
SECRET: A Scalable Linear Regression Tree Algorithm

Alin Dobra
Department of Computer Science

Cornell University
Ithaca, NY 14853

dobra@cs.cornell.edu

Johannes Gehrke
Department of Computer Science

Cornell University
Ithaca, NY 14853

johannes@cs.cornell.edu

ABSTRACT
Developing regression models for large datasets that are
both accurate and easy to interpret is a very important
data mining problem. Regression trees with linear models in
the leaves satisfy both these requirements, but thus far, no
truly scalable regression tree algorithm is known. This pa-
per proposes a novel regression tree construction algorithm
(SECRET) that produces trees of high quality and scales to
very large datasets. At every node, SECRET uses the EM
algorithm for Gaussian mixtures to find two clusters in the
data and to locally transform the regression problem into a
classification problem based on closeness to these clusters.
Goodness of split measures, like the gini gain, can then be
used to determine the split variable and the split point much
like in classification tree construction. Scalability of the al-
gorithm can be achieved by employing scalable versions of
the EM and classification tree construction algorithms. An
experimental evaluation on real and artificial data shows
that SECRET has accuracy comparable to other linear re-
gression tree algorithms but takes orders of magnitude less
computation time for large datasets.

1. INTRODUCTION
Regression is a very important data mining problem. One

very important class of regression models is regression trees.
Even though regression trees were introduced in the CART
book early in the development of decision trees by Breiman
et al. [3], regression tree construction has received far less
attention from the research community so far. Quinlan gen-
eralized CART regression trees by using a linear model in
the leaves to improve the accuracy of the tree [14]; he used
as impurity measure the standard deviation of the predic-
tor variable. Karalilc argued that the mean square error of
the linear model in a node is a more appropriate impurity
measure for linear regression trees since large variance in
the data is no indication of the fit of the linear model [9].
Evaluation of the variance is much easier than estimating
the error of a linear model (which requires solving a lin-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD ’02 Edmonton, Alberta, Canada
Copyright 2002 ACM 158113567X/02/0007 ...$5.00.

ear system). Even more, if some of the predictor attributes
are discrete, the problem finding the best split attribute for
binary trees becomes intractable for linear regression trees
since the theorem that justifies a linear algorithm for finding
the best split (Theorem 9.4 in [3]) does not seem to apply.
To address computational concerns of normal linear regres-
sion models, Alexander and Scott proposed the use of simple
linear regressors (i.e., the linear model depends on only one
predictor attribute), which can be trained more efficiently
but are not as accurate [1] .

Torgo proposed the use of even more sophisticated func-
tional models in the leaves (i.e., kernel regressors) [17, 16].
For such regression trees both construction and deployment
of the model is expensive but they potentially are superior to
linear regression trees in terms of accuracy. More recently,
Li et al. proposed a linear regression tree algorithm that can
produce oblique splits using Principal Hessian Analysis but
the algorithm cannot accommodate discrete attributes [10].1

There are a number of contributions coming from the
statistics community. Chaudhuri et al. [4] proposed the use
of statistical tests for split variable selection instead of error
of fit methods. The main idea is to fit a model (constant,
linear or higher order polynomial) for every node in the tree
and to partition the data at each node into two classes: data-
points with positive residuals2 and data-points with negative
residuals. In this manner the regression problem is locally
reduced to a classification problem, so it becomes much sim-
pler. Statistical tests used in classification tree construction,
Student’s t-test in this case, can be used from this point on.
Unfortunately, it is not clear why differences in the distribu-
tions of the signs of the residuals are good criteria on which
decisions about splits are made. A further enhancement
was proposed recently by Loh [11]. It consists mostly in the
use of the χ2-test instead of the t-test in order to accom-
modate discrete attributes, the detection of interactions of
pairs of predictor attributes, and a sophisticated calibration
mechanism to ensure the unbiasedness of the split attribute
selection criterion.

In this paper we introduce SECRET (Scalable EM and
Classification based Regression Trees), a new construction
algorithm for regression trees with linear models in the leaves,
which produces regression trees with accuracy comparable
to the trees produced by existing algorithms and at the
same time requiring far less computational effort on large

1Oblique splits are linear inequalities involving two or more
predictor attributes.
2Residuals are the difference between the true value and the
value predicted by the regression model.

datasets. Our experiments show that SECRET improves
the running time of regression tree construction by up to
two orders of magnitude compared to previous work while
at the same time constructing trees of comparable quality.
Our main idea is to use the EM algorithm on the data par-
tition in an intermediate node to determine two Gaussian
clusters, hopefully with shapes close to flat disks. We then
use these two Gaussians to locally transform the regression
problem into a classification problem by labeling every data-
point with class label 1 if the probability of belonging to the
first cluster exceeds the probability of belonging to the sec-
ond cluster, or class label 2 if the converse is true. A split
attribute and a corresponding split point to separate the
two classes can be determined then using goodness of split
measures for classification trees like the gini gain [3]. Least
square linear regression can be used to determine the linear
regressors in the leaves.

The local reduction to a classification problem allows us to
avoid forming and solving the large number of linear systems
of equations required for an exhaustive search method such
as the method used by RETIS [9]. Even more, scalable
versions of the EM algorithm for Gaussian mixtures [2] and
classification tree construction [7] can be used to improve
the scalability of the proposed solution. An extra benefit of
the method is the fact that good oblique splits can be easily
obtained.

The rest of the paper is organized as follows. In Section
2 we give short introductions to classification and regres-
sion tree construction and to the EM algorithm for Gaus-
sian mixtures. In Section 3 we present in greater detail
some of the previously proposed solutions and we comment
on their shortcomings. Section 4 contains the description
of SECRET, our proposal for a linear regression tree algo-
rithm. We show results of an extensive experimental study
of SECRET in Section 5, and we conclude in Section 6.

2. PRELIMINARIES
In this section we give a short introduction to classifica-

tion and regression trees. More details can be found in the
excellent review [13].

2.1 Classification Trees
Classification trees have a tree organization with interme-

diate nodes labeled by split attributes, the branches starting
in an intermediate node labeled by split predicates involv-
ing the corresponding split predicate and leaves labeled by
class labels. Prediction using classification trees is made by
navigating the tree on true predicates until a leaf is reached,
when the corresponding label is returned.

The construction of classification trees proceeds in two
phases. In the growing phase an oversized tree is build re-
cursively, at every step a split attribute and split predicates
involving this attribute are selected in order to maximize
the goodness of split criteria. A large number of such cri-
teria have been proposed in the literature [13], here we use
Breiman’s gini gain since is easy to compute and the best
split for discrete attributes can be found efficiently [3]. In
the second phase the final size of the tree is determined with
the goal to minimize the error on unseen examples.

2.2 Regression Trees
Regression models or regressors are functional mappings

from the cross product of the domains of predictor attributes

X1, . . . , Xm to the domain of the continuous predicted at-
tribute, Y . They only differ from classifiers in the fact that
the predicted attribute is real valued.

Regression Trees, the particular type of regressors we are
interested in, are the natural generalization of decision trees
for regression problems. Instead of a class label being associ-
ated to every node, a real value or a functional dependency
of some of the inputs is used to predict the value of the
output.

Regression trees in CART have a constant numerical value
in the leaves and use the variance as a measure of impurity
[3]. Thus the split selection measure for the node T with
children nodes T1 . . . Tn is:

Err(T) def= E
�
(Y − E [Y |T])2

�
∆Err(T) = Err(T)−

nX
j=1

P [Tj |T] · Err(Tj)
(1)

The use of variance as the impurity measure is justified by
the fact that the best constant predictor in a node is the
expected value of the predicted variable given that data-
points belong to the node, E [Y |T]; the variance is thus the
mean square error of this best predictor.

As in the case of classification trees, prediction is made by
navigating the tree following the branches with predicates
that are satisfied until a leaf is reached. The numerical value
associated with the leaf is the prediction of the model.

As in the case of classification trees, a top-down induction
schema is usually used to build regression tress. Pruning is
used to improve the accuracy on unseen examples. Prun-
ing methods for classification trees can be straightforwardly
adapted for regression trees [18]. In this paper we use Quin-
lan’s resubstitution error pruning [15]. It consists of elimi-
nating subtrees in order to obtain a tree with the smallest
error on the pruning set.

3. PREVIOUS APPROACHES
In this section we analyze some of the previously proposed

construction algorithms for linear regression trees and, for
each, we point major drawbacks.

3.1 Quinlan’s Algorithm
For efficiency reasons, the algorithm proposed by Quinlan

[14] pretends that a regression tree with constant models
in the leaves is constructed until the tree is fully grown,
when linear models are fit on the data-points available at
leaves. This is equivalent to using the split selection crite-
rion in Equation 1 during the growing phase. Then linear
regressors in the leaves are constructed by performing an-
other pass over the data in which the set of data-points from
the training examples corresponding to each of the leaves is
determined and the least square linear problem for these
data-points is formed and solved (using the SVD decompo-
sition [8]).

The same approach was later used by Torgo [16, 17] with
more complicated models in the leaves like kernels and local
polynomials.

As pointed out by Karalic [9] the variance of the output
variable is a poor estimator of the purity of the fit when
linear regressors are used in the leaves, since the points can
be arranged along a line (so the error of the linear fit is
almost zero) but they occupy a significant region (so the

variance is large). To correct this problem, he suggested
that the following impurity function should be used:

Errl(T) def= E
�
(Y − E [f(X)|T])2

�
(2)

where f(x) = [1 xT]c is the linear regressor with the smallest
least square error.

To see more clearly that Err(T) given by Equation 1 is
not appropriate for the linear regressor case, consider the
situation in Figure 1. The two thick lines represent a large
number of points (possibly infinite). The best split for the
linear regressor is x = 0 and the fit is perfect after the split.

For the case when Err(T) is used, it can be shown analyt-
ically that the the split point is −(

√
5 − 1)/2 = −0.618034

or symmetrically 0.618034. Either of these splits is very
far from the split obtained using Errl(T) (at point 0), thus
splitting the points in proportion 19% to 81% instead of the
ideal 50% to 50%.

This example suggests that the split point selection based
on Err(T) produces an unnecessary fragmentation of the
data that is not related to the natural organization of the
data-points for the case of linear regression trees. This frag-
mentation produces unnecessarily large and unnatural trees,
anomalies that are not corrected by the pruning stage.

3.2 Karalic’s Algorithm
Using the split criterion in Equation 2 the problem men-

tioned above is avoided and much higher quality trees are
built. If exhaustive search is used to determine the split
point, the computational cost of the algorithm becomes pro-
hibitively expensive for large datasets for two main reasons:

• If the split attribute is continuous, all possible values
of this attribute have to be considered as split points.
For each of them a linear system has to be formed and
solved. Even if the matrix and the vector that form the
linear system are maintained incrementally (which can
be dangerous from numerical stability point of view),
for every level of the tree constructed, a number of
linear systems equal to the size of the dataset have to
be solved.

• If the split attribute is discrete the situation is worse
since Theorem 9.4 in [3] does not seem to apply for
this split criterion. This means that an exponential
number, in the size of the domain of the split variable,
of linear systems has to be formed and solved.

The first problem can be alleviated if a sample of the
points available are considered as split points. Even if this
simplification is made, the data-points have to be sorted in
every intermediate node on all the possible split attributes.
Also, it is not clear how these modifications influence the ac-
curacy of the generated regression trees. The second prob-
lem seems unavoidable if exhaustive search is used.

3.3 Chaudhuri’s Algorithm
In order to avoid forming and solving so many linear sys-

tems, Chaudhuri et al. [4] proposed to locally classify the
data-points available at an intermediate node based on the
sign of the residual with respect to the least square error
linear model. For the dataset shown in Figure 1 this cor-
responds to points above and below the dashed line. As
can be observed, when projected on the X axis, the neg-
ative class surrounds the positive class so two split points

are necessary to differentiate between the two groups (the
node has to be split into three parts). When the number of
predictor attributes is larger than one (the multidimensional
case), the separating surface between the class labels + and
− is nonlinear in general. Moreover, even if the best regres-
sors are fit to the two classes, the prediction is only slightly
improved. The solution adopted by Chaudhuri et al. is to
use Quadratic Discriminant Analysis (QDA) to determine
the split point.

4. SECRET
For constant regression trees, algorithms for scalable clas-

sification trees can be straightforwardly adapted [7]. The
main obstacle in doing a similar adaptation for linear re-
gression trees is that the problem of partitioning the do-
main of a discrete variable in two parts is intractable. Also
the amount of sufficient statistics that has to be maintained
for the split increases drastically: For constant regressors,
we have to maintain two real numbers (the mean and the
sum of squares), whereas for linear trees the statistics are
quadratic in the number of regression attributes (to main-
tain the matrix AT A that defines the linear system) and
thus not feasible in practice.

In this work we distuingish as follows between different
predictor attributes [11]: (1) discrete attributes – used only
in the split predicates in intermediate nodes in the regression
tree, (2) split continuous attributes – continuous attributes
used only for splitting, (3) regression attributes – continu-
ous attributes used in the linear combination that specifies
the linear regressors in the leaves as well as for specifying
split predicates. By allowing some continuous attributes to
participate in splits but not in regression in the leaves we
add greater flexibility to the learning algorithm. The parti-
tioning of the continuous attributes in split and regression
is beyond the scope of the paper (and is usually performed
by the user [11]).

The main idea behind our algorithm is to locally trans-
form the regression problem into a classification problem by
first identifying two general Gaussian distributions in the
regressor attributes–output space using the EM algorithm
for Gaussian mixtures and then classifying the data-points
based on the probability of belonging to these two distribu-
tions. Classification tree techniques are then used to select
the split attribute and the split point. Our algorithm, called
SECRET, is summarized in Figure 4.

The role of the EM Algorithm is to find two natural classes
in the data that have an approximately linear organiza-
tion. The role of the classification is to identify predictor
attributes that can differentiate between these two classes
in the input space. To see this more clearly, suppose we
are in the process of building a linear regression tree and
we have to decide on the split attribute and split point for
the node T . Suppose the set of training examples avail-
able at node T contains tuples with three components: a
regressor attribute Xr, a discrete attribute Xd and the pre-
dicted attribute Y . The projection of the training data on
the Xr, Y space might look like Figure 2. The datapoints
are approximately organized in two clusters with Gaussian
distributions that are marked as ellipsoids. Differentiating
between the two clusters is crucial for prediction, but infor-
mation in the regression attribute is not sufficient to make
this distinction even though within a cluster they can do
good predictions. The information in the discrete attribute

1−1 0

1

−

+

Figure 1: Example where classifica-
tion on sign of residuals is unintu-
itive.

Y

X r

Figure 2: Projection on Xr, Y space
of training data.

Y

X rNo

Xd

Yes

Figure 3: Projection on Xd, Xr, Y
space of same training data as in
Figure 2

Input: node T , data-partition D
Output: regression tree T for D rooted at T

Linear regression tree construction algorithm:
BuildTree(node T , data-partition D)
(1) Normalize data-points to unitary sphere
(2) Find two Gaussian clusters in regressor–output space (EM)
(3) Label data-points based on closeness to these clusters
(4) foreach split attribute
(5) Find the best split point and determine its gini gain
(6) endforeach
(7) Let X be the attribute with the greatest gini gain and

Q the corresponding best split predicate
(8) if (T splits)
(9) Partition D into D1, D2 based on Q and label node T

with split attribute X
(10) Create children nodes T1, T2 of T and label

the edge (T, Ti) with predicate q(T,Ti)
(11) BuildTree(T1, D1); BuildTree(T2, D2)
(12) else
(13) label T with the least square linear regressor of D
(14) endif

Figure 4: SECRET algorithm

Xd can make this distinction, as can be observed from Fig-
ure 3 where the projection is made on the Xd, Xr, Y space.
If more split attributes had been present, a split on Xd would
have been preferred since the resulting splits are pure.

Observe that the use of the EM Algorithm for Gaussian
mixtures is very limited since we have only two mixtures
and thus the likelihood function has a simple form (result-
ing in fewer local minima). Since the EM Algorithm is quite
sensitive to distances, we normalize the training data before
running the algorithm. Our normalization performs a linear
transformation that makes the data look as close as possible
to a unitary sphere with the center in the origin. Exper-
imentally, we observed that, with this transformation and
in this restricted scenario, the EM algorithm with clusters
initialized randomly works well.

Once the two Gaussian mixtures are identified, the dat-
apoints can be labeled based on the closeness to the two
clusters (i.e., if a datapoint is closer to cluster 1 than clus-
ter 2 it is labeled with class label 1, otherwise it is labeled
with class label 2). With this local labeling of points, at-
tribute and split point selection methods from classification
tree construction can be used.

We are using the gini gain as a representative split selec-
tion criteria to find the split point; we would like to empha-

size that any spit selection criterion from the literature could
be used. For each attribute (or collection of attributes for
oblique splits) we determine the best split point and com-
pute its gini gain. We then choose the predictor attribute
with the largest gini gain as split attribute.

For discrete attributes the algorithm of Breiman et al.
finds the split point in time linear in the size of the domain
of the discrete attribute (since we only have two class labels)
[3]. We directly use this algorithm to find the best split
partition for discrete attributes.

4.1 Split Point Selection For Continous At
tributes

Since the EM algorithm for Gaussian mixtures produces
two normal distributions, it is reasonable to assume that the
projection of the datapoints with the same class label on a
continuous attribute X has also a normal distribution. The
split point that best separates the two normal distributions
can be found using Quadratic Discriminant Analysis (QDA).
The reason for preferring QDA to a direct minimization of
the gini gain is the fact that it gives qualitatively similar
splits but requires less computational effort [12]. The gini
of the split can be computed directly from the parameters
of the two normal distributions, an extra pass over the data
is not necessary.

4.2 Oblique Splits
Ideally, given two Gaussian distributions, we would like

to find the separating hyperplane that maximizes the gini
gain. Fukanaga showed that the problem of minimizing the
expected value of the 0-1 loss (the classification error func-
tion) generates an equation involving the normal of the hy-
perplane that is not solvable algebraically [6]. Following
the same treatment, it is easy to see that the problem of
minimizing the gini gain generates the same equation. A
good solution to the problem of determining a separating
hyperplane can be found using Linear Discriminant Anal-
ysis (LDA) [6] to determine the projection direction that
gives the largest separation between the projections of the
two distributions. QDA can then be used on the projection
to determine a point contained in the separating hyperplane.
This point and the best projection direction completelly de-
termine the separating hyperplane. As in the unidimen-
tional case, the gini gain of the split can be determined from
the parameters of the two distributions and the separating
hyperplane, extra passes being unnecessary.

4.3 Finding Linear Regressors
If the current node is a leaf, or in preparation for the

situation that all the descendents of this node are pruned,
we have to find the best linear regressor that fits the training
data. We identified two ways the LSE linear regressor can
be computed.

The first method consist of a traversal of the original
dataset and an identification of the subset that falls into
this node. The least square linear system that gives the
linear regressor is formed with these datapoints and solved.
Note that, in the case that all the sufficient statistics can be
maintained in main memory, a single traversal of the train-
ing dataset per tree level will suffice.

The second method uses the fact that the split selection
method tries to find a split attribute and a split point that
can differentiate best between the two Gaussian mixtures
found in the regressor–output space. The least square prob-
lem can be solved at the level of each of these mixtures un-
der the assumption that the distribution of the datapoints
is normal with the parameters identified by the EM algo-
rithm. This method is less precise as the data might not fit
the Gaussian model, but the method can be used when the
number of traversals over the dataset becomes a concern.

5. EMPIRICAL EVALUATION
In this section we present the results of an extensive ex-

perimental study of SECRET. The purpose of the study
was twofold: (1) to compare the accuracy of SECRET with
GUIDE [11], a state-of-the-art linear regression tree algo-
rithm and (2) to compare the scalability properties of SE-
CRET and GUIDE.

The two main findings of our study are:

• Accuracy of prediction. SECRET is more accu-
rate than GUIDE on three datasets, as accurate on
six datasets and less accurate on three datasets. This
suggests that overall the prediction accuracy of SE-
CRET is comparable to the accuracy of GUIDE. On
four of the datasets, the use of oblique splits resulted
in significant improvement in accuracy.

• Scalability to large datasets. For datasets of small
to moderate sizes (up to 5000 tuples), GUIDE slightly
outperforms SECRET. The behavior for large datasets
of the two methods is very different. For datasets with
256000 tuples and 3 attributes, SECRET runs about
200 times faster than GUIDE. Even if GUIDE con-
siders only 1% of the points available as possible split
points, SECRET still runs 20 times faster. Also, there
is no significant change in running time when SECRET
produces oblique splits.

5.1 Experimental Setup
GUIDE is a regression tree construction algorithm that

was designed to be both accurate and fast [11]. An exten-
sive experimental study by Loh shows that GUIDE outper-
forms previous regression tree construction algorithms and
compares favorably to MARS [5], a state-of-the-art regres-
sion algorithm based on splines [11]. GUIDE uses statistical
techniques to pick the split variable and can use exhaustive
search or just a sample of the points to find the split point.
In our accuracy experiments we set up GUIDE to use ex-
haustive search. For the scalability experiments we report

Nam
e

So
ur

ce

#
ca

se
s

#
no

m
in
al

#
co

nt
inu

ou
s

Abalone UCI 4177 1 7
Basball UCI 261 3 17
Kin8nm DVELVE 8192 0 8
Mpg UCI 392 3 5
Mumps SatLib 1523 0 4
Stock SatLib 950 0 10
TA UCI 151 4 2
Tecator SatLib 240 0 11

Cart Breiman et al.([3]) – 10 1
Fried Friedman [5] – 0 11
3DSin 3 sin(X1) sin(X2) – 0 3

Table 1: Datasets Used In Experiments. Top: Real-
life Datasets; Bottom: Synthetic Datasets

running times for both the exhaustive search and split point
candidate sampling of size 1%.

For the experimental study we used nine real life and three
synthetic datasets. Their characteristics are summarized in
Table 1. All datasets except 3DSin have been used before
extensively in experimental studies.

We performed all the experiments reported in this paper
on a Pentium III 933MHz running Redhat Linux 7.2.

5.2 Experimental Results: Accuracy
For each experiment with real datasets we used a random

partitioning into 50% of datapoints for training, 30% for
pruning and 20% for testing. For the synthetic datasets we
randomly generated 16384 tuples for training, 16384 tuples
for pruning and 16384 tuples for testing for each experi-
ment. We repeated each experiment 100 times in order to
get accurate estimates. For comparison purposes we built
regression trees with both constant (by using all the con-
tinuous attributes as split attributes) and linear (by using
all continuous attributes as regressor attributes) regression
models in the leaves. In all the experiments we used Quin-
lan’s resubstitution error pruning [15]. For both algorithms
we set the minimum number of data-points in a node to
be considered for splitting to 1% of the size of the dataset,
which resulted in trees at the end of the growth phase with
around 75 nodes.

Table 2 contains the average mean square error and its
standard deviation for GUIDE, SECRET and SECRET with
oblique splits (SECRET(O)) with constant (left part) and
linear (right part) regressors in the leaves, on each of the
twelve datasets. GUIDE and SECRET with linear regressor
in the leaves have equal accuracy (we considered accuracies
equal if they were less than three standard deviations away
from each other) on six datasets (Abalone, Boston, Mpg,
Stock, TA and Tecator), GUIDE wins on three datasets
(Baseball, Mumps and Fried) and SECRET wins on the
remaining three (Kin8nm, 3DSin and Cart). These findings
suggest that the two algorithms are comparable from the
accuracy point of view, neither dominating the other. The
use of oblique splits in SECRET made a big difference in
four datasets (Kin8nm 27%, Stock 24%, Tecator 35% and
3DSin 45%). These datasets usually have less noise and are
complicated but smooth (so they offer more opportunities

for intelligent splits). At the same time the use of oblique
splits resulted in significantly worse performance on two of
the datasets (Baseball 13% and Fried 19%).

5.3 Experimental results: Scalability
We chose to use only synthetic datasets for scalability ex-

periments since the sizes of the real datasets are too small.
The learning time of both GUIDE and SECRET is mostly
dependent on the size of the training set and on the number
of attributes, as is confirmed by some other experiments we
are not reporting here. As in the case of accuracy experi-
ments, we set the minimum number of data-points in a node
to be considered for further splits to 1% of the size of the
training set. We measured only the time to grow the trees,
ignoring the time necessary for pruning and testing. The
reason for this is the fact that pruning and testing can be
implemented efficiently and for large datasets do not make a
significant contribution to the running time. For GUIDE we
report running times for both exhaustive search and sample
split point (only 1% of the points available in a node are
considered as possible split points), denoted by GUIDE(S).

Results of experiments with the 3DSin dataset and Fried
dataset are depicted in Figures 5 and 6 respectively. A num-
ber of observations are apparent from these two sets of re-
sults: (1) the performance of the two versions of SECRET
(with and without oblique splits) is virtually indistinguish-
able, (2) the running time of both versions of GUIDE is
quadratic in size for large datasets, (3) as the number of
attributes went up from 3 (3DSin) to 11 (Fried) the com-
putation time for GUIDE(S), SECRET and SECRET(O)
went up about 3.5 times but went slightly down for GUIDE,
and (4) for large datasets (256000 tuples) SECRET is two
orders of magnitude faster than GUIDE and one order of
magnitude faster than GUIDE(S). It is also worth pointing
out that, for SECRET, most of the time is spent in the EM
algorithm. If used, sampling would not decrease the preci-
sion of EM much and at the same time would considerably
decrease the computation time. For this reason the compar-
ison with GUIDE(S) is not fair, nevertheless starting from
medium sized datasets SECRET outperforms significantly
the sampled version of GUIDE.

6. CONCLUSIONS
In this paper we introduced SECRET, a new linear re-

gression tree construction algorithm designed to overcome
the scalability problems of previous approaches. SECRET’s
scalability is based on a novel approach to tree construction
that reduces the regression problem to a classification prob-
lem using the EM clustering algorithm. Our experiments
show the efficacy and quality of SECRET.

We believe that this algorithm is only the first step to-
wards a family of truly scalable regression tree algorithms.
We see two immediate extensions. First, the pruning of clas-
sification trees has significant impact on their accuracy; we
plan to investigate this problem for regression trees. Second,
we will look into other possible approaches of split variable
and split point selection.

Acknolwedgements. This work was sponsered by NSF
grants IIS-0121175 and IIS-0084762, by the Cornell Infor-
mation Assurance Institute, and by generous gifts from Mi-
crosoft and Intel.

7. REFERENCES
[1] W. P. Alexander and S. D. Grimshaw. Treed

regression. Journal of Computational and Graphical
Statistics, (5):156–175, 1996.

[2] P. S. Bradley, U. M. Fayyad, and C. Reina. Scaling
clustering algorithms to large databases. In Knowledge
Discovery and Data Mining, pages 9–15, 1998.

[3] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and Regression Trees.
Wadsworth, Belmont, 1984.

[4] P. Chaudhuri, M.-C. Huang, W.-Y. Loh, and R. Yao.
Piecewise-polynomial regression trees. Statistica
Sinica, 4:143–167, 1994.

[5] J. H. Friedman. Multivariate adaptive regression
splines. The Annals of Statistics, 19:1–141 (with
discussion), 1991.

[6] K. Fukanaga. Introduction to Statistical Pattern
Recognition, Second edition. Academic Press, 1990.

[7] J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest
– a framework for fast decision tree construction of
large datasets. In Proceedings of the 24th International
Conference on Very Large Databases, pages 416–427.
Morgan Kaufmann, August 1998.

[8] G. H. Golub and C. F. V. Loan. Matrix Computations.
Johns Hopkins, 1996.

[9] A. Karalic. Linear regression in regression tree leaves.
In International School for Synthesis of Expert
Knowledge, Bled,Slovenia, 1992.

[10] K.-C. Li, H.-H. Lue, and C.-H. Chen. Interactive
tree-structured regression via principal hessian
directions. journal of the American Statistical
Association, (95):547–560, 2000.

[11] W.-Y. Loh. Regression trees with unbiased variable
selection and interaction detection. Statistica Sinica,
2002. in press.

[12] W.-Y. Loh and Y.-S. Shih. Split selection methods for
classification trees. Statistica Sinica, 7(4), October
1997.

[13] S. K. Murthy. Automatic construction of decision
trees from data: A multi-disciplinary survey. Data
Mining and Knowledge Discovery, 1997.

[14] J. R. Quinlan. Learning with Continuous Classes. In
5th Australian Joint Conference on Artificial
Intelligence, pages 343–348, 1992.

[15] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufman, 1993.

[16] L. Torgo. Functional models for regression tree leaves.
In Proc. 14th International Conference on Machine
Learning, pages 385–393. Morgan Kaufmann, 1997.

[17] L. Torgo. Kernel regression trees. In European
Conference on Machine Learning, 1997. Poster paper.

[18] L. Torgo. A comparative study of reliable error
estimators for pruning regression trees. Iberoamerican
Conf. on Artificial Intelligence. Springer-Verlag, 1998.

Constant Regressors Linear Regressors
GUIDE SECRET SECRET(O) GUIDE SECRET SECRET(O)

Abalone 5.32±0.05 5.50±0.10 5.41±0.10 4.63±0.04 4.67±0.04 4.76±0.05
Baseball 0.224±0.009 0.200±0.008 0.289±0.012 0.173±0.005 0.243±0.011 0.280±0.009
Boston 23.34±0.72 28.00±0.92 30.91±0.94 40.63±6.63 24.01±0.69 26.11±0.66
Kin8nm 0.0419±0.0002 0.0437±0.0002 0.0301±0.0003 0.0235±0.0002 0.0222±0.0002 0.0162±0.0001
Mpg 12.94±0.33 30.09±2.28 26.26±2.45 34.92±21.92 15.88±0.68 16.76±0.74
Mumps 1.34±0.02 1.59±0.02 1.56±0.02 1.02±0.02 1.23±0.02 1.32±0.04
Stock 2.23±0.06 2.20±0.06 2.18±0.07 1.49±0.09 1.35±0.05 1.03±0.03
TA 0.74±0.02 0.69±0.01 0.69±0.01 0.81±0.04 0.72±0.01 0.79±0.08
Tecator 57.59±2.40 49.72±1.72 28.21±1.75 13.46±0.72 12.08±0.53 7.80±0.53

3DSin 0.1435±0.0020 0.4110±0.0006 0.2864±0.0077 0.0448±0.0018 0.0384±0.0026 0.0209±0.0004
Cart 1.506±0.005 1.171±0.001 N/A N/A N/A N/A
Fried 7.29±0.01 7.45±0.01 6.43±0.03 1.21±0.00 1.26±0.01 1.50±0.01

Table 2: Accuracy on real (upper part) and synthetic (lower part) datasets of GUIDE and SECRET. In
parenthesis we indicate O for oblique splits. The winner is in bold face if it is statistically significant and in
italics otherwise.

Size GUIDE GUIDE(S) SECRET SECRET(O)

250 0.07 0.05 0.21 0.21
500 0.13 0.07 0.33 0.34

1000 0.30 0.12 0.55 0.58
2000 0.94 0.24 1.08 1.12
4000 3.28 0.66 2.11 2.07
8000 12.58 2.40 4.07 4.12

16000 48.93 9.48 8.16 8.37
32000 264.50 43.25 16.71 16.19
64000 1389.88 184.50 35.62 35.91

128000 6369.94 708.73 73.35 71.67
256000 25224.02 2637.94 129.95 131.70 0.01

0.1

1

10

100

1000

10000

100000

100 1000 10000 100000 1e+06

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Dataset size (tuples)

GUIDE
GUIDE(S)

SECRET
SECRET(O)

Figure 5: Running time (in seconds) of GUIDE, GUIDE with 0.01 of point as split points, SECRET and
SECRET with oblique splits for synthetic dataset 3DSin (3 continuous attributes).

Size GUIDE GUIDE(S) SECRET SECRET(O)

250 0.09 0.07 0.47 0.43
500 0.17 0.14 0.87 0.92

1000 0.36 0.28 1.85 1.83
2000 1.12 0.80 3.58 3.69
4000 2.90 2.38 7.33 7.36
8000 10.46 8.43 13.77 14.05

16000 42.16 33.09 27.80 28.68
32000 194.63 123.63 56.87 58.01
64000 1082.70 533.16 122.26 124.60

128000 4464.88 1937.94 223.42 222.75
256000 18052.16 8434.33 460.12 470.68 0.01

0.1

1

10

100

1000

10000

100000

100 1000 10000 100000 1e+06

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Dataset size (tuples)

GUIDE
GUIDE(S)

SECRET
SECRET(O)

Figure 6: Running time (in seconds) of GUIDE, GUIDE with 0.01 of point as split points, SECRET and
SECRET with oblique splits for synthetic dataset Fried (11 continuous attributes).

