
Folding and Cutting PaperErik D. Demaine, Martin L. Demaine, and Anna LubiwDepartment of Computer Science, University of Waterloo,Waterloo, Ontario N2L 3G1, Canada,eddemaine@uwaterloo.caAbstract. We present an algorithm to �nd a 
at folding of a pieceof paper, so that one complete straight cut on the folding creates anydesired plane graph of cuts. The folds are based on the straight skeleton,which lines up the desired edges by folding along various bisectors; anda collection of perpendiculars that make the crease pattern foldable. Weprove that the crease pattern is 
at foldable by demonstrating a familyof folded states with the desired properties.1 IntroductionTake a sheet of paper, fold it into some 
at origami, and make one completestraight cut. What shapes can the unfolded pieces make? For example, Figure 1shows how to cut out a �ve-pointed star in this way. You could imagine cuttingout the silhouette of your favorite animal, object, or geometric shape.The �rst published reference to this fold-and-cut idea that we are aware of isa Japanese book [22] by Kan Chu Sen from 1721. This book contains a variety ofproblems for testing mathematical intelligence [21]. One of the problems asks tofold a rectangular piece of paper 
at and make one complete straight cut, so as tomake a symmetric \zig-zag" polygon. The author gives a solution that consistsof a sequence of simple folds, each of which folds along a line. See Figure 2.Folding and cutting has also been used for a magic trick by Houdini, before hebecame a famous escape artist. In his 1922 book Paper Magic [11], he describesa method for making a �ve-pointed star, similar to the one in Figure 1. Anothermagician, Gerald Loe, studied this idea in some detail; his Paper Capers [19]describes how to cut out arrangements of various geometric objects, such as acircular chain of stars. Martin Gardner wrote about this problem in his famous4.3.2.1.Fig. 1. How to fold a square of paper so that one cut makes a �ve-pointed star.



Title page Problem statement Solution (page 1) Solution (page 2)Fig. 2. A few pages from [22].series in Scienti�c American [9]. He was particularly impressed with Loe's abilityto cut out any desired letter of the alphabet.Gardner [9] was the �rst to state cutting out complex polygons as an openproblem. What are the limits of this fold-and-cut process? What polygonalshapes can be cut out?In this paper, we prove that any collection of straight edges can be cut along,by a single straight cut after folding 
at. This includes multiple disjoint, nested,and/or adjoining polygons, as well as 
oating line segments and points: a generalplane graph. To solve this problem, we present an algorithm that computes thecreases and the actual 
at origami that lines up precisely the given plane graph.Cutting along this line hence achieves the desired result.The rest of this paper is outlined as follows. Section 2 provides formal de�ni-tions of folds and cuts. Section 3 states our main theorem, and presents severalinteresting consequences. In Section 4, we specify the basic crease pattern for oursolution. Section 5 concentrates on specifying the possible foldings, and provingthe correctness of the algorithm. We conclude in Section 6.2 BackgroundOrigami mathematics is the study of the geometry and other properties oforigami (paper folding). The area of origami mathematics is still in its infancy,having only been seriously studied for the past twenty years. Geretschl�ager [10]and Huzita and Scimemi [13] examined the geometric constructions possiblewith origami, and compared them to a ruler and compass. Bern and Hayes [4]showed that it is NP-hard to determine whether a crease pattern is 
at foldable,as is computing a 
at folding (overlap order) given a suitable direction of folds(mountain-valley assignment). Hull [12] and Kawasaki [15] focus on necessaryand su�cient conditions for 
at foldability of crease patterns with a single ver-tex, which are also necessary conditions for general crease patterns. Justin [14]examines necessary and su�cient conditions on overlap orders, resulting in acharacterization of 
at foldability for general crease patterns.



Fig. 3. Minimal crease patterns for an angel�sh and a swan. The cut graph is drawnthick, and valleys [mountains] are drawn dashed [dot-dashed]. For the angel�sh, fold inhalf �rst.Lang has taken the most algorithmic approach. In [17], he describes an al-gorithm to construct \uniaxial" bases, which can then be folded into arbitrarilycomplex models. This solves a major problem in origami sekkei (technical fold-ing). Lang's work is related to ours: essentially, a portion of his solution dealswith the fold-and-cut problem when the shapes to cut are all convex polygons.Two other papers study the fold-and-cut problem formally. Demaine andDemaine [5] solve the problem of folding a polygonal sheet of paper to map thepaper's boundary to a line. This result is in one sense much weaker and in onesense stronger than the present result. It is weaker in that it solves the fold-and-cut problem only for convex polygons, where the folds exterior to the polygondo not interfere. It is stronger in that it describes the exact folding process, thatis, the function that folds the piece of paper through time to the �nal foldedstate. This shows that the folding can be achieved while keeping the paper rigid(except at the creases), and allows animation of the folding process.Inspired by preliminary versions of this work, Bern, Demaine, Eppstein, andHayes [3] have proposed an alternative solution to the fold-and-cut problem usingthe idea of disk packing. That solution is more \local" than the one presentedhere, which exploits and demonstrates the global structure of the problem. Theadvantage of the disk-packing solution is that the number of folds is boundedin terms of the number of vertices and minimum feature size. The origamispresented here, on the other hand, have the advantages of being more naturaland easier to fold in practice. Our techniques have also helped extend work inalgorithmic origami design [17,18].The rest of this section de�nes the terminology used in this paper.A plane graph is a planar graph with a �xed embedding such that every edgeis straight and has positive length, and every pair of (closed) edges intersectsonly at a shared vertex. We allow edges to have zero, one, or two actual vertices,corresponding to in�nite lines, half-in�nite lines, and line segments, respectively.A crease pattern is simply a plane graph. We will �nd it easier to considerfolding an in�nite plane, although the actual piece of paper will be a boundedsubset of that. An origami or folding of a crease pattern [4, 5, 12, 17] is a contin-



Fig. 4. Full crease patterns for a fancy star and a turtle. The cut graph is drawn thick,the straight skeleton is drawn solid, and the perpendiculars are dashed.uous function from R2 to R3 with the following properties. First, the functionmust map every face of the crease pattern to a congruent copy in three dimen-sions. Second, the folding must not induce any crossings; one way to de�ne thisis to allow faces to be an in�nitesimal distance apart (thereby de�ning theirorder), and enforce that the folding be a one-to-one function.Note that a folding gives the folded state, not the process of how to get tothe folded state.A 
at origami is an origami whose image lies on a plane. We can de�ne themountain-valley assignment of a 
at origami by assigning either \mountain" or\valley" to each edge in the crease pattern, according to whether it was foldedby angle � or angle ��, relative to the top side of the piece of paper.2.1 Models of CutsThis section speci�es exactly what we mean by \making a cut." A (complete) cutis a line. The natural mathematical model for applying a cut C to some objectO is to remove all the points along C from O, that is, take O�C. In particular,if the piece of paper is an open set (e.g., the entire plane, or a polygon withoutits boundary), then the resulting pieces will also be open sets. This model is dueto Frederickson [8], and we call it a mathematical cut.Mathematical cuts are best modeled in real life by a laser. In particular, theydo not correspond precisely to cutting with scissors, the problematic case beinga fold and a cut that coincide. As an alternative to the mathematical cut modeldescribed above, we de�ne a scissor cut so that when a fold and a cut coincide,the points on the fold are not removed. See Figure 5.(a) (b)Fig. 5. Cut (a) can be made by a scissor cut, whereas Cut (b) cannot.



3 ResultsWe are now in the position to formally state the fold-and-cut problem. We aregiven a plane graph called the cut graph. We refer to vertices, edges, and facesof the cut graph as simply \cut vertices," \cut edges," and \cut faces." Eachcut face is also given a side of \above" or \below," in what we call the sideassignment. The problem is to �nd a 
at folding of the paper and a line l,called the cut line, such that the intersection of the folding with l is exactly the(folded) cut graph. The folding must place cut faces above or below the cut linel according to the given side assignment.The most general result we could hope for is the following conjecture.Conjecture 1. Given a cut graph and any side assignment, there exists a 
atfolding of the plane that maps the cut graph and nothing else to a common line,and appropriately maps cut faces above or below this line.We will just fall short of proving this with the following theorem. The ideaof linear and circular corridors will be described in Section 4.4.Theorem 1. Given a cut graph and a side assignment, such that either (1) thecut graph induces no circular corridors, or (2) the side assignment is constant(that is, it assigns all cut faces to the same side), then there exists a 
at foldingof the plane that maps the cut edges and nothing else to a common line, andappropriately maps faces above or below this line.Precisely what this theorem says in terms of the original fold-and-cut appli-cation depends on the kind of cuts allowed. For mathematical cuts, we have thedesired result that any cut graph can be achieved, by choosing the side assign-ment that puts every face above the cut line. If only scissor cuts are allowed,then we need a side assignment with the property that every cut edge is inci-dent to two faces assigned to opposite sides (see Figure 5). In other words, wewant a face 2-coloring of the cut graph, where the colors correspond to \above"and \below." This is equivalent to the cut graph being even, that is, having allvertices of even degree [16].The following summarizes our results for both kinds of cuts.Corollary 1. Given any cut graph, there exists a 
at folding of the plane anda line on this folding such that mathematically cutting along the line removesprecisely the (folded) cut graph. If only scissor cuts are allowed, this result holdsfor even cut graphs that induce no circular corridors.If Conjecture 1 holds, we can remove the no-circular-corridor constraint,which would prove the following slightly weaker conjecture:Conjecture 2. Given any even cut graph, there exists a 
at folding of the planeand a line on this folding such that scissor cutting along the line removes preciselythe (folded) cut graph.



3.1 ConsequencesThis section describes two consequences of Conjecture 2.What if the cut graph has some odd-degree vertices, but we are still onlyallowed to make scissor cuts? In [6], we prove that every planar bridgeless graphis the (nondisjoint) union of two even subgraphs. (A graph is bridgeless if it hasno edges whose removal increases the number of connected components in thegraph.) Assuming Conjecture 2, we can fold-and-scissor-cut the �rst subgraph;unfold, keeping the pieces together as before; and then fold-and-scissor-cut thesecond subgraph. In total, we make the entire graph with two scissor cuts. Hence,we have proved that Conjecture 2 implies the following:Conjecture 3. Given any bridgeless cut graph, there exist two 
at foldings of theplane and a line on each folding, such that scissor cutting along both lines inboth foldings removes precisely the (folded) cut graph.In his article on paper cutting, Martin Gardner [9] mentions an \unusualsingle-cut trick that is familiar to American magicians.. . known as the bicolorcut." The magician takes a thin piece of paper, colored red and black like aneight-by-eight checkerboard. After folding the paper 
at, a single straight cutseparates the red squares from the black squares, and simultaneously cuts outeach square. Conjecture 2 implies a beautiful generalization of this magic trick.Conjecture 4. Given any subdivision of a sheet of paper into red and black re-gions, there exists a 
at folding of the paper and a line on the folding, such thatall red regions are above the line, all black regions are below the line, and scissorcutting along the line separates all of the regions and no more.Theorem 1 proves this conjecture for all red-black subdivisions that induceno circular corridors. Unfortunately, a checkerboard is not such a subdivision,so this result is not a generalization of the magic trick.4 Crease PatternThis section describes the basic crease pattern for our solution to the fold-and-cut problem, as well as the default mountain-valley assignment for some of thesecreases. The details of the folded state will be given in Section 5, where we willneed, in the circular-corridor case, to add some more folds and reverse somecreases.The �rst collection of potential folds are the edges of the cut graph. Morespeci�cally, to satisfy the side assignment of faces above and below the cut line,we must fold along precisely those cut edges that are incident to faces assignedto the same side. By default, the fold is a valley between two faces above the cutline, and a mountain for two faces below the cut line.The next section describes the straight skeleton, which is the main componentfor lining up the edges of the cut graph. To make the straight skeleton foldable, weadd folds that are perpendicular to the cut edges in Section 4.2. Section 4.3 showsan interesting phenomenon in perpendiculars called spiraling. Finally, Section 4.4studies the structures formed between perpendiculars, called corridors.



(a) (b) (c)Fig. 6. Examples of the straight skeleton: (a) Shrinking a single cut face. (b) A linesegment. (c) Two points, with the squares chosen to be axis-parallel.4.1 Straight SkeletonA natural way to line up two edges is to fold along the bisector of their ex-tensions. A generalization of this idea to arbitrary cut graphs is the straightskeleton. This structure is de�ned to be the trajectories of the vertices as weshrink the faces of the cut graph. Note that \shrinking" the external face mayseem more like \expanding." Formally, shrinking consists of continuously inset-ting each vertex towards the interior of the face, so that at any particular time,every shrunken edge is parallel to the original, and the perpendicular distancebetween the shrunken and original boundary edges is the same for all boundaryedges. A face may split into multiple pieces, in which case we recursively shrinkeach piece. See Figure 6. A face may also become degenerate in the sense thattwo of its edges coincide to enclose a zero-area region; in this case, we includethe edge as part of the straight skeleton.Cut vertices of degrees zero and one must be treated specially; see Figure 6(b{c). A cut vertex of degree one is treated like an end of a rectangle with zero width.That is, we consider there to be an e�ective cut edge of length zero at the cutvertex, perpendicular to the incident cut edge. Similarly, a cut vertex of degreezero is treated like a square of zero area, with an arbitrarily chosen orientation.That is, we consider there to be four e�ective cut edges of length zero at the cutvertex, perpendicular in pairs to form a square.The straight skeleton has only recently received thorough study. The basicidea goes back to at least 1984 [20, pp. 98{101]. The term \straight skeleton" wascoined by Aichholzer et al. [2] in 1995, where it was only de�ned for the interiorof a polygon. They are also the �rst to publish an algorithm for computing thestraight skeleton, running in O(n2 logn) time. The de�nition and this algorithmwere extended to general plane graphs by Aichholzer and Aurenhammer [1]in 1996. Recently, Eppstein and Erickson have developed an O(n17=11+�)-timealgorithm for general plane graphs [7].The rest of this section describes some structure of the straight skeleton.Note that the straight skeleton is a plane graph. We will use \skeleton vertex,"\skeleton edge," and \skeleton face" to refer to a vertex, edge, or face of thestraight skeleton.Globally de�ne n to be the number of vertices in the cut graph.



e W (e; e1; e2)e2e1x(a) (b)Fig. 7. (a) The de�nition of an edge e bisecting two nonparallel edges e1 and e2.(b) Convex [re
ex] portions of skeleton edges for the turtle are drawn solid [dashed].Lemma 1. [1] The straight skeleton has O(n) vertices, edges, and faces.Lemma 2. Every cut edge is contained in exactly one skeleton face, and everyskeleton face contains exactly one cut edge, if we include the zero-length cut edgesformed by cut vertices of degrees zero and one.Proof. Straightforward. See [6]. 2Let e denote the line extending an edge e. Let e1 and e2 be two edges thatdo not intersect except possibly at a common endpoint. We say that an edge ebisects e1 and e2 if one of three cases holds. The �rst case is when e, e1, and e2are distinct and parallel, and e sits midway between the other two; that is, theperpendicular distance between e and e1 is positive and equals the perpendiculardistance between e and e2. The second case is when e1 and e2 are the same line,and e is perpendicular to them.Finally, the third case (see Figure 7(a)) is when e, e1, and e2 are distinctand intersect at a common point x, and e bisects the angle of a certain wedgeW (e; e1; e2). This wedge is one of the four wedges between e1 and e2; further-more, it is one of the two such wedges that contain a portion of e. Speci�cally,W (e; e1; e2) is de�ned to be the wedge between e1 and e2 that contains a portionof e, and has all of e1 or all of e2 on its boundary. This de�nition of W (e; e1; e2)is well de�ned by our assumption that e1 and e2 do not cross.Lemma 3. Let e be a skeleton edge, let f1 and f2 be the two incident skeletonfaces, and let c1 and c2 be the cut edges contained in f1 and f2, respectively.Then e bisects c1 and c2.Proof. Straightforward. See [6]. 2As a step toward the mountain-valley assignment, we will now distinguishconvex and re
ex portions of skeleton edges; refer to Figure 7(b) for examples.Let e be a skeleton edge bisecting cut edges c1 and c2. We follow the cases in thede�nition of \bisect." If c1 and c2 are distinct and parallel, and e lies betweenthem, then all of e is considered to be convex. If c1 and c2 are the same line, ande is perpendicular to them, then all of e is considered to be re
ex. Finally, whene bisects W (e; c1; c2), the portion of e inside the closed wedge W (e; c1; c2) is



considered to be convex, and the portion in the closed complement is consideredto be re
ex. Note that if the apex of W (e; c1; c2) is in e, it is considered to beboth convex and re
ex.The default mountain-valley assignment for a skeleton edge depends on theside assignment of its cut face. For \above" faces, convex portions are foldedas mountains, and re
ex portions are folded as valleys. For \below" faces, thisassignment is reversed.4.2 PerpendicularsThe straight skeleton by itself is clearly not foldable; in particular, its verticestypically have degree three, whereas a 
at-foldable crease pattern only has ver-tices of even degree [4]. Intuitively, we can add a fold perpendicular to a cutedge, and maintain the property that the cut edges line up. What remains is toexplicitly specify these folds, and how they interact with the straight skeleton.The perpendicular associated with any point p 2 R2 consists of a collectionof line segments, rays, and lines called perpendicular edges, each associated witha skeleton face f . They are recursively de�ned as follows. For each closed skeletonface f that p is in, let l be the line going through p and perpendicular to (theline extending) the cut edge contained in face f . Let m be the connected piece ofl\f that touches p; this may be just p itself, a line segment of positive length, aray, or a line. Then the perpendicular associated with p contains both m and theperpendiculars associated with the endpoints of m. We call m a perpendicularedge associated with f .This completes the de�nition of perpendiculars. A real perpendicular is onethat is incident to a skeleton vertex, and all other perpendiculars are calledimaginary. We will only fold along real perpendiculars; imaginary perpendicularswill be useful for analyzing the structure of corridors in Section 5.1.Examples of perpendiculars can be found throughout Figures 3 and 4.In the de�nition of a perpendicular, we were careful to associate each per-pendicular edge with a particular skeleton face. This is especially important forperpendicular edges that degenerate to points; we call these zero-length perpen-dicular edges. For example, incident to the middle skeleton vertex in Figure 6(a)are three perpendicular edges: an upward vertical ray, and two zero-length edges.Note that a zero-length perpendicular edge still has an orientation.A natural question at this point is whether a perpendicular always consists ofa �nite number of line segments. The answer is no, and we discuss this situationin the next section. However, the number of real perpendiculars is �nite:Lemma 4. There are O(n) real perpendiculars.Proof. This follows by Lemma 1 because the number of real perpendiculars isat most the number of skeleton vertices. 2We now describe several properties of perpendiculars and perpendicular edges.A �rst observation is that the perpendicular edge associated with skeleton face



Fig. 8. A simple example of spiraling.f is perpendicular to the cut edge contained in f ; in particular, all such perpen-dicular edges are parallel.Next let us demonstrate the ability to \walk around" with a pair of perpen-dicular edges in either of two directions.Lemma 5. Let e1 and e2 be two perpendicular edges associated with the sameskeleton face. If e1 and e2 have ends v1 and v2, respectively, on a commonskeleton edge s, then there are perpendicular edges e01 and e02, incident to v1 andv2 respectively, and associated with the other face incident to s, such that theperpendicular distance between e01 and e02 is the same as for e1 and e2.Proof. The existence of e01 and e02 follows from the de�nition of perpendiculars.The preservation of perpendicular distance follows because the skeleton edge sis a bisector of e1 and e01, as well as e2 and e02. 2Lemma 6. Let p be a perpendicular edge in skeleton face f whose ends lie onthe interior of skeleton edges e1 and e2. If p intersects the cut edge contained inf , then p hits e1 and e2 in their convex portions; otherwise, p hits one of e1 ande2 in its convex portion and the other in its re
ex portion.Proof. See [6]. 24.3 SpiralsOne interesting phenomenon that can happen with perpendiculars is spiraling.A simple example is shown in Figure 8. The cut graph (drawn in thick lines) isan in�nite \pinwheel." Each real perpendicular (drawn dashed) consists of anin�nite number of edges in the whole plane, however:Lemma 7. Any bounded region of the plane is intersected by only �nitely manyreal perpendicular edges.Proof (Sketch). Suppose to the contrary. We �rst argue that the perpendiculargraph must contain an in�nite path of degree-two vertices. In the plane, this pathis a simple Jordan curve. Such an in�nite Jordan curve can spiral or zig-zag, or



1-wall circular2-wall linear 1-wall linear 2-wall circularFig. 9. The four possible shapes of corridors.do any combination of these things. However, because perpendiculars can onlybend due to the presence of skeleton vertices, and since there are only �nitelymany skeleton vertices, we are able to prove that our path must eventually spiralinward. By Lemma 5, consecutive rings of the spiral stay a constant width apartunless a skeleton vertex lies between the two rings, and again, this can happenonly �nitely often. Thus the inward spiral must eventually settle to some constantwidth, a contradiction. 2By Lemma 1, the straight skeleton consists of a �nite number of creases, sothe basic crease pattern is �nite in any bounded convex region of the plane.Unfortunately, the number of creases is unbounded in terms of the number ofvertices, minimum distance between two non-incident cut edges, or similar met-ric.4.4 CorridorsTogether, all of the real perpendicular edges form the perpendicular graph. Thissection describes the structure of corridors, which are simply the faces of theperpendicular graph. Unlike in usual plane graphs, a corridor never consists ofa bounded simply connected region. See Figure 9 for the shapes that corridorsmay have. We characterize a corridor �rst by its topology: we call it linear if itsinterior is homeomorphic to an in�nite band, and circular if its interior is home-omorphic to an annulus. Second, we characterize a corridor by the number of itswalls, which can be one or two: a wall is one of the perpendiculars that boundthe corridor. The wall count is equal to the number of connected components inR2 minus the interior of the corridor.Let C be a corridor, f be a skeleton face, and Cf be the intersection of fwith the interior of C. Cf may be disconnected, but each connected componentof Cf has a width de�ned to be the minimum distance between two parallellines that contain the region between them, and are perpendicular to the cutedge contained in f . By Lemma 5, corridors have constant width in the sensethat the width as de�ned above is the same for all connected components of Cf ,and for all choices of f . This is the motivation for the term \corridor." For one-wall corridors, the width is in�nite; and for two-wall corridors, the width is theperpendicular distance between two parallel, minimally distant perpendicularedges bounding C.The above claims are formalized in the following lemma.



Lemma 8. Every corridor C is either linear or circular but not both, and haseither one or two walls. Furthermore, C has constant width.Proof. Straightforward. See [6]. 2An example of a circular corridor is in the middle of the fancy star (Figure 4).Note that the inner wall consists just of zero-length perpendicular edges.5 FoldingSo far we have de�ned the basic crease pattern, consisting of skeleton edges, per-pendicular edges, and some cut edges. We also have de�ned the default mountain-valley assignment for cut edges and skeleton edges. The goal of this section isto describe a 
at folding of this crease pattern. Here we concentrate on the casewhere there are no circular corridors. In this case, the basic crease pattern iscomplete, and the default mountain-valley assignment is correct.The problem splits naturally into two parts. In Section 5.1, we show how tofold a single corridor into an \accordion" using alternating mountain and valleyfolds at the skeleton edges crossing the corridor (see Figure 10). We show thatthis accordion folding lines up all the cut edges in the corridor. This is donelocally, but we show that the foldings of two adjoining corridors are consistent.In Section 5.2, we consider the global structure of how the corridors arejoined. In case there are no circular corridors, this structure is a tree (see Fig-ure 10). Each vertex of the tree corresponds to a perpendicular, and each edgeof the tree corresponds to a corridor. If the paper lies originally in the xy plane,then the accordion folding maps each perpendicular to a line orthogonal to thexy plane, and maps each corridor to a strip of a plane orthogonal to the xyplane|the tree is precisely what we would see if we look at this folded structurefrom above, i.e. from the z direction. Because perpendiculars are orthogonal tocut edges, all the cut edges lie in the xy plane in this folded structure. The wholeproblem then reduces to the problem of folding a tree 
at in the plane.In the case of circular corridors, both of these steps need enhancing. First,a circular corridor cannot fold up into something as simple as an accordion;indeed, it may not be foldable at all if the side assignment is not constant.Second, the corridors are no longer joined in a tree-like fashion: it can be quitecomplex just to join two corridors together without crossings. The proof for thecircular-corridor case is much more di�cult, and deferred to [6].5.1 AccordionsConsider a corridor, the creases intersecting it, and the mountain-valley assign-ment for those creases. We need to prove the existence of a folded state, whichwe call an accordion (see Figure 10), and we need to prove some properties ofaccordions. These results become obvious in the case where no crease terminatesin the interior of a corridor. Skeleton edges pose no problem, but it is possible



H A B C D E EAB CC EDCF G H I J K KJIFG A HGF B C D EI J KFig. 10. (Left) Full crease pattern for a spiral polygon. (Middle) The shaded corridorfolded into an accordion. (Right) The tree model.for a cut edge to terminate in the interior of a corridor. For example, four cutedges terminate in the interior of the lower-left corridor in the turtle (Figure 4).We can avoid this problem by adding the (imaginary) perpendiculars inci-dent to cut vertices to our set of real perpendiculars, thus forming subdividedcorridors with the property we want: folds cannot terminate interior to a subdi-vided corridor. Note that we do not fold along these added perpendiculars: theyare being used only for our current purpose of describing the folded state of acorridor.By Lemma6, the creases in a subdivided corridor alternate between mountainand valley. Thus the accordion does not self-intersect.A fold at a skeleton edge lines up the two cut edges bisected by the skeletonedge. (Note that the cut edges need not be in the corridor.) Because each wallof the (subdivided) corridor is perpendicular to the cut edges, folding at theskeleton edge causes the two incident perpendicular edges in the wall to fold toa common line. Of course this is also the case when we fold at a cut edge.Hence, we have proved that when a corridor C is folded into an accordion,the cut edges intersecting C line up, and each wall of C lines up. The line(s) towhich the wall(s) of C fold are called the side(s) of C; they are the places atwhich accordions join to each other.We will orient accordions to be perpendicular to the xy plane.Lemma 9. Two adjacent corridors fold into accordions that match up at theircommon side.Proof. See [6]. 25.2 Tree ModelWe have shown that each accordion can be folded locally, and that they joincompatibly, lining up all the cut edges. The problem thus reduces to foldingat these joins so that the accordions lie on a common plane, resulting in the



desired 
at origami. This can be modeled by folding a tree in two dimensions;see Figure 10. Speci�cally, this tree corresponds to the xy projection of the foldedmodel: each edge corresponds to an accordion, and each vertex corresponds toa side of an accordion. This model is certainly a tree, because a corridor eitherhas one wall, in which case it corresponds to a leaf, or else removing the interiorof a corridor from the plane leaves two disconnected pieces, in which case itcorresponds to a bridge in the graph.Finally, we need that every tree has a 
at-folded state in the plane, that is,it can be folded to a line in the plane. This is straightforward; a proof can befound in [6]. Note that the mountain-valley assignment for perpendicular edgescan be read from the tree folding. Our construction thus establishesTheorem 2. Given a cut graph that induces no circular corridors, and givenany side assignment, there exists a 
at folding of the plane that maps the cutedges and nothing else to a common line, and appropriately maps faces above orbelow this line.6 ConclusionWe have presented an algorithm that computes the crease pattern and the re-sulting 
at origami that lines up a given plane graph. This allows one to folda sheet of paper 
at and make one complete straight cut to create any desiredpattern of cuts. Concisely, folding and one straight cut su�ce to make any planegraph. When only scissor cuts are allowed (that is, cuts cannot be made alongfolds) and the graph induces no circular corridors, we have shown that one scis-sor cut su�ces for graphs whose vertices all have even degree, and two scissorcuts su�ce for general graphs.AcknowledgmentsMany thanks go to Tom Hull and Rob Lang for many helpful discussions and forsupplying us with important background material. We thank Marshall Bern forhis suggestion to focus on proving 
at foldability by constructing a folded state,instead of an entire folding process. Our correspondence with Greg Fredericksonwas very helpful, leading to his model of mathematical cuts in Section 2.1. Wethank Jim Geelen and Dan Younger for information about the (apparently un-published) theorem that every planar bridgeless graph is the union of two evensubgraphs, used in Section 3.1. Finally, we thank Gisaku Nakamura for providingthe 1721 reference to folding and cutting [22].This work was supported by NSERC.
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