Figure 1. In the SST of the
PCMag site, similar tag nodes in the rest of the Web pages will be
grouped together with T to form a leaf element node E in the SST.
Within the element node E, the words �Home� and �Product
Guides� are very likely to be identified as noises because they
appear too frequently in E although the element node E is
meaningful as a whole.

The template based method may also result in excessive cleaning
due to pagelets that are very small. Small pagelets tend to catch
the idiosyncrasy of the pages and thus may result in removal of
too much information from the pages because the template based
method considers any repeating pagelet as noise.

In contrast, our SST based method does not have these problems
because it captures the natural layout of a Web site, and it also
considers the importance of actual content features within the
context of their host element nodes in SST.

Execution time: In our experiments, we randomly sample 500
Web pages from each given Web site to build its SST. The time
taken to build a SST is always below 20 seconds. The process of
computing composite importance can always be finished in 2
seconds. The final step of cleaning each page takes less than 0.1
second. All our experiments were conducted on a Pentium 4
1.6GHz PC with 256 MB memory.

5. CONCLUSION
In this paper, we proposed a technique to clean Web pages for

Web data mining. Observing that the Web pages in a given Web
site usually share some common layout or presentation styles, we
propose a new tree structure, called Style Tree (ST) to capture
those frequent presentation styles and actual contents of the Web
site. The site style tree (SST) provides us with rich information
for analyzing both the structures and the contents of the Web
pages. We also proposed an information based measure to
evaluate the importance of element nodes in SST so as to detect
noises. To clean a page from a site, we simply map the page to its
SST. Our cleaning technique is evaluated using two data mining
tasks. Our results show that the proposed technique is highly
effective.

6. ACKNOWLEDGEMENT
Bing Liu was supported in part by the National Science
Foundation (NSF) under the NSF grant IIS-0307239.

7. REFERENCES
[1] Anderberg, M.R. Cluster Analysis for Applications,

Academic Press, Inc. New York, 1973.
[2] Bar-Yossef, Z. and Rajagopalan, S. Template Detection via

Data Mining and its Applications, WWW 2002, 2002.
[3] Beeferman, D., Berger, A. and Lafferty, J. A model of lexical

attraction and repulsion. ACL-97, 1997.
[4] Beeferman, D., Berger, A. and Lafferty, J. Statistical models

for text segmentation. Machine learning, 34(1-3), 1999.
[5] Broder, A., Glassman, S., Manasse, M. and Zweig, G.

Syntactic clustering of the Web, Proceeding of WWW6,
1997.

[6] Chakrabarti, S. Mining the Web: Discovering Knowledge
from Hypertext Data. Morgan Kaufmann, 2002.

[7] Cooley, R., Mobasher, B. and Srivastava, J. Data
preparation for mining World Wide Web browsing patterns.
Journal of Knowledge and Information Systems, (1) 1, 1999.

[8] Davision, B.D. Recognizing Nepotistic links on the Web.
Proceeding of AAAI 2000.

[9] Han, J. and Chang, K. C.-C. Data Mining for Web
Intelligence, IEEE Computer, Nov. 2002.

[10] Jushmerick, N. Learning to remove Internet advertisements,
AGENT-99, 1999.

[11] Kao, J.Y., Lin, S.H. Ho, J.M. and Chen, M.S. Entropy-based
link analysis for mining web informative structures, CIKM
2002.

[12] Kleinberg, J. Authoritative Sources in a Hyperlinked
Environment. ACM-SIAM Symposium on Discrete
Algorithms, 1998.

[13] Lee, M.L., Ling, W. and Low, W.L. Intelliclean: A
knowledge-based intelligent data cleaner. KDD-2000, 2000.

[14] Lewis, D. and Gale, W. A sequential algorithm for training
text classifiers. Proceedings of SIGIR, 1994.

[15] McCallum, A. and Nigam, K. A comparison of event models
for naïve Bayes text classification. AAAI-98 Workshop on
Learning for Text Categorization. AAAI Press, 1998.

[16] Nahm, U.Y., Bilenko, M. and Mooney R.J. Two Approaches
to Handling Noisy Variation in Text Mining. ICML-2002
Workshop on Text Learning, 2002

[17] Shian-Hua Lin and Jan-Ming Ho. Discovering Informative
Content Blocks from Web Documents, KDD-02, 2002.

[18] Yang, Y. and Pedersen, J.O. A comparative study on feature
selection in text categorization. ICML-97, 1997.

