
Incremental Collection of Mature Objects?
Richard L. Hudson1 and J. Eliot B. Moss2

1 University Computing Services
University of Massachusetts
Amherst, MA 01003, USA

hudson@cs.umass.edu
2 Object Systems Laboratory

Department of Computer Science
University of Massachusetts
Amherst, MA 01003, USA

moss@cs.umass.edu

Abstract. We present a garbage collection algorithm that extends generational scav-
enging to collect large older generations (mature objects) non-disruptively. The al-
gorithm’s approach is to process bounded-size pieces of mature object space at each
collection; the subtleties lie in guaranteeing that it eventually collects any and all
garbage. The algorithm does not assume any special hardware or operating system
support, e.g., for forwarding pointers or protection traps . The algorithm copies objects,
so it naturally supports compaction and reclustering.
Keywords: clustering, compaction, copying collection, garbage collection, garbage
collector toolkits, generation scavenging, incremental collection, mature objects, non-
disruptive collection.

1 Introduction

Generational garbage collection is very effective at reducing total garbage collection time.
The majority of the collections are also non-disruptive. However, as good as generational
collectors are, they can still be disruptive when the larger, older generations need to be
collected. To collect these older objects in a non-disruptive manner, we present an algorithm
that has the following properties:

Incremental: The maximum number of bytes moved at each incremental collection is small.
Compaction and Clustering: The algorithm supportscompaction and reclustering of objects

via copying.
Efficient Implementation: The algorithm can be implemented on stock hardware and does

not rely on operating system features such as protected pages.

Bishop [Bishop, 1977] discussed how related objects should be placed in the same area
and references into these areas should be handled by a level of indirection so that each area
could be collected independently of other areas. Our algorithm borrows heavily from his
conceptual work describing areas that hold related objects. Our contribution is to show how
this can be used to create a collector with the above characteristics.? This project is supported by National Science Foundation Grant CCR-8658074 and by Digital

Equipment Corporation and Apple Computer.



In Section 2 we discuss the problem of collecting older generations holding mature
objects and review some recent work in the area. In Section 3 we give an overview of
the collector. Section 4 presents our algorithm, while Section 5 shows an example of how
the algorithm works. Section 6 describes how to extend the algorithm to handle a potential
problem. Finally, Section 7 discusses some future extensions to support additional techniques
that mitigate the disruptive behavior of garbage collection.

2 The Problem and Some History

This paper addresses the problem of collecting older objects incrementally, in the context
of a copying, scavenging collector. We insist on copying in order to support compaction
and clustering (e.g., hierarchical decomposition [Wilson et al., 1991]). Because copying
collectors move objects, we assume the safety property that all pointers (and pointer derived
quantities) can be found and updated appropriately (see, e.g., [Diwan et al., 1992]).

Pieces of the problem of doing garbage collection non-disruptively have been worked
on for years. In this section, we will review some of these attempts and discuss some of their
drawbacks.

Baker [Baker, 1978] discussed the problem of constructing a non-disruptive garbage
collector. His solution was a modification of a stop-and-copy algorithm first discussed by
Fenichel and Yochelson [Fenichel and Yochelson, 1969]. Baker used a read barrier that
trapped all reads of old objects and then copied the objects or updated the pointers to moved
objects. White [White, 1980] suggested that collecting unreachable objects was not as much
of a problem as improving the locality of reference of live objects, and proposed a scheme that
improved locality of reference of running programs but that collected unreachable objects
off-line. Both Baker and White assumed special pointer forwarding hardware support for
their algorithms.

Lieberman and Hewitt [Lieberman and Hewitt, 1983], Moon [Moon, 1984], and Ungar
[Ungar, 1984] all presented algorithms that reduced the running time required by most
garbage collections by focusing attention on the youngest and most volatile generations of
objects. Lieberman and Hewitt relied on special hardware and a Baker-style algorithm to
achieve incremental performance. Moon also relied on the Lisp machine hardware to provide
a read barrier. Ungar was concerned only with young objects, and collected older objects
“off-line”. This work made the time to perform most garbage collections reasonable and
the majority of collections non-disruptive. The drawback was the large cost and disruption
when large old generations needed to be collected.

Appel, Ellis, and Li [Appel et al., 1988] suggested collecting on stock hardware by using
read-protected or no-access pages in older generations: when a page is touched, it is scanned
and all pointers to moved objects are updated. For efficiency their algorithm depends on
two properties. First, the algorithm requires a fast protection fault reflection mechanism.
Providing such a fast mechanism may require modifying the operating system. Second,
the algorithm requires high locality of reference in the application being run. Without this
property, the scanning resulting from touching several pages shortly after a collection would
make collection effectively disruptive.

Boehm [Boehm et al., 1991] showed how collectors could be made “mostly parallel” in
the trace phase of a collector. His algorithm also relies on using the page trap hardware and
operating system support to do bookkeeping during the mark phase. This choice reduces the
amount of mutator cooperation needed.



The Lisp Machine [Weinreb and Moon, 1981] demonstrated how linked lists could be
compacted using cdr-coding. Wilson [Wilson et al., 1991] showed how hierarchical decom-
position could also be used to compress data, in addition to improving locality of reference.
Wilson’s scheme is similar to Moon’s “approximately depth-first” algorithm [Moon, 1984]
and demonstrates the gains in locality that can be made by reclustering items based on
their reachability path characteristics. Unfortunately, mutation of objects requires periodic
reclustering. To allow this reclustering and compaction, the objects need to be moved and
pointers to the moved objects updated appropriately.

Lang [Lang and Dupont, 1987] showed how the incremental compaction of a large heap
can be done using a hybrid mark/sweep and copying collector. The algorithm copies as much
of the heap as there is contiguous free space during each collection thus compacting some
portion of the heap. The remaining live objects are not copied. Dead objects in areas where
live objects were not evacuated are marked and placed on a free list along with the large
evacuated area. This process incrementally continues until the entire heap is compacted.
This algorithm requires that all live objects be inspected and possible updated during each
pass of the collector. Such romping through memory becomes disruptive as the heap grows
large enough to affect the cache and virtual memory mechanisms.

Wilson [Wilson and Moher, 1989] tries to make his collector non-disruptive using tem-
poral opportunism, a technique that tries to hide long garbage collection by piggy-backing
onto long computations or onto long interactive pauses. Hayes [Hayes, 1991] suggested key
object opportunism, which monitors key objects. When a key object become unreachable,
one attempts to collect the objects associated with it. By using the key object as an indicator
of when a group of objects become unreachable, the collector focuses its attention on a group
of objects that are likely to be unreachable. While temporal opportunism uses hints about
when to do collections, key object opportunism adds hints about where to do collections.

Bishop [Bishop, 1977] presented a garbage collection algorithm that divided the heap
into multiple areas. Users specified the area in which each object was allocated. These areas
were designed to be garbage collected individually. By collecting the areas independently,
the collections would not interfere with processes that did not use the area being collected.
In order to allow independent collection, each area kept track of pointers both into the area
and out of the area. Referencing an object in another area was accomplished using a level
of indirection.

Bishop pointed out that related areas could be collected at the same time. He handled
multiple area cycles of garbage either by collecting all areas involved in the cycle at the
same time, or by using copying to consolidate the cycle of objects into one area. In his
thesis, Bishop presented an inductive proof to show that his technique of moving objects
guarantees that all unreachable objects are collected.

Bishop did not bound the size of an area or provide ways to collect individual areas
incrementally. In addition, his use of levels of indirection to communicate between areas
was a source of inefficiency.

Our mature object space algorithm does not require special hardware or special operating
system support, and it is not disruptive. It insures that all reachable objects are collected,
that they are moved in a manner consistent with compaction and clustering algorithms, and
that they are available immediately after each collection. Our algorithm also limits area size,
provides ways to collect individual areas incrementally, and eliminates levels of indirection
between areas.



3 Overview of the Garbage Collector

To collect young objects, we designed a garbage collection toolkit that supports generational
scavenging techniques.3 Our algorithm for collecting mature objects is an extension of this
toolkit. We now offer an overview of the toolkit as a basis for explaining the extensions.

3.1 The Toolkit Concept

The toolkit divides the responsibility for, and support of, garbage collection into two parts:
a language-independent part, supplied by the toolkit, and a language (implementation)
specific part, nominally supplied by the language implementor. The language-independent
part consists mostly of the data structures and code for managing multiplegenerations and for
allocating heap objects. The language implementor must supply the following capabilities:
the ability to locate at scavenge-time all root pointers (those pointers outside the scavenged
generations that refer to objects in the scavenged generations), and the ability to locate
all pointers within a heap object, given a pointer to the object. The toolkit includes a
library of routines that an implementor can use to locate inter-generational pointers; it is the
implementor’s responsibility to locate roots lying in the stack(s), registers, and any other
areas outside the heap.

3.2 The Structure of the Heap

The toolkit defines the structure of the heap and supplies the necessary allocation routines.
The heap consists of a number of generations. Generations are numbered 0, 1, 2, ..., in order
of increasing age. In any given collection, a selected generation and all younger generations
will be scavenged. The total number of generations may vary over time.

Each generation consists of a number of steps. Steps segregate objects by age and/or
type within a generation, and during scavenging all surviving (reachable) objects in a given
step are copied to some other step. This promotion step may belong to the same or a different
generation, and by adjusting the promotion steps before scavenging, one can introduce new
steps, combine existing steps, etc. The number of steps in a generation may vary over time.

A primary function of steps is to eliminate the need for storing or maintaining any age
information in individual objects. This reduces storage and time costs, but also gives the
collector age information without imposing any requirements on object formats (which are
entirely the responsibility of the language implementor).

While the meaning of steps is somewhat arbitrary, we impose a convention that the lowest
numbered step in a generation has the youngest objects in that generation, etc. Further, we
number the steps 0, 1, 2, ..., such that every step in the system has a unique number. For
example generation 0 might have steps 0 and 1, generation 1 might have steps 2 through
4, and so on. A simple promotion policy is to promote survivors of step k to step k + 1. In
that case, the number of steps in a generation determines the number of scavenges (of that
generation) necessary to promote objects to the next generation.

Each step consists of a number of blocks. A block is 2n bytes, aligned on a 2n byte
boundary for some value of n chosen when the system is built. A typical block size might be
64K bytes. The number of blocks in a step may vary over time. While the blocks of a step

3 For a more detailed discussion of the toolkit see [Hudson et al., 1991].



are usually not contiguous, a nursery may be set up to consist of a number of contiguous
blocks, so that one might more readily use a page trap (rather than an explicit limit check)
to detect nursery overflow and trigger a scavenge.

Blocks have four primary advantages. First, they allow sizes of steps and generations
to change easily since the storage of a step need not be contiguous. Second, they allow
speedy determination of the generation, step, and promotion step of an object: the address
of the object is simply shifted right by n bits and indexes a block table containing the needed
information. Third, blocks match naturally with page trapping or card marking schemes
(both of which the toolkit supports). Fourth, they reduce the storage needed under some
circumstances when compared with copying collectors that use semi-spaces. If b bytes are
present in a generation before a scavenge and the survivors consume a bytes, then a semi-
space scheme uses 2 � b bytes whereas our scheme uses b + a bytes (modulo rounding
resulting from the block size). The degree of advantage depends on the survival rate a=b,
but may be significant in some applications.

Blocks do introduce a problem, however. They cannot handle objects larger than the
block size. To handle such objects we provide a large object space (LOS), as suggested in
[Ungar and Jackson, 1988]. In fact, it is probably a good idea to put into LOS any object that
consumes a significant fraction of a block; we used the heuristic threshold of 1/8 of a block.
Further, as also discussed in [Ungar and Jackson, 1988], any object that contains few pointers
and that exceeds some threshold in size should be stored in LOS to avoid the overhead
of copying. LOS uses free list allocation based on splay trees [Sleator and Tarjan, 1983,
Sleator and Tarjan, 1985, Jones, 1986] and, once allocated, an LOS object is never moved.
However, LOS objects still belong to a step, which is indicated by threading the objects onto
a doubly linked list rooted in the step data structure. When a LOS object is promoted, we
simply unchain it from one list and chain it into another. When scavenging is complete, any
LOS objects remaining on a scavenged step’s LOS list are freed.

While the generation, step, and block, of a non-LOS object can be determined using
the simple shift and index technique, LOS may combine objects from different steps and
generations in the same block. Therefore, we store a back reference from a LOS object’s
header to its containing step. It is relatively easy to determine the step given a pointer to the
base of an LOS object, but determining the step given a pointer into the middle of the object
requires locating the object header, which is supported but involves additional work.

3.3 Phases of a Scavenge

A scavenge consists of two phases. First, the root set for the scavenge is determined based on
the remembered sets, as well as the stack, register, and global variable contents. All objects
directly reachable from the roots are copied into new space, and the roots updated to point
to the copied object. All objects reachable from the new space objects are then copied over
using a non-recursive Cheney scan [Cheney, 1970].4 As each object is copied, a forwarding
pointer is left in the old copy, so that other references to the object can be updated as they
are encountered. Since the toolkit makes no assumptions about object format, language
implementors can define the details of the forwarding pointer format. The toolkit does

4 The toolkit might be adapted to support mark-sweep or other approaches to collection, but currently
it provides only copying collection. Also, it would not be hard to incorporate suggestions such as
hierarchical clustering [Wilson et al., 1991].



determine automatically where to allocate the new copy of the object, given the object’s size
(which must be determined by language-specific code).

Before a scavenge begins, the toolkit, following a dynamically modifiable plan supplied
by the language implementor, determines the generations to be scavenged and creates new
steps accordingly. It also sets up all the promotion step references. After a scavenge, all the
old steps of the scavenged generations are deleted and their blocks become available for
allocation.

These scavenge techniques work well for small heaps. In large heaps, however, scav-
enging older and older generations along with all younger generations becomes disruptive.
In order to avoid this disruption we limit the number of generations in the heap. Any object
that lives through several scavenges is moved into mature object space (MOS) where it is
collected using our non-disruptive algorithm.

4 The Mature Object Space Algorithm

We now describe mature object space, its structure and its collection algorithm. The com-
ponents used to implement this algorithm are the same as those used to implement the
garbage collection toolkit for young objects. In particular, the blocks, the remembered sets,
and the scanning and copying mechanisms are the same for both mature object space and
generational space.

First, we will describe how mature space is divided into areas. Second, we will discuss
the remembered set mechanisms used to track pointers between mature space areas. Third,
we will present the rules that determine where mature objects are placed. Fourth, we will
show how collection of an area results in objects being moved so that any unreachable object
is eventually isolated and collected.

4.1 The Structure of Mature Object Space

Mature object space is divided into areas, just as young object space is divided into gen-
erations. The structure of an area is similar to a generation in that all pointers into an area
can be found at scavenge time (i.e., each area has a remembered set). An area consists of
one or more blocks. These blocks are the same as the blocks used in young object space and
share the same bookkeeping functions, including quick determination of the area in which
the block resides, and during a collection, determination of the area to which an object
should be copied. In addition, blocks support determination of whether a pointer should be
recorded in a remembered set. Unlike generations in the heap, age information is no longer
interesting, so areas do not have steps.

Unlike Bishop’s areas, our areas are sized so that each individual area can be collected
quickly. The collector works on one area at a time. The problem with a straightforward
implementation of Bishop’s algorithm with limited area size is that a multiple area circular
structure might not be collected because local information is not sufficient to determine if
an object is globally unreachable. Hence, just as in Bishop’s approach, we must migrate a
multi-area cycle of garbage into a single area in order to reclaim it. However, the limit on
area size makes this impossible if the linked structure is larger than can fit into a single area.
Since Bishop did not restrict the size of areas, he did not have this problem. Hence, the key
contribution of our algorithm is insuring that we reclaim large structures of garbage while
still imposing the limit on area size, so that collections will be non-disruptive.



To further describe the structure of MOS, we first introduce some terminology. Pointers
to mature objects from outside mature object space are root pointers. Root pointers reside in
young object space, large object space, on the stack, in registers, and in static areas. Objects
immediately reachable from roots are leaders. Objects that are not immediately reachable
from roots, but still reachable from objects in mature object space, are followers.

We will use a train metaphor to describe the algorithm. An area can be thought of as
a railroad car. The cars are used to bound the amount of work that is done during each
invocation of the collector. A group of cars holding a linked structure of objects can be
thought of as a train. Trains are used to group large related objects so that they can be
managed as a unit.

4.2 Roots and Remembered Sets

Each area has an associated remembered set, which allows us to find all pointers from
outside the area that refer to objects in the area. However, since we will scavenge an area
only when all young spaces are also scavenged, and since all scavenges process all roots
(stack(s), registers, static areas), remembered sets for areas need only track references from
other MOS areas. The remembered set for a train is simply the union of the remembered
sets of its cars, less any intra-train references.

A more subtle remembered set property comes from the fact that the algorithm processes
areas in round-robin order. To understand this, suppose we assign each area a sequence
number, and when an area is scavenged, it is assigned the next highest number. Then a
remembered set need only record references from higher numbered to lower numbered
areas. When an area is collected, its number will be the lowest, and hence we will be able to
find all the references from other areas into the collected area.

We gain two advantages from handling the remembered sets this way. First, we reduce
the total volume of remembered set information. If pointers are evenly distributed in terms
of the direction they point, the remembered sets would be half as big, but it is not clear that
the algorithm leads to such distributions, so the magnitude of this benefit is unclear. Second,
and perhaps more importantly, we do not have to update other area’s remembered sets
when an area is scavenged. This is because none of the scavenged area’s information could
possibly be recorded in the other area’s remembered sets, since such entries would record
pointers from lower-numbered areas to higher-numbered ones, which our directionality rule
specifically does not record.

The toolkit leaves the structure of the remembered sets up to the language implementor.
The toolkit does, however, provide several alternative implementations including remem-
bering slots, objects, cards, or pages. See [Hosking et al., 1992] for performance studies
comparing the available techniques.

4.3 Collecting an Area in Mature Object Space

As previously mentioned, we process areas in round robin order, collecting one area (or car)
upon each scavenge of MOS (which implies that all young generations are also scavenged
at the same time).

There is a check that is always done before collecting a car: if there are no root pointers
to the train whose car is about to be collected, then we check the train’s remembered set. If
the remembered set is empty, then the entire train can be reclaimed with no further effort. We



can readily enhance the remembered set bookkeeping to make the check efficient (though
possibly inaccurate for one round robin cycle of scavenging): record with each car the
number of extra-train references to objects in that car, and also keep a sum across all the
cars (easily updated as cars are collected (removed) or added).

Train A

Train B

Root

Before After

Root

Fig. 1. Leaders in Train B are moved into another train.

When a car is collected we refer to it as a from car. Each reachable object in a from
car has an associated to car which is determined by how the object is reached. First, we
copy any objects in the car referred to by roots into either a new train or some other train
(Figure 1). Which train we choose is a policy decision that does not affect the correctness
of the algorithm. Next, we scan the copied objects and copy over, in typical copy collector
style, all other objects in the from car reachable from objects in the other train.

At the same time we move objects being promoted from young generations into trains
holding references to them, or if they are referred to by roots, into any train. Since the young
generations are bounded in size, the volume of promoted objects is also bounded, so we can
bound the disruption caused by promotions5.

At this point the from car may still contain reachable follower objects, but they must be
reachable only from other cars. Using the from car’s remembered set, we locate all references
from outside the train to objects still in the from car, and move them to the train containing
the reference. See Figure 2.

The only remaining reachable objects in the from car are reachable from other cars in the
same train. These objects are moved into the last car of the train as illustrated in Figure 3.
This leaves only unreachable objects in the car. The space for these objects is then recycled.

This is similar to Bishop’s approach. If the train to which we want to move an object
is full, we add a car to that train and copy the object there. In any case, an object that is
reachable from outside the train being collected is moved to some other train (thus collapsing
garbage into fewer trains and eventually a single train), or (if unreachable) is reclaimed.

5 Setting the size of young generations is a policy decision. The size can be limited by collecting young
generations more often or by promoting more objects into mature space during each collection.



Before After

Train A

Train B

Fig. 2. Followers in Train B reachable from another train are moved there.

Before

After

Car A

Car A

Car B

Train A

Car B

Train A

Fig. 3. Other followers are moved to the last car.

Of course, we scan moved objects, and evacuate any remaining reachable objects from
the car. We collect cars in the order they were linked onto the train. Since we check to see if
an object is referred to by another train before we check references inside the train, objects
referred to directly from other trains will always moved out of this train. This is important
since a train might contain a multi-area cycle of objects that “belongs in” another train, i.e.,
is not reachable from the leaders of this train.

The objects that are referenced during any one invocation of the algorithm are just those
objects that are involved with the car where we are currently focused, either as a member
of the car or by pointing into the car. This locality is known ahead of time so the algorithm
will be able to provide the operating system hints about what locations it will need during
the next cycle of the collector.

Since the algorithm periodically copies all reachable objects in mature space, it reclusters
live objects at no additional cost. During the copying, we can apply sophisticated compaction
and clustering techniques such as those described by Wilson [Wilson et al., 1991]. In addi-
tion, this algorithm avoids the fragmentation that can occur with mark and sweep collectors.



4.4 Why the Collector Works

Having presented the collection algorithm, we now argue that it will eventually collect all
unreachable objects, even large cycles of garbage. Suppose we have some garbage that
threads through a number of trains. As we process the lowest numbered train, car by car,
one of three things will happen to each object: it will be detected as garbage and reclaimed;
it will be moved to another train; or it will be moved to another car of the same train (but not
a car of the new train). The last case will not repeat indefinitely, since eventually we reach a
situation where we have reclaimed or moved to other trains all objects reachable from roots
or other trains, and the remembered set of the current train will be empty. By induction,
then, in one round robin pass of the trains, the garbage structure will be compacted into a
single train. Again, we see that as we process, car by car, eventually the train’s remembered
set will be empty and the garbage then reclaimed.

Each train pass may require objects to be copied several times to other cars in the train,
but each pass through the cars in a train will reduce the number of objects since any object
referenced from outside the train will be moved. By induction each pass through the cars on
a train will either reduce the size of the train or reclaim the entire train.

One way to conceptualize the algorithm is as pulling different threads or chains of objects
apart, until garbage is isolated and then reclaimed. Of course, smaller garbage structures are
reclaimed sooner and with less copying, but the point is that the algorithm is guaranteed to
reclaim garbage in a train or evacuate it into another train within O(n2) car collections, where
n is the number of cars in the train. Since pieces of garbage structures can not be copied
back into a train from which they were evacuated, the algorithm takes at most one pass
through the trains to collect a garbage structure6 while retaining the desired non-disruptive,
incremental behavior.

5 An Example

The next several figures illustrate a simple example of how the algorithm works. For
simplicity we will assume the maximum number of objects that can fit in a car is 3. This
means that any given invocation of the collector will move at most three objects.

In Figure 4 we show three data structures. One structure, consisting of objects R, S, and
T, is reachable from a root. The structure consisting of object A and B is circular garbage
spanning two trains. The other structure, consisting of objects C, D, E and F, forms a large
circular structure of garbage that can not fit into one car. We will show how the structure
C-D-E-F is isolated and freed and how A-B is consolidated and freed.

We start by applying the rules to train B. Is any object in the train reachable from outside
of train B? Both object A and object R are reachable so we focus our attention on car 1.
Leader R is evacuated to another train. The choice of which train is a policy decision. Here
we chose train A instead of creating a new train. Next follower B is reachable from train A
so it is evacuated to train A. Object C is only reachable from train B so C is moved into the
last car in train B. The space used for car 1 is now recycled. Figure 5 shows the state of the
trains after the first invocation of the algorithm.

6 It might require two passes through the objects if the train remembered set information is managed
as previously discussed.



Train A

Train B

Root

A

B

R S T

C D E

Car 1 Car 2 Car 3

F

Fig. 4. The starting configuration

Train A

Train B

Root

AB

R

S T

CD E

Car 2 Car 3

F

Freed Car 1

Fig. 5. Evacuate leader R, group A-B and copy C.

The second invocation of the collector focuses on car 2 in Figure 5. No objects are
referenced by roots, so we look for objects in car 2 referenced from outside train B. Object
S is referenced from train A, so we move S into train A. Since all cars in train A are full,
we need to add another car to make room for S. Finally, we look for objects referenced from
other cars in the train. Object D is moved into the last car of the train. Car 3 is full so we
create a new car to make room for object D. The scanning of object D finds object E in car
2. E is evacuated into car 4. This gives us the state found in Figure 6. Notice how the live
R-S-T structure is being extracted from the dead C-D-E-F structure.

On the next invocation of the algorithm we note that train B is still referenced so we
focus on car 3. Again no objects are referenced by roots. Follower T is referenced by train
A so it is moved into train A. Object T is scanned but contains no references into car 3. Next
we consider references from within the train B. Object F is so referenced so it is moved into
car 4. The scan of object F finds a reference to C. Since car 4 is full a new car is attached to
the end of the train and C is moved into it. At this point (shown in Figure 7) structure R-S-T
has been separated from structure C-D-E-F like pulling spaghetti out onto a fork.

The next invocation of the algorithm notes that train B has no references into it, so the



Train A

Train B

Root

AB

R S

T

C D E

Car 3 Car 4

F

Freed Car 2

Fig. 6. Evacuate follower S and copy D and E.

Train A

Train B

Root

AB

R S T

CD E

Car 4

F

Car 5Freed Car 3

Car 6 Car 7

Fig. 7. Large cyclic dead structures are isolated into one train.

entire train is recycled immediately. Note that we isolated the structure C-D-E-F into one
train where it can be reclaimed even though it is larger than any area we incrementally
considered. This leaves us with only train A.

In Figure 8, we note that train A has a reference from outside the train so we focus on
car 6. Since object R is reachable from a root we move it to another train. In this case we
create a new train C and move R into it. Structure A-B, which used to form a circular list
that spanned multiple trains, is now isolated and is recycled.

Figure 9 does not show recycled train B but does show the new train C that holds object
R. We now consider car 7. Object S is moved into the train C and object S is scanned for
references into car 7. Object T is found and moved into train C. Car 7 can now be recycled.

In Figure 10, what remains is a train with three neatly clustered live objects. These were
the only three reachable objects present at the beginning of the example. The algorithm
successfully grouped all unreachable objects into unreachable trains where they could be
freed without disruption.



Train A

Train B

Root

AB

R S T

Car 6 Car 7

Freed Train B

Fig. 8. Trains with no references can be freed.

Train A

Root R

S T

New Train C

Car 7

Car 8

Freed Car 6

Fig. 9. Evacuate R so cycle A-B can now be freed.

Train A

Root R S

T
New Train C

Car 8

Freed Train A

Fig. 10. Live structure R-S-T is clustered into one train.



6 Popular objects

There is one possible way in which our algorithm as presented might be disruptive. Call an
object popular if there are many references to it. To copy a popular object, we must process
a large remembered set and update many pointers.7 In fact, we cannot bound the number of
references to an object, so we cannot bound the work involved in moving an object.

Our solution is not to move such objects, analogously to the treatment of large objects.
We can detect popular objects (or popular cars, anyway) by considering the size of their
remembered set. If the remembered set size exceeds some threshold, we simply retain the
whole area, logically (but not physically) copying it and having it start a new train (if it is an
engine) or join the newest train (if it is a boxcar). With some cleverness we might be be able
to clear out some objects, but it may not be worthwhile. The remembered set is discarded
and will be rebuilt over time as we cycle through all the other areas. We need only take
care that the threshold that determines popular versus non-popular areas is high enough that
we can still collect highly linked cyclic garbage. Thus, the threshold should be no smaller
than the number of pointers that fit in one area. We have yet to work out the details and
correctness argument.

7 Future Work

We can add Wilson’s temporal opportunism to our algorithm with no problem. Hayes’s
key object opportunism is more problematic since we assumed round-robin processing of
the areas. To process areas in arbitrary order, we would have to remember all inter-area
references (instead of just those pointing in one “direction”) and we would have to deal
with updating remembered sets. We might avoid updating remembered sets by including a
“time-stamp” with remembered set entries, which would allow us to detect and ignore stale
entries, rather than having to remove them immediately. The costs and benefits are unclear.

We envision a distributed version of the mature space algorithm. Though it falls outside
the scope of this paper, we intend to develop a version where each node in a distributed
system holds multiple complete trains. The algorithm does not change. If node A holds a
structure S without a leader, then S will be migrated to some train in node B that holds a
reference to S. If no node B is willing to accept the structure then either the structure will
be discarded or node B and node A would have to agree on some sort of “rent” so node A
could afford to retain S. Such a rental agreement would be equivalent to introducing a root
in node A referencing S.

The MOS approach also seems promising for collect large persistent heaps for persistent
and database languages. Some details would need to be worked out to insure that the
algorithms makes as few secondary storage accesses as possible. It will probably pay to be
opportunistic and do whatever processing one can on parts of the heap that are brought into
main memory by normal application activity, as well as to exploit temporal opportunism to
make more progress during periods of light load, etc.

7 Large objects could also be a problem, but we can put them in large object space just as we do for
the young generations.



8 Conclusions

We have described what we believe is the first efficient non-disruptive copy collection
algorithm for mature objects. The algorithm is incremental, supports fast allocation, and
supports compaction and clustering via copying. We believe this algorithm goes a long way
towards making garbage collection palatable for a variety of languages and long running
applications.

9 Acknowledgements

We appreciate Tony Hosking’s work on implementing the toolkit discussed here. Amer
Diwan and David Moon provided extensive comments on drafts of the paper. Other col-
leagues also read and critiqued the paper. Finally, we thank Barry Hayes for challenging us
to implement key opportunism; it was thinking about that problem that led to our invention
of the algorithm described here.

References

[Appel et al., 1988] Andrew W. Appel, John R. Ellis, and Kai Li. Realtime concurrent collection on
stock multiprocessors. In Proceedings of the ACM SIGPLAN ’88 Conference on Programming
Language Design and Implementation (Atlanta, Georgia, June 1988), ACM SIGPLAN Not. 23, 7
(July 1988), pp. 11–20.

[Baker, 1978] H. G. Baker. List processing in real time on a serial computer. Communications of the
ACM 21, 4 (April 1978), 280–294.

[Bishop, 1977] Peter B. Bishop. Computer Systems with a Very Large Address Space and Garbage
Collection. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, May 1977.

[Boehm et al., 1991] Hans-J. Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel garbage
collection. In [OOPSLA, 1991], pp. 157–164.

[Cheney, 1970] C. J. Cheney. A nonrecursive list compacting algorithm. Communications of the
ACM 13, 11 (November 1970), 677–678.

[Diwan et al., 1992] Amer Diwan, J. Eliot B. Moss, and Richard L. Hudson. Compiler support for
garbage collection in a statically typed language. In Conference on Programming Language Design
and Implementation (San Francisco, California, June 1992), SIGPLAN, ACM Press, pp. 273–282.

[Fenichel and Yochelson, 1969] Robert R. Fenichel and Jerome C. Yochelson. A LISP
garbage-collector for virtual-memory computer systems. Communications of the ACM 12, 11
(November 1969), 611–612.

[Hayes, 1991] Barry Hayes. Using key object opportunism to collect old objects. In
[OOPSLA, 1991], pp. 33–46.

[Hosking et al., 1992] Antony L. Hosking, J. Eliot B. Moss, and Darko Stefanović. A comparative
performance evaluation of write barrier implementations. In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications (Vancouver, Canada,
October 1992). To appear.

[Hudson et al., 1991] Richard L. Hudson, J. Eliot B. Moss, Amer Diwan, and Christopher F.
Weight. A language-independent garbage collector toolkit. COINS Technical Report 91-47,
University of Massachusetts, Amherst, September 1991. Submitted for publication.

[Jones, 1986] Douglas W. Jones. An empirical comparison of priority-queue and event-set
implementations. Communications of the ACM 29, 4 (April 1986), 300–311.



[Lang and Dupont, 1987] Bernard Lang and Francis Dupont. Incremental incrementally compacting
garbage collection. SIGPLAN ’87 – Symposium on Interpreters and Interpretive Techniques
(1987), 253–263.

[Lieberman and Hewitt, 1983] Henry Lieberman and Carl Hewitt. A real-time garbage collection
based on the lifetimes of objects. Communications of the ACM 26, 6 (June 1983), 419–429.

[Moon, 1984] David Moon. Garbage collection in a large Lisp system. In Proceedings of the ACM
Symposium on Lisp and Functional Programming (Austin, TX, August 1984), pp. 235–246.

[OOPSLA, 1991] Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications (Phoenix, Arizona, October 1991), ACM SIGPLAN Not. 26, 11
(November 1991).

[Sleator and Tarjan, 1983] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary
search trees. In Proceedings of the ACM SIGACT Symposium on Theory (Boston, Massachusetts,
April 1983), pp. 235–245.

[Sleator and Tarjan, 1985] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary
search trees. Journal of the ACM 32, 3 (July 1985).

[Ungar, 1984] David Ungar. Generation scavenging: A non-disruptive high performance storage
reclamation algorithm. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments (Pittsburgh, Pennsylvania, April
1984), ACM SIGPLAN Not. 19, 5 (May 1984), pp. 157–167.

[Ungar and Jackson, 1988] David Ungar and Frank Jackson. Tenuring policies for generation-based
storage reclamation. In Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications (San Diego, California, September 1988), ACM SIGPLAN Not. 23,
11 (November 1988), pp. 1–17.

[Weinreb and Moon, 1981] Daniel Weinreb and David Moon. Lisp Machine Manual, third ed.
Massachusetts Institute of Technology, 1981.

[White, 1980] Jon L. White. Address/memory management for a gigantic Lisp environment or, GC
considered harmful. In Proceedings of the ACM Symposium on Lisp and Functional Programming
(Stanford, California, August 1980), ACM, pp. 119–127.

[Wilson et al., 1991] Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Effective
“static-graph” reorganization to improve locality in garbage-collected systems. In Proceedings of
the ACM SIGPLAN ’91 Conference on Programming Language Design and Implementation
(Toronto, Canada, June 1991), ACM SIGPLAN Not. 26, 6 (June 1991), pp. 177–191.

[Wilson and Moher, 1989] Paul R. Wilson and Thomas G. Moher. Design of the Opportunistic
Garbage Collector. In Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications (New Orleans, Louisiana, October 1989), ACM SIGPLAN Not. 24, 10
(October 1989), pp. 23–35.


