
Frequent Term-Based Text Clustering

Florian Beil
Institute for Computer Science Ludwig-

Maximilians-Universitaet
Muenchen

80538 Munich, Germany

beil@informatik.uni-
muenchen.de

Martin Ester
School of Computing Science

Simon Fraser University
Burnaby BC

Canada V5A 1S6

ester@cs.cfu.ca

Xiaowei Xu
Information and Comunications

Corporate Technology
Siemens AG

81730 Munich, Germany

Xiaowei.Xu@mchp.siemens.de

ABSTRACT
Text clustering methods can be used to structure large sets of text
or hypertext documents. The well-known methods of text
clustering, however, do not really address the special problems of
text clustering: very high dimensionality of the data, very large
size of the databases and understandability of the cluster
description. In this paper, we introduce a novel approach which
uses frequent item (term) sets for text clustering. Such frequent
sets can be efficiently discovered using algorithms for association
rule mining. To cluster based on frequent term sets, we measure
the mutual overlap of frequent sets with respect to the sets of
supporting documents. We present two algorithms for frequent
term-based text clustering, FTC which creates flat clusterings and
HFTC for hierarchical clustering. An experimental evaluation on
classical text documents as well as on web documents
demonstrates that the proposed algorithms obtain clusterings of
comparable quality significantly more efficiently than state-of-the-
art text clustering algorithms. Furthermore, our methods provide
an understandable description of the discovered clusters by their
frequent term sets.

Keywords
Clustering, Frequent Item Sets, Text Documents.

1. INTRODUCTION
The world wide web continues to grow at an amazing speed. On
the other hand, there is also a quickly growing number of text and
hypertext documents managed in organizational intranets,
representing the accumulated knowledge of organizations that
becomes more and more important for their success in today’s
information society. Due to the huge size, high dynamics, and
large diversity of the web and of organizational intranets, it has
become a very challenging task to find the truly relevant content
for some user or purpose. For example, the standard web search
engines have low precision, since typically a large number of

irrelevant web pages is returned together with a small number of
relevant pages. This phenomenon is mainly due to the fact that
keywords specified by the user may occur in different contexts,
consider for example the term "cluster". Consequently, a web
search engine typically returns long lists of results, but the user, in
his limited amount of time, processes only the first few results.
Thus, a lot of truely relevant information hidden in the long result
lists will never be discovered. Text clustering methods can be
applied to structure the large result set such that they can be
interactively browsed by the user. Effective knowledge
management is a major competitive advantage in today’s
information society. To structure large sets of hypertexts available
in a company’s intranet, again methods of text clustering can be
used.

Compared to previous applications of clustering, three major
challenges must be addressed for clustering (hyper)text databases
(see also [1]):

• Very high dimensionality of the data (~ 10,000 terms /
dimensions): this requires the ability to deal with sparse
data spaces or a method of dimensionality reduction.

• Very large size of the databases (in particular, of the
world wide web): therefore, the clustering algorithms
must be very efficient and scalable to large databases.

• Understandable description of the clusters: the cluster
descriptions guide the user in the process of browsing
the clustering and, therefore, they must be
understandable also to non-experts.

A lot of different text clustering algorithms have been proposed in
the literature, including Scatter/Gather [2], SuffixTree Clustering
[3] and bisecting k-means [4]. A recent comparison [4]
demonstrates that bisecting k-means outperforms the other well-
known techniques, in particular hierarchical clustering algorithms,
with respect to clustering quality. Furthermore, this algorithm is
efficient. However, bisecting k-means like most of the other
algorithms does not really address the above mentioned problems
of text clustering: it clusters the full high-dimensional vector
space of term frequency vectors and the discovered means of the
clusters do not provide an understandable description of the
documents grouped in some cluster.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGKDD 02 Edmonton, Alberta, Canada
Copyright 2002 ACM 1-58113-567-X/02/0007 ...$5.00.

In this paper, we present a novel approach which uses frequent
item (term) sets for text clustering. Frequent term sets are sets of
terms co-occurring in more than a threshold percentage of all
documents of a database. Such frequent sets can be efficiently
discovered using algorithms such as Apriori [5]. This approach
allows us to reduce drastically the dimensionality of the data, is
efficient even for very large databases, and provides an
understandable description of the discovered clusters by their
frequent term sets.

The rest of this paper is organized as follows. Section 2 briefly
introduces the general approach of text clustering including
preprocessing and discusses the well-known algorithms. In
section 3, we introduce our novel method of frequent term-based
text clustering and present the algorithms FTC and HFTC. An
experimental evaluation on real text data was conducted, and
section 4 reports its major results. Section 5 summarizes the paper
and outlines some interesting directions for future research.

2. OVERVIEW ON TEXT CLUSTERING
All methods of text clustering require several steps of
preprocessing of the data. First, any non-textual information such
as HTML-tags and punctuation is removed from the documents.
Then, stopwords such as “I”, “am”, “and” etc. are also removed.
A term is any sequence of characters separated from other terms
by some delimiter. Note that a term may either be a single word or
consist of several words. Typically, the terms are reduced to their
basic stem applying a stemming algorithm.

Most text clustering algorithms rely on the so-called vector-space
model. In this model, each text document d is represented by a
vector of frequencies of the remaining m terms:

),,(1 mtftfd K= .

Often, the document vectors are normalized to unit length to allow
comparison of documents of different lengths. Note that the
vector-space has a very high dimensionality since even after
preprocessing there are typically still several thousands of terms,
in many text databases you have to deal with approximately
10,000 terms. Due to the high dimensionality, most frequencies
are zero for any single document.

To measure the similarity between two documents d1 and d2

represented in the vector space model, typically the cosine
measure is used which is defined by the cosine of the angle
between the two vectors:

21

21
21

)(
),(

dd

dd
ddsimilarity

⋅
•=

where • denotes the vector dot product and denotes the

length of a vector.

The standard clustering algorithms can be categorized into
partitioning algorithms such as k-means or k-medoid and
hierarchical algorithms such as Single-Link or Average-Link [6].
Scatter/Gather [2] is a well-known algorithm which has been
proposed for a document browsing system based on clustering. It
uses a hierarchical clustering algorithm to determine an initial
clustering which is then refined using the k-means clustering

algorithm. Many variants of the k-means algorithm have been
proposed for the purpose of text clustering, e.g. [7], in particular
to determine a good initial clustering. A recent study [4] has
compared partitioning and hierarchical methods of text clustering
on a broad variety of test datasets. It concludes that k-means
clearly outperforms the hierarchical methods with respect to
clustering quality. Note that k-means is also much more efficient
than hierarchical clustering algorithms. Furthermore, a variant of
k-means called bisecting k-means is introduced, which yields even
better performance. Bisecting k-means uses k-means to partition
the dataset into two clusters. Then it keeps partitioning the
currently largest cluster into two clusters, again using k-means,
until a total number of k clusters has been discovered.

The above methods of text clustering algorithms do not really
address the special challenges of text clustering: they cluster the
full high-dimensional vector-space and the centroids / means of
the discovered clusters do not provide an understandable
description of the clusters. This has motivated the development of
new special text clustering methods which are not based on the
vector space model. SuffixTree Clustering [3] is a first method
following this approach. Its idea is to form clusters of documents
sharing common terms or phrases (multi-word terms). Basic
clusters are sets of documents containing a single given term. A
cluster graph is built with nodes representing basic clusters and
edges representing an overlap of at least 50% between the two
associated basic clusters. A cluster is defined as a connected
component in this cluster graph. The drawback of SuffixTree
Clustering is that, while two directly neighboring basic clusters in
the graph must be similar, two distant nodes (basic clusters)
within a connected component do not have to be similar at all.
Unfortunately, Suffix Tree Clustering has not been evaluated on
standard test data sets so that its performance can hardly be
compared with other methods.

3. FREQUENT TERM-BASED TEXT
CLUSTERING
Frequent item sets form the basis of association rule mining.
Exploiting the monotonicity property of frequent item sets (each
subset of a frequent item set is also frequent) and using data
structures supporting the support counting, the set of all frequent
item sets can be efficiently determined even for large databases.
Many different algorithms have been developed for that task,
including Apriori [5]. See [8] for an overview on association rule
mining. Frequent item sets can also be used for the task of
classification. [9] introduces a general method of building an
effective classifier from the frequent item sets of a database. [10]
presents a modification of this approach for the purpose of text
classification.

A frequent item-based approach of clustering is promising
because it provides a natural way of reducing the large
dimensionality of the document vector space. Since we are
dealing not with transactions but with documents, we will use the
notion of term sets instead of item sets. A term is any
preprocessed word within a document, and a document can be
considered as a set of terms occurring in that document at least
once. The key idea is not to cluster the high-dimensional vector
space, but to consider only the low-dimensional frequent term sets
as cluster candidates. A well-selected subset of the set of all

frequent term sets can be considered as a clustering. Strictly
speaking, a frequent term set is not a cluster (candidate) but only
the description of a cluster (candidate). The corresponding cluster
itself consists of the set of documents containing all terms of the
frequent term set. Unlike in the case of classification, there are no
class labels to guide the selection of such a subset from the set of
all frequent term sets. Instead, we propose to use the mutual
overlap of the frequent term sets with respect to their sets of
supporting documents (the clusters) to determine a clustering. The
rationale behind this approach is that a small overlap of the
clusters will result in a small classification error, when the
clustering is later used for classifying new documents. In this
section, we introduce the necessary definitions and present two
algorithms for frequent term-based text clustering.

3.1 Definitions
Let },,{ 1 nDDD K= be a database of text (hypertext) documents

and T be the set of all terms occurring in the documents of D.
Each document Dj is represented by the set of terms occurring in
Dj, i.e. TD j ⊆ . Let minsupp be a real number,

1minsupp0 ≤≤ . For any set of terms ,, TSS ⊆ let cov(S)

denote the cover of S, the set of all documents containing all terms
of S, i,e. the set of all documents supporting S. More precisely,

}|{)cov(jj DSDDS ⊆∈= .

Let },,{ 1 kFFF K= be the set of all frequent term sets in D with

respect to minsupp, the set of all term sets contained in at least
minsupp of the D documents, i.e.

|}|minsupp|)cov(||{ DFTFF ii ⋅≥⊆=

A frequent term set of cardinality k is called a frequent k-term set.
The cover of each element Fi of F can be regarded as a cluster
(candidate).

A clustering is any subset of the set of all subsets of the database
D such that each document of D is contained in at least one of the
sets (clusters). The clusters of a clustering may or may not
overlap. We define a clustering description as a subset CD of F
which covers the whole database, i.e. a clustering description

}|{ IiFCD i ∈= has to satisfy the condition DFi
Ii

=
∈

)cov(U .

We want to determine clusterings with a minimum overlap of the
clusters. For an efficiently to calculate measure of the overlap of a
given cluster (description) Fi with the union of the other cluster
(description)s, we use the number of frequent term sets supported
by the documents covered by Fi,. Let f j denote the number of all
frequent term sets supported by document Dj , i.e.

|}|{| jiij DFRFf ⊆∈=

where | | denotes the cardinality of some set and R denotes a
subset of F, the subset of remaining frequent term sets, i.e. the
difference of F and the set of the already selected frequent term
sets. This definition is motivated by the fact that our clustering
algorithm will be a greedy algorithm selecting one next cluster
(description, i.e. frequent term set) at a time from the set R of

remaining frequent term sets. R is step by step reduced by the next
selected cluster description.

The overlap of a cluster Ci with the other clusters is the smaller,
the smaller the f j values of its documents are. Ideally, all its
documents support no other cluster candidates, i.e. f j = 1 for all
documents of Ci, and then Ci has an overlap of 0 with the other
cluster candidates. Thus, we define the standard overlap of a
cluster Ci, denoted by SO(Ci), as the average f j value (-1) of a
cluster, i.e.

||

)1(

)(
i

CiDj
j

i C

f

CSO
∑

∈

−
= .

The standard overlap is easy to calculate but it suffers from the
following effect. Due to the monotonicity property of frequent
term sets (each subset of a frequent term set is also frequent), each
document supporting one term set of size m also supports at least
m-1 other term sets, one of each the sizes m-1, m-2, . . ., 1. Thus, a
cluster candidate described by many terms tends to have a much
larger standard overlap than a cluster candidate described by only
a few terms. Consequently, the standard overlap favors frequent
term sets consisting of a very small number of terms.

An alternative definition of the overlap, based on the entropy,
minimizes this effect. The entropy measures the distribution of the
documents supporting some cluster over all the remaining cluster
candidates. While fj measures the distribution of document Dj

over the cluster candidates (frequent term sets),

j
j f

p
1=

represents the probability that document Dj belongs to one
specific cluster candidate. pj = 1 if fj = 1, i.e. if Dj is contained in
only 1 cluster candidate. On the other hand, pj becomes very
small for large fj values. We define the entropy overlap of cluster
Ci, denoted by EO(Ci), as the distribution of the documents of
cluster Ci over all the remaining cluster candidates, i.e.

∑
∈

⋅−=
CiDj jj

i ff
CEO)

1
ln(

1
)(.

The entropy overlap becomes 0, if all documents Dj of Ci do not
support any other frequent term set (fj = 1), and it increases
monotonically with increasing fj values. As our experimental
evaluation will demonstrate, the entropy overlap yields cluster
descriptions with significantly more terms than the standard
overlap which results in a higher clustering quality.

3.2 Two Clustering Algorithms
We have defined a (flat) clustering as a subset of the set of all
subsets of the database D, described by a subset of the set F of all
frequent term sets, that covers the whole database. To discover a
clustering with a minimum overlap of the clusters, we follow a
greedy approach. This approach is motivated by the inherent
complexity of the frequent term-based clustering problem: the
number of all subsets of F is)2(||FO , and, therefore, an

exhaustive search is prohibitive. In this section, we present two
greedy algorithms for frequent term-based clustering.

FTC(database D, float minsup)

SelectedTermSets:= {};

n:= |D|;

RemainingTermSets:=
DetermineFrequentTermsets(D, minsup);

while |cov(SelectedTermSets)| ≠ n do

for each set in RemainingTermSets do

Calculate overlap for set;

BestCandidate:=element of Remaining
TermSets with minimum overlap;

SelectedTermSets:= SelectedTermSets
∪ {BestCandidate};

RemainingTermSets:= RemainingTermSets
-{BestCandidate};

Remove all documents in
cov(BestCandidate) from D and from the
coverage of all of the
RemainingTermSets;

return SelectedTermSets and the cover
of the elements of SelectedTermSets;

• Algorithm FTC (Frequent Term-based Clustering):
determines a flat clustering, i.e. an unstructured set of
clusters covering the whole database.

• Algorithm HFTC (Hierarchical Frequent Term-based
Clustering): determines a hierarchical clustering, i.e. a
graph-structured clustering with a subset relationship
between each cluster and its predecessors in the
hierarchy.

Algorithm FTC works in a bottom-up fashion. Starting with an
empty set, it continues selecting one more element (one cluster
description) from the set of remaining frequent term sets until the
entire database is contained in the cover of the set of all chosen
frequent term sets (the clustering). In each step, FTC selects the
remaining frequent term set with a cover having the minimum
overlap with the other cluster candidates. Note that the documents
covered by the selected frequent term set are removed from the
database D and, in the next iteration, the overlap for all remaining
cluster candidates is recalculated with respect to the reduced
database. Figure 1 presents algorithm FTC in pseudo-code.
DetermineFrequentTermsets is any efficient algorithm
for finding the set of all frequent term sets in database D with
respect to a minimum support of minsup.

Figure 1: Algorithm FTC

Figure 2 illustrates the first step of algorithm FTC on a sample
database consisting of 16 documents. In this step, the cluster
described by {sun, beach, fun} is selected because of its minimum
(entropy) overlap, and the documents D8, D10, D11, D15 are

removed from the database as well as from the remaining cluster
candidates.

frequent term set cluster candidate EO

{sun} {D1, D2, D4, D5, D6, D8,
D9, D10, D11, D13, D15}

2.98

{fun} {D1, D3, D4, D6, D7, D8,
D10, D11, D14, D15, D16}

3.0

(beach} {D2, D7, D8, D9, D10, D12,
D13, D14, D15}

2.85

{surf} {D1, D2, D6, D7, D10, D11,
D12, D14, D16}

2.73

{sun, fun} {D1, D4, D6, D8, D10, D11,
D15}

1.97

{fun, surf} {D1, D6, D7, D10, D11,
D16}

1.72

{sun, beach} {D2, D8, D9, D10, D11,
D15}

1.72

{sun, surf} {D1, D2, D6, D10, D11} 1.34

{fun, beach} {D7, D8, D10, D14, D15} 1.47

{beach, surf} {D2, D7, D10, D12, D14} 1.47

{sun, fun, surf} {D1, D6, D10, D11} 0.98

{sun, beach, fun} {D8, D10, D11, D15} 0.9

Figure 2: Illustration of Algorithm FTC

Note that algorithm FTC returns a clustering description and a
clustering. This clustering is non-overlapping. However,
algorithm FTC can easily be modified to discover an overlapping
clustering by not removing the documents covered by the selected
frequent term set from the database D.

Due to the monotonicity property, the frequent term sets form a
lattice structure: all 1-subsets of frequent 2-sets are also frequent,
all 2-subsets of frequent 3-sets are also frequent etc.. This
property can be exploited to discover a hierarchical frequent
term-based clustering. Algorithm HFTC (Hierarchical Frequent
Term-based Clustering) is based on the flat algorithm FTC and
applies it in a hierarchical way as follows:

• The algorithm FTC is applied not on the whole set F of
frequent term sets, but only to the set of all frequent
term sets of a single level, i.e. the frequent k-term sets.

• The resulting clusters are further partitioned applying
FTC on the frequent term sets of the next level, i.e.
using the frequent k+1-term sets. Note that for further
partitioning a given cluster, only those frequent k+1-
term sets are used which contain the frequent k-term set
describing that cluster.

Algorithm HFTC discovers a hierarchical clustering with an
empty term set in the root (covering the entire database), using
frequent 1-term sets on the first level, frequent 2-term sets on the
second level, etc. HFTC stops adding another level to the

{} {D1, . . ., D16}

{sun} {fun} {beach}

{D1, D2, D4, D5, {D1, D3, D4, D6, {D2, D7, D8,

D6, D8, D9, D10, D7, D8, D10, D11, D9, D10, D12,

D11, D13, D15} D14, D15, D16} D13,D14, D15}

{sun, fun} {sun, beach} {fun, surf} {beach, surf}

{D1, D4, D6, D8, {D2, D8, D9,

D10, D11, D15} D10, D11, D15}

{sun, fun, surf} {sun, beach, fun}

{D1, D6, D10, D11} {D8, D10, D11, D15}

hierarchical clustering, when there are no frequent term sets for
the next level. Furthermore, the successors of some cluster do not
have to cover the whole cluster if that is impossible due to a lack
of more frequent term sets of this level.

When using the original FTC algorithm, we generate a non-
overlapping hierarchical clustering. But when modifying FTC so
that it discovers an overlapping flat clustering, we can also
discover an overlapping hierarchical clustering. Our experimental
evaluation has shown that overlapping hierarchical clusterings are
clearly superior with respect to clustering quality, therefore HFTC
creates a hierarchical overlapping clustering. Figure 3 depicts a
part of a hierarchical clustering for our sample database. It
consists of three levels since the database does not contain any
frequent 4-term sets with respect to the chosen minsup value. The
edges denote subset-relationships between the connected clusters.

Figure 3: A hierarchical clustering of the sample database

4. EXPERIMENTAL EVALUATION
FTC and HFTC have been empirically evaluated on real text
corpora in comparison with two state of the art text clustering
algorithms, bisecting k-means [4] and k-secting k-means [7]. The
experiments were performed on a Pentium III PC with 400 MHz
clock speed and 256 MB of main memory. We chose java 1.2 as
the programming language because it allows fast and flexible
development. For a fair comparison, we implemented all
algorithms, FTC, HFTC and the k-means variants ourselves and
used identical classes whenever possible. For generating the
frequent term sets, we used a public domain implementation of

the basic Apriori algorithm [11]. In section 4.1, we describe the
test data sets. Sections 4.2 and 4.3 report the main experimental
results for FTC and HFTC, respectively.

4.1 Data Sets
To test and compare cluster algorithms pre-classified sets of
documents are needed. We used three different data sets which are
widely used in other publications and reflect the conditions in a
broad range of real life applications. These data sets are:

• Classic: Classic3 containes 1400 CRANFIELD documents
from aeronautical system papers, 1033 MEDLINE
documents from medical journals and 1460 CISI documents
from information retrieval papers. We obtained the data set
from ftp://ftp.cs.cornell.edu/pub/smart.

• Reuters: This test data set consists of 21578 articles from the
Reuters news service in the year 87
(http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.
html). Typically, only a subset of 8654 articles, uniquely
assigned to exactly one of these classes, is used for
evaluation and we follow this procedure.

• WAP: During the WebACE project [12], 1560 web pages
from the Yahoo! subject hierarchy were collected and
classified into 20 different classes. We obtained this dataset
from one of the authors, George Karypis.

A summary description of these data sets is given in Table 1.

Table 1. Test Data Sets

Data Set # Documents # Classes

Classic 3891 3

Reuters 8654 52

WAP 1560 20

4.2 Evaluation of FTC
To evaluate the quality of a flat, un-nested clustering we adopted
the commonly used entropy measure. Let C be some clustering,
i.e. a set of clusters, and },,{ 1 kKKK K= be the set of the true

classes of a database. The entropy of the clustering C, denoted by
E(C), is defined as

∑ ∑−=
jC i

ijij
j pp

D

n
CE)ln(

||
)(

where nj means the size of cluster Cj and pij the probability that a
member of Cluster Cj belongs to class Ki. The entropy measures
the pureness of the clusters with respect to the classes and returns
values in the interval [0...ln(|K|)]. The smaller the entropy, the
purer are the produced clusters.

Figure 5: Scalability of FTC w.r.t. number of documents

Figure 4 compares the entropy as well as the runtime for FTC,
bisecting k-means and 9-secting k-means for all three different
data sets. For the experiments on the Reuters data set, we used a
random sample of 4000 documents in order to speed-up the
experiments. In addition to the standard preprocessing (see
section 2), we performed a further step of term selection that is of
advantage for FTC as well as for the k-means type algorithms:
from the remaining terms in the corpus, we select the
numbofterms ones with the highest variance of their frequency
over all documents of the database. For a fair comparison, we had
to consider the effect that the entropy measure favors larger
numbers of clusters. Therefore, we measured clustering quality
and runtime with respect to the number of clusters, i.e. we always
compare clusterings with the same number of clusters for the
different algorithms. Recall that the number of clusters is not a
parameter of FTC, but depends on the minsup parameter.

In all experiments FTC yields a cluster quality comparable to that
of bisecting and 9-secting k-means. However, FTC is significantly
more efficient than its competitors on all test data sets. For
example, FTC outperforms the best competitor by a factor of 6 on
the Classic data (for 22 clusters), by a factor of 2 for the Reuters
data (for 50 clusters) and by a factor of almost 2 (and factor 4
compared to bisecting k-means) for the WAP data (for 20
clusters). Furthermore, FTC automatically generates a description
for the generated clusters while for the k-means type algorithms
this has to be done in a extra postprocessing step.

We performed a set of experiments to analyze the scalability of
FTC with respect to the database size. Figure 5 depicts the
runtime of FTC with respect to the number of documents on the
Reuters database. Even for the largest number of 7000 documents
the runtime is still in the order of a few minutes which is a large
improvement compared to other methods.

4.3 Evaluation of HFTC
To evaluate the clustering quality for hierarchical clustering
algorithms, typically the F-Measure is used [7], [4]. We treat each
cluster as if it were the result of a query and each class as if it
were the relevant set of documents for a query. We then calculate
the recall and precision of that cluster for each given class. More
specifically, for cluster Cj and class Ki, the recall R and precision
P are defined as: ||/),(, ijiji KnCKR = , and

||/),(, jjiji CnCKP = , respectively, where ni,j is the number

of members of class Ki in cluster Cj. The F-Measure of cluster Cj

and class Ki , denoted by),(ji CKF , is then defined as

(a) Classic (b) Reuters (c) WAP

Figure 4. Comparison on the (a) Classic, (b) Reuters and (c) WAP data sets

),(),(

),(*),(*2
),(

jiji

jiji
ji CKPCKR

CKPCKR
CKF

+
=

For a hierarchical clustering C, the F-Measure of any class is the
maximum value it attains at any node in the tree and an overall
value for the F-Measure is computed by taking the weighted
average of all values for the F-Measure as follows:

∑
∈

∈=
KKi

jiCC
i CKF

D

K
CF

j
)},({max)(.

The F-Measure values are in the interval [0..1] and larger F-
Measure values indicate higher clustering quality. We compared
HFTC with the hierarchical versions of bisecting k-means and 9-
secting k-means. The hierarchical algorithms do not have the
number of clusters as a parameter, and the F-Measure does not
have a similar bias as the entropy. Therefore, we obtain a single
clustering of each test database for each of the competitors. Table
2 reports the resulting F-Measure values.

Table 2. Comparison of the F-Measure

Data Set HFTC
bisecting
k-means

9-secting
k-means

Classic 0.50 0.81 0.56

Reuters 0.49 0.57 0.43

WAP 0.35 0.43 0.35

We observe that HFTC achieves similar values of the F-Measure
as 9-secting k-means. Bisecting k-means yields significantly better
F-Measure values than HFTC on all data sets. Note that the F-
Measure forms some average of the precision and recall which
favors non-overlapping clusterings. The two variants of k-means
generate such non-overlapping clusterings, but HFTC discovers
overlapping clusterings. However, overlapping clusters occur
naturally in many applications such as in the Yahoo! directory.

5. CONCLUSIONS
In this paper, we presented a novel approach for text clustering.
We introduced the algorithms FTC and HFTC for flat and
hierarchical frequent term-based text clustering.

Our experimental evaluation on real text and hypertext data sets
demonstrated that FTC yields a cluster quality comparable to that
of state-of-the-art text clustering algorithms. However, FTC was
significantly more efficient than its competitors on all test data
sets. Furthermore, FTC automatically generates a natural
description for the generated clusters by their frequent term sets.
HFTC generates hierarchical clusterings which are easier to
browse and more comprehendible than hierarchies discovered by
the comparison partners.

Finally, we would like to outline a few directions for future
research. We already mentioned that the integration of a more
advanced algorithm for the generation of frequent term sets could
significantly speed-up FTC and HFTC. FTC is a greedy

algorithm. Other paradigms such as dynamic programming might
also be adopted to solve the frequent term-based clustering
problem and should be explored. Hierachical clusterings are of
special interest for many applications. However, the well-known
measures of hierarchical clustering quality do not adequately
capture the quality from a user’s perspective. New methods
should be developed for this purpose. The proposed clustering
algorithms have promising applications such as a front end of a
web search engine. Due to the similarity of text data and
transaction data, our methods can also be used on transaction
data, e.g. for market segmentation. We plan to investigate these
applications in the future.

6. REFERENCES
[1] Chakrabarti S.: Data mining for hypertext: A tutorial survey,

ACM SIGKDD Explorations, 2000, pp.1-11.

[2] Cutting D.R., Karger D.R., Pedersen J.O., Tukey J.W.:
Scatter / Gather: A Cluster-based Approach to Browsing
Large Document Collection, Proc. ACM SIGIR 92, 1992,
pp.318-329.

[3] Zamir O., Etzioni O.: Web Document Clustering: A
Feasability Demonstration, Proc. ACM SIGIR 98, 1998, pp.
46-54.

[4] Steinbach M., Karypis G., Kumar V.: A Comparison of
Document Clustering Techniques, Proc. TextMining
Workshop, KDD 2000, 2000.

[5] Agrawal, R., Srikant R.: Fast Algorithms for Mining
Association Rules in Large Databases, Proc. VLDB 94,
Santiago de Chile, Chile, 1994, pp. 487-499.

[6] Kaufman L., Rousseeuw P.J.: Finding Groups in Data: An
Introduction to Cluster Analysis, John Wiley & Sons, 1990.

[7] Larsen B., Aone Ch.: Fast and Effective Text Mining Using
Linear-time Document Clustering, Proc. KDD 99, 1999, pp.
16-22.

[8] Hipp J., Guntzer U., Nakhaeizadeh G.: Algorithms for
Association Rule Mining – a General Survey and
Comparison, ACM SIGKDD Explorations, Vol.2, 2000, pp.
58-64.

[9] Liu B., Hsu W., Ma Y.: Integrating Classification and
Association Rule Mining, Proc. KDD 98, pp. 80-86.

[10] Zaiane O., Antonie M.-L.: Classifying Text Documents by
Associating Terms with Text Categories, Proc. Australasian
Database Conference, 2002, pp. 215-222.

[11] Yibin S.: An implementation of the Apriori algorithm,
http://www.cs.uregina.ca/~dbd/cs831/notes/itemsets/dic.java,
2000.

[12] Han E.-H., Boly D., Gini M., Gross R., Hastings K., Karypis
G., Kumar V., Mobasher B., and Moore J., WebACE: A
Web Agent for Document Categorization and Exploration,
Proc. Agents 98

