Online generation of profile association rules

Charu C. Aggarwal
T.J. Watson Research Center
Yorktown Heights, NY 10598

charu@watson.ibm.com

Abstract

The results discussed in this paper are relevant to a
large database consisting of consumer profile informa-
tion together with behavioral (transaction) patterns.
The focus of this paper is on the problem of online
mining of profile association rules in this large data-
base. The profile association rule problem is closely re-
lated to the quantitative association rule problem. We
show how to use multidimensional indexing structures
in order to perform the mining. The use of multidimen-
sional indexing structures to perform profile mining
provides considerable advantages in terms of the ability
to perform very generic range based online queries.

Introduction

Association rules have recently been recognized as an
important tool for knowledge discovery in databases.
The problem of discovering association rules was first
investigated in pioneering work in (Agrawal, Imielin-
ski, et. al. 1993). Here we examine a database of
records which consist of both customer profile (such as
salary and age) and behavior (such as buying decision)
information.!

The association rule problem was originally proposed
for the case of binary itemset data (Agrawal, Imielinski,
et. al. 1993). The intuitive implication of the associa-
tion rule X = Y is that a presence of the set of items
X in a transaction also indicates a strong possibility
of the presence of the itemset Y. The measures used
in order to evaluate the strength of the rule are sup-
port and confidence. The support of a rule X = Y is
the fraction of transactions which contain both X and
Y. The confidence of a rule X = Y is the fraction of
transactions containing X which also contain Y.

A considerable amount of research effort (Agrawal
and Srikant 1994) (Savasere et. al. 1995) has been
devoted to the problem of speeding up the itemset
method for finding association rules from very large sets
of transaction data. Several variations of this problem
have been discussed in (Han and Fu 1995) (Srikant and

1 Copyright ©1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Zheng Sun
Duke University,
Durham, NC-27706
sunz@cs.duke.edu

Philip S. Yu
T.J. Watson Research Center
Yorktown Heights, NY 10598
psyu@watson.ibm.com

Agrawal 1995) (Srikant and Agrawal 1996). The quan-
titative association rule problem (Srikant and Agrawal
1996) is a generalization of the problem of discover-
ing association rules on sales transaction data, in which
both categorical and quantitative attributes are al-
lowed.

In this paper, we examine association between cus-
tomer profile information and behavior information, re-
ferred to as profile association rules. The left hand side
of the rules consists of quantitative attributes corre-
sponding to customer profile information. Examples of
such attributes are age and salary. The right hand side
of the rules consists of binary or categorical attributes
corresponding to customer behavior information. Ex-
amples of such attributes are buying beer or diapers.
The objective of mining profile association rules is to
identify customer profile for target marketing. Thus,
profile association rules are a special case of quantita-
tive association rules. It is the object of the paper to
use this special structure in order to provide online min-
ing capabilities. Furthermore, we will also show how to
provide merged rules for different combinations of at-
tributes in the consequent. We shall first describe an
operator called “|” which indicates a combination of the
behavioral attributes.

Let C correspond to a customer profile of quan-
titative attributes and b1...5; correspond to behav-
ioral attributes assuming values vy...v;. The rule
C = by = v1]bs = v2|...|bx = vp is true at a given
level of support and confidence if and only if all of the
rules C => b; — v; for all 2 € {1,...k} are true at that
level of support and confidence. Thus, C represents the
common profile of people who exhibit all of the behav-
iors b; = w; for all 7 € {1,...k}. Note that if the set
of rules C; = b; = v; holds for all 2 € {1,...,k}, then
the rule ﬂfIIC’,- = b1 = vilb2 = wa|...|br = vi may
not necessarily hold. Thus, a straightforward postpro-
cessing after finding rules for individual behavior types
does not solve the above problem.

The rule C = by = v1|bz = va|...|bx = vi is different
from the rule C = b; = v1,by = vg,..., b, = v in that
the former tries to find the common profile of people
exhibiting a set of behaviors, while the latter tries to

KDD-98 129

find the profile of the people such that each of them
exhibit this set of behaviors. Often, enough support
for the latter rule may not be present for the case of
sparse behavioral data, while in fact the profile set C
may strongly imply that set of behaviors.

We discuss a framework for online mining of profile
association rules which provides the capability to issue
queries with different sets of parameters such as sup-
port/confidence levels, profile ranges, and combinations
of behavioral attributes. Thus, this method also shows
how to integrate an OLAP environment with the prob-
lem of finding profile association rules. We shall see in
the empirical section that the times for query responses
are almost instantaneous for large amounts of data.

Description of the algorithm

We create a multidimensional index on the profile at-
tributes of the data. This data structure was proposed
by Guttman (Guttman 1984) for efficient retrieval of
multidimensional data. The particular variant of index
trees which we shall use for the purpose of our algo-
rithm is the S-Tree (Aggarwal, Wolf et. al. 1997). The
support of a node is equal to the fraction of data points
which are encapsulated by the minimum bounding rec-
tangle of that node. We call a node of the index tree to
be primary if its support is above a preprocessing para-
meter called the primary threshold. Otherwise the node
is referred to as secondary. Thus, the upper levels of the
tree contain primary nodes, while the lower levels con-
tain secondary nodes. At the lowest level, the secondary
nodes point to the raw transactions. This preprocess-
ing structure is designed in order to answer queries for
which the support is above the primary threshold.? We
store the following data at each node:

(1) We store the support of each node.

(2) For each of the behavioral attributes i, we store the
support of particular values of behavioral attributes in
the corresponding minimum bounding rectangle of the
node provided that they are above the primary thresh-
old. If the data is skewed and sparse, then we expect to
keep only a few entries for each node. No behavioral in-
formation is maintained in the secondary nodes except
at the leaf level which contain the individual transac-
tions.

2The issue of limitation in the number of addressable
queries is a pervasive one for most OLAP methods using the
preprocess-once-query-many paradigm. In this case, this is
not necessarily a major constraint, since online queries are
expected to generate only a small number of rules which can
be assimilated by an end user. We shall see later that for a
primary threshold of p, there are only at most 2/p. primary
nodes. Thus, low enough primary threshold values can be
chosen so that enough storage space would be available to
store the behavioral information for these nodes. The use
of a primary threshold for online generation of association
rules was first introduced in (Aggarwal & Yu 1998).

130 Aggarwal

Algorithm BasicMining(T, (b1, v1), ..., (bx,vr))
begin
while any unvisited large node n exists do
begin
pick the next unvisited large node n in breadth first
search order
if node n is concentrated
Generate rule B(n) = by = vi|...|bx = vs

end;

end

Figure 1: The basic mining algorithm

An important difference with the traditional multidi-
mensional index is that the fanout of the nodes are not
constant. All primary nodes have just two children.
This ensures that a maximum amount of support in-
formation is preserved, since the support of each node
reduces by a factor of two with depth of the nodes. For
secondary nodes, the fanouts are chosen so that they are
packed as compactly as possible.®> The binary fanouts
at the higher level nodes do not lead to storage ineffi-
ciency as in regular R-Trees, because of the fact that
the overall compactness is decided by the fanouts at the
lower level secondary nodes which are more numerous.
Another issue is the impact of the binary nature of the
higher level primary nodes on the depth of the tree.
When the primary threshold is p., the disjoint nature
of nodes for point data (Aggarwal, Wolf et. al. 1997)
ensures that the total number of nodes at the lowest
level of primary nodes is 1/p.. Thus, the total number
of primary nodes in the binary levels of the index tree is
2/pe. The depth of the subtree comprising the primary
nodes is log, (1/p.). Since most of the limited number
of primary nodes can be main memory resident, this
does not lead to inefficiency at the time of retrieval.

Consider a user query for a set of behavior-value
pairs (b1, v1), (b2,v2)...(br,vr). We define a node of
the index tree to be large with respect to the behavior-
value pairs (by,v1),...(bx,vx) at minimum support s if
for each 7 € {1,...,k} the number of points satisfying
b; = v; in that node is at least a fraction s of the total
number of points.

A node of the index tree is defined to be concentrated
at minimum confidence ¢ with respect to the behavior-
value pairs (by,v1), (b2, v2),...(bg,vy) if for each ¢ €
{1,...,k} at least a fraction ¢ of the points in that
node satisfy b; = v;.
A node of the index tree is said to be diluted at minimum
confidence ¢ with respect to the behavior-value pairs
(b1,v1),...(br, ve) if and only if it is not concentrated.

The basic mining algorithm traverses the index tree,

$An exact algorithm which can construct an index struc-
ture with differing fanouts at upper and lower level nodes is
discussed in (Aggarwal, Wolf et. al. 1997). The modifica-
tion to the algorithm in order to incorporate the information
about the behavioral attributes is relatively straightforward.

Suppon=30%%

9 Confidence=30%
Support=14% Support=16%4

Confidence=25% 3 8 Confidence=35%
2 4

7 Support=10%

Confidence=29%3
Support=3% Support=11% Support=6%
Confidence=5% Confidence=80% Confidenoe=51%4

; ¢
!

. Support=1%
@ Support=9% ppox i .
Confidence=55% Confidence=5%

64K
60 yfiintiihatbadbeiindiiadii | 9
N b orm— = == — - o
Age ! 4 :
40| 8
1 L é/ :
') e)Y '
301, < 2 AR I
4oy /:/:_ gt it
20| ! i : i
' 1 7) 6 i
' 300 [
______________ Il T T e e i<t
0
0 20K 40K 60K 80k
Salary

Figure 2: An example of the rule tree

and finds the nodes which are both large and concen-
trated. The rules from the bounding rectangles of these
nodes are generated. Thus, the basic mining algorithm
needs to use only the behavioral information at the pri-
mary nodes. The algorithm is illustrated in Figure 1.
Consider the example illustrated in Figure 2. For the
purpose of notation, we shall denote the bounding rec-
tangle of node ¢ by B(i). We wish to find the pro-
file association rules at a minimum support of 1% and
minimum confidence of 50%. The behavioral attribute
which is investigated is that for first-time home-buyers.
In that case, the rules generated would be as follows:
B(2) = FirstTimeHomeBuyer

B(4) = FirstTimeHomeBuyer

B(5) = FirstTimeHomeBuyer

As we can see, the contiguous shaded region of Figure
2(b) gets fragmented into a number of smaller rectan-
gular regions, each of which corresponds to a generated
rule. This is because there is no single rectangular re-
gion which approximately overlaps the entire shaded re-
gion. The purpose of the merging algorithm is to merge
these fragmented regions into larger regions, and con-
struct a rule-tree which provides the user with a better
hierarchical tree-like view of the association rules gen-
erated. In this case, it will be necessary to use the the

Algorithm Mining WithMerging(LargeNodesTree : T,
(bl N 1}1) e (b}‘, 'Uk))
begin

{ Tree T is a copy of the subtree of the
original index tree containing only the large nodes }
for each large node = in postorder do
begin
case
(1) Node 7 is concentrated:
Generate rule B(n) = by = v1|...|bx = vs
(2) Node n has no children and is diluted:
Delete node n
(8) Node n has one child p and is diluted:
Delete node n. Set the parent of p to parent of n
(4) Node n has two children p; and p»
and is diluted:
n' =bounding(p1, p2); replace node = by »'.
if n’ is concentrated then
generate rule B(n') = by = v1]... by = v
end;
end

Algorithm bounding(p:, p2)

begin

return the minimum bounding rectangle of
all transactions in p; and pz, with

updated values of support and confidence
end;

Figure 3: Generating rule trees

secondary nodes in order to recalculate the support of
the merged regions.

The merging algorithm constructs a new rule tree by
taking a copy of the index tree of large nodes and per-
forming appropriate modifications on it. The idea is
to delete those nodes which do not correspond to any
rule, and then restructure the remaining nodes in the
tree, to result in some new merged rules. This rule
tree is specific to a user-specified set of behavior-value
pairs (b1, v1), (b2,v2),...,(bk, vx). The value of & can
vary from 1 to the total number of behavioral attrib-
utes. Thus, the rule tree can be built for any subset of
behavioral attributes with corresponding values. As in
the case of the basic mining algorithm, a node n in the
rule tree contains the rule B(n) = by = v1]...|bx = vy
if and only if it is large and concentrated.

The algorithm works in a bottom-up fashion, by vis-
iting the large nodes of the index tree in postorder. We
assume that the tree T in the description of the algo-
rithm in Figure 3 consists of only those nodes which
are large. A node is modified or deleted only if it is
diluted. If a node is diluted and has no large chil-
dren then it is deleted. As a result of such deletions
some node p will have only one child. In that case, the
single child of that node replaces it. As a result, ths
node will no longer be the minimum bounding rectan-
gle of its children. When p is visited, (note that the
postorder sequence of visiting the nodes ensures that

KDD-98 13t

all descendants of p are visited before p is visited) its
minimum bounding rectangle is readjusted to that of
its children if it is diluted. This readjustment may
result in p changing from being diluted to being con-
centrated. It is precisely these kinds of re-adjustments
which result in larger concentrated regions. Thus, the
“merging” algorithm proceeds by a series of deletions
and re-adjustment operations on the minimum bound-
ing rectangles of the nodes. The algorithm is illustrated
in Figure 3. Note that the readjustment operation (in-
dicated by the algorithm bounding(pi, p3)) requires a
recalculation of the support and confidence of the be-
havioral attributes which are being queried. This re-
quires a range query using the bounding rectangle of
p1 and py on the original index tree. Typically, the
support may be calculated using the entries for the be-
havioral attributes at the primary nodes. However, for
some of the nodes intersected by this bounding rectan-
gle, the corresponding entries are not present because
of the primary threshold criterion. For those branches
of the index tree, it may be necessary to access the sec-
ondary nodes up to the individual data points in order
to recalculate support. The overhead for this opera-
tion is relatively small, since such branches are few in
number if any, and most support information can be
obtained directly from p; and p,.

Empirical Results

We generated N data points, each having ! antecedent
and m behavioral attributes. For the purpose of the ex-
periments, we use behavioral attributes, each of which
may assume values from the set {1,...,k}. We shall
assume that the m behavioral attributes are denoted
by b1, b2, ...b,. Each of the ! profile attributes are de-
noted by Cy, Ca,...,C;. We normalize the profile data
in such a way that each of the attributes lies in the
range [0, 1}. The individual data points are generated
by first deciding the values of the profile attributes, and
then deciding the values of the behavioral attributes.
The profile attribute values were generated by
spreading the data points randomly over the profile sub-
space. Then, the value of the behavioral attributes are
set. For each of the m behavioral attributes (say the
ith behavioral attribute b;), we pick a random num-
ber between 1 and k (say 7). We generate a hypercube
in the profile space, such that each side has a length
which is distributed uniformly randomly in the range
[0,0.2]. For all points which lie inside this hypercube,
a fraction f of points must satisfy the consequent con-
dition b; = j. The actual points which are chosen are
arrived at by randomly picking off a fraction f of the
points which lie inside the hypercube. Then we set the
value of the attribute b; to j for these points. The re-
maining points inside the hypercube may assume any
of the values for b; from 1 to &k except j. The points
outside the hypercube may assume any value from 1
to k. This method of generating hypercubic regions of
concentration is useful in evaluating the quality of the

132 Aggarwal

rules generated.

For the purpose of this experiment, we choose | = 2,
m = 4, and the value of f is chosen uniformly ran-
domly in the range [0.7,0.95]. We ran the experiments
for cases when the number of data points N ranged
from 5000 to 1,000,000. We tested both the “basic
mining” and the “mining with merging” versions of the
algorithm. The following were the performance mea-
sures that we used:

(1) Speed of execution: We tested the time it took
for the preprocessing and the online processing parts of
the algorithm. As we see from Figure 4(a), the time
for setting up the multidimensional index tree varies
linearly with the size of the data. The online response
times for a support of 0.8% on a database with 100, 000
points are illustrated in Figure 4(b). These times are so
small as to be practically instantaneous, and are con-
sistent with the hypothesis that the time required is of
the order of 1/s, where s is the minimum support.

(2) Rule Quality: For each behavioral concentration,
let us define nearest rule as the rule in the final rule tree
which matches most closely with the given concentra-
tion in behavior. In order to assess the quality of the
rules generated, we tested how well this rule overlapped
with the true regions of behavioral concentration. Let
us consider Ngtuar be the number of data points in a
rectangular concentration corresponding to the conse-
quent of a given rule, Let Nyjscoperea be the number of
data points in this rectangle which were actually found
by the rule, and let Nyqp,. be the number of data points
outside the rectangle which are mistakenly found be the
rule. Note that Ng;scovereq 1 always bounded above by
Nactuat- Thus, we have two measures in order to decide
the quality of a rule:

Ndiscovered (1)

Incompleteness Ratio =1 —
Nactual

N/a.lse (2)

actual

Spurious Ratio =

The incompleteness and spurious ratios are illustrated
in Figures 4 (c) and (d). These ratios are small for rea-
sonably low support values. Given the quick response
times of the algorithm in the range of such support val-
ues, it is practically possible to get this high quality
of performance for most online queries, The process
of merging improved both the incompleteness and spu-
rious ratios. This is because of the better bounding
rectangles obtained after the process of deletions and
readjustments.

Conclusions and Summary

In this paper, we discussed the problem of online mining
of profile association rules. Such rules may be very use-
ful in developing relationships between consumer pro-
files and behavioral information. We discussed how to
use multidimensional indexing to generate profile asso-
cation rules in online fashion. An additional advantage

00

ONLINE MINING TIME N SECONOS
o A S
g o o o
2 R B B B B

o
2

0. 02 03 04 05
MU SUPPORT N PERCENT

0——0 BASIC MINING
0—-—-0 MNING WITH MERGING

)
\
\
\
\

&
\
b

INCOMPLETENESS RATIO (%)
3 8

.
e
’

*

>

'

o 02 04 06 08 1
WINRBAM SUPPORT I PEACENT

12 14 15

0——© BASIC MRENG
O—-—-0 MENING WITH LERGING

-]
\

8
\

®
\

SPURIOUS RATIO (%)
& 8

S
N
Y
N

w
\
°

©

o

02 2} 06 08 1
MRERAUIA SUPPORT IN PERCENT

Figure 4: (a) Setup Time for Multidimensional Index
Tree (b) Variation of online execution time (c) missing
ratio (d) spurious ratio with minimum support

of using indexing structures is that it is possible to spec-
ify specific profile ranges and behavioral attributes for
which it is desired to find the rules.

References

Aggarwal C. C., and Yu P. S. 1998. Online Generation
of Association Rules. Proceedings of the International
Conference on Data Engineering, Orlando, Florida.

Aggarwal C. C., Wolf J. L., Yu P. S., and Epel-
man M. 1997. The S-Tree: An efficient index for
multi-dimensional objects. Proceedings of the Inter-
national Symposium on Spatial Databases. pages 350~
370, Berlin, Germany.

Agrawal R., Imielinski T., and Swami A. 1993. Min-
ing association rules between sets of items in very large
databases. Proceedings of the ACM SIGMOD Confer-
ence on Management of data, pages 207-216, Wash-
ington D. C.

Agrawal R., and Srikant R. 1994. Fast Algorithms for
Mining Association Rules in Large Databases. Pro-
ceedings of the 20th International Conference on Very
Large Date Bases, pages 478-499.

Guttman A. 1984. R-Trees: A Dynamic Index Struc-
ture for Spatial Searching. Proceedings of the ACM
SIGMOD Conference, 47-57.

Han J. and Fu Y. 1995. Discovery of Multiple-Level
Association Rules from Large Databases. Proceedings
of the 21st International Conference on Very Large
Data Bases. Zurich, Switzerland, pages 420-431.

Mannila H., Toivonen H., and Verkamo A. 1. 1994.
Efficient algorithms for discovering association rules.
AAAI Workshop on Knowledge Discovery in Data-
bases, pages 181-192, Seattle, Washington.

Savasere A., Omiecinski E., and Navathe S. 1995. An
Efficient Algorithm for Mining Association Rules in
Large Data Bases. Proceedings of the 21st Interna-
tional Conference on Very Large Data Bases. Zurich,
Switzerland, pages 432-444.

Srikant R., and Agrawal R. 1995. Mining Generalized
Association Rules. Proceedings of the 21st Interna-
tional Conference on Very Large Data Bases, pages
407-419.

Srikant R., and Agrawal R. Mining quantitative asso-
ciation rules in large relational tables. Proceedings of
the 1996 ACM SIGMOD Conference on Management
of Data. Montreal, Canada.

KDD-98 133

