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Abstract. Enforcing copyright laws related to circuit design is usually
hard, since discovery and proof of infringements are required beyond rea-
sonable doubt. Proving that a given circuitry is trivially derived from a
patented technique or method is in general a painstakingly slow task,
often requiring reverse-engineering and forensic analysis of fabricated
chips. These techniques are so complex that their application to large
collections of commercial products is almost always prohibitive. Water-
marking is one of several techniques available today to deter copyright
infringement in electronic systems. The technique consists of implanting
indelible stamps in the circuit’s inner structure, while not disrupting its
functionality or significantly degrading its performance. In this paper a
series of methods is proposed for the creation of watermarks at several
stages of the design cycle, from high-level design to layout. Algorithms
are described for implanting robust watermarks to minimize the over-
head and, ultimately, to reduce the impact on performance. Detection
methods are discussed in the presence of infringement. The resilience of
the methods in several tampering regimes is estimated.

1 Introduction

With the introduction of large-scale system-on-chip (SOC) design paradigms,
the VLSI semiconductor industry is undergoing a revolution. As a consequence,
a significant increase in operating speeds and design productivity is expected.
Circuit components will be available to integrators in electronic form rather than
in silicon. Such components, known as virtual components, will be delivered for a
particular application according to a specific contract. Due to the new medium
of storage and exchange, virtual components are prone to infringements and
abuses, i.e. uses beyond the original contracts and/or by unauthorized integra-
tors. Protecting the Intellectual Property (IP) rights of the authors of virtual
component is an emerging multi-disciplinary field encompassing several aspects
of today’s IC design process.

Existing legal devices, such as patents, trade secrets, copyrights, and non-
disclosure agreements are aimed at deterring potential infringement. However,
the real Achille’s heal of the system is currently the enforcement of such rights.



The goal of IP protection as a whole is to provide necessary technologies to
make enforcement a more manageable task while deterring infringement at all
levels of a design. A possible such scheme requires the capability of effectively
detecting and subsequently tracking IP infringement cases. This task can be
accomplished by a process known as watermarking. The method consists of em-
bedding a unique code, or watermark, which exploits the IP’s unique features.
Fundamental requirements for a watermark are that it be (1) transparent, i.e.
not interfering with the design functionality, (2) robust, i.e. hard to remove or
forge, (3) detectable, i.e. easy to extract from the design. The process used for
managing watermarks must not necessarily be proprietary, while the code used
in the encryption process should be secret for any released IP.

There exist three basic types of virtual component, based on its characteriza-
tion through (a) behavioral description (soft IP), (b) structural description (firm
IP), and (c) physical description (hard IP). Hard IPs are generally released as a
plug-and-play component for one or more technologies, while firm and soft IPs
are partially implemented versions of a design, thus a number of degrees of free-
dom are still available to the integrator and potentially all technologies can be
used for implementation. Due to the diversity of the implementation landscape
of IPs, their protection is also a complex task.

Recently, watermarking has been proposed to protect digital audio-visual
IPs. The literature is very extensive on the subject. Here we mention only two
works [1, 2] because they allow us to introduce some of the techniques used in
this paper. The main method described in [1, 2], though with small variations,
essentially consist of superimposing a pseudo-random noise to the signal of the
record. Such noise, though completely inaudible, can be easily detected via digital
signal processing methods.

Schemes based on watermarking have been recently proposed for electronic
IPs as well. In [3, 4] the watermark assumes the form of a extraneous bit stream,
hidden inside large Field Programmable Gate Arrays (FPGAs). The watermark
is stored in some of the unused configurable control logic blocks of the FPGA.
Each unused lookup table is responsible for storing a single bit in the code. All
the configurable control elements used in the watermark are then routed in the
design for mimetic purposes. This is done in such a manner to avoid any impact
on the original functionality. The method has later been refined in [5] where
the signature is modified before being embedded so as to mimic the statistical
properties of the existing design, hence reducing detectability. One issue in our
opinion still remaining in this approach is the fact that to date watermarked
lookup tables do not reflect any functionality, thus representing a potential weak
point in the scheme.

In [6, 7] it was proposed to incorporate several watermarks, distributed over
all the abstraction levels of a given design. The techniques differ depending on
the abstraction level they are applicable to. At the physical design level, the
watermark assumes the form of a set of topological constraints governing the
relative position, orientation, and, possibly, scaling of the devices or gates of the



circuit. At structural and RTL level, constraints on the structure of a selected set
of nets are used to represent the watermark. Watermarks are created at multiple
levels of hierarchy simultaneously. This is provably a very robust and flexible
techniques since it requires the elimination of watermarks placed at every level
of abstraction. Erasing one level, by resynthesizing a logic circuitry for example,
may erase the watermarks created at that abstraction level and, possibly, at
lower levels, while leaving higher abstraction levels (and their watermarks) in-
tact. As expected, this is the a particularly costly and complex scheme. Another
advantage of this scheme is the fact that forgery can be traced and a history of
tampering actions can be derived.

Several authors have proposed to use other design constraints to implant
watermarks. In [8] fixed placement and delay constraints implemented the wa-
termark. In [9] a sequence of nodes in a multi-level logic function was permuted
according to a seeded pseudo-random selection scheme. In [10, 11] schemes have
been proposed to implant watermarks in regular sequential functions by modi-
fying the original function in a structured fashion. In [8], the authors proposed
two methods for embedding signatures in a design. The first method, general in
nature, can be applied to several abstraction levels. It consists of adding clauses
to a satisfiability problem. For convenience, the authors restricted themselves
to a subset of the problem known as (3SAT), where each clause added to the
original problem codes a sequence of symbols or a section of the signature to be
embedded. IF a design can be represented in terms of a 3SAT formulation, then
it will be possible to embed an arbitrary signature in it. The second method is
applicable to firm and hard IPs only, as it consists of formulating the signature
in terms of a set of delay sub-constraints which are found in delay constrained
signal paths. Constraints on floorplanning block relative locations are also used
to embed a signature.

In the case more than one party is involved in creation of an IP, any of the
above techniques does not guarantee that the infringements can be tracked. Wa-
termarking should be performed simultaneously at various levels of abstraction
[6]. The goal is to improve the robustness of the approach and to allow quick and
accurate tracking of the last licensee, who ultimately caused the infringement.
In this paper we will describe a consistent strategy for incorporating watermarks
in an electronic circuit at all abstraction levels, i.e. in all phases of a design flow.

At least two types of watermarking schemes exist. The first scheme, known as
active watermarking, consists of integrating the watermark as a part of the design
process, thus allowing the creation of an arbitrarily high number of uniquely
watermarked designs. In the second scheme, known as passive watermarking or
fingerprinting, one creates a unique and compact representation of a design at
any abstraction level. This representation, known as digital signature, can be
used to track infringement after it occurred by simply extracting the signature
from an existing design and comparing it with the original one. To avoid false
claims, a third party organization should maintain a database of all registered
signatures for which protection is sought [12]. Both approaches are robust, since



the deletion of the watermark results, with high probability, in the removal of
wanted functionality.

IP protection based on watermarking consists of two phases: synthesis and
detection. The synthesis phase is fully characterized by (a) a set of algorithms
translating design features onto a unique watermark, and (b) Pu, the odds that
an unintended watermark is detected in a design. The detection phase is fully
characterized by (c) Pm, the probability of a miss and (d) Pf = Pu, the prob-
ability of a false alarm. The set of algorithms proposed in this paper are all
classifiable based on the above criteria.

In order for any protection scheme to be effective it is necessary to define
how design flows must be modified, if at all. Moreover, to allow effective infringe-
ment detection, a well-defined detection protocol must be set up. A well-known
example of such protocol is the one used by law enforcement organizations to
identify criminals based on natural fingerprints and, more recently, DNA samples
found on the scene. In the case of IP infringements, all existing prevention and
detection methods are generally used simultaneously to ensure maximal impact.

The paper is structured as follows. Section 2 describes methods to implant a
watermark at the highest level of abstraction, i.e. at the Hardware Description
Language (HDL) levels. Section 3 outlines the creation of a watermark at an
intermediate level, i.e. at a structural level. Section 4 describes watermarking
techniques at the lowest levels of abstraction, i.e. at the physical implementation
of the circuit. A number of examples are presented in Section 5.

2 HDL Level Watermarking

Most HDL representations contain one or more sequential functions. In its most
general form, a sequential function is a function that transforms input sequences
into output sequences. Regular sequential functions are functions such that at
any stage the output symbol depends only on the sequence of input symbols
which have been already received. Any regular sequential function operating on
finite input/output sets can be specified by means of a Finite State Machine
(FSM).

A FSM is a discrete dynamical system translating sequences of input vectors
into sequences of output vectors and it is generally represented by State Tran-
sition Graphs (STGs) and State Transition Tables (STTs). A STG is a graph
whose nodes represent the states of the FSM and whose edges determine the
input/output conditions for a state to state transition. By convention, an edge
is labeled by the input/output pair causing the transition.

In real-world sequential designs, although not explicitly specified using STGs
and STTs, FSMs appear in different forms. For example, case statements in
VHDL and Verilog HDL are represented as FSMs using a STG or STT by
HDL compilers. FSMs also appear in embedded software, especially to define the
device drivers and interface protocols. In large sequential designs, usually several
such small FSMs exist which can be used to watermark the entire design. By



watermarking all or a selected subset of these FSMs, tampering resilience can
be reached while ensuring the method’s feasibility.

The essence of this technique is to find an unused input/output symbol se-
quence and use it as the watermark. This task can be performed by using the
STG representation of the regular sequential function. By visiting every state
and finding the unused input/output symbol pairs, one can determine the can-
didate subset of such symbol pairs at each state in the FSM.

After calculating the required input/output symbol sequence length which
satisfies given uniqueness constraints, i.e. constraints on Pu, one can generate
a sequence by selecting enough input/output symbol pairs. If the found in-
put/output symbol pairs are not sufficient, then one can create extra ones by
augmenting the input and/or output alphabets. The estimation of Pu and the
derivation of the length of the input/output symbol sequence can be found in
[13].

Finally, by connecting the states, one can generate a trace in the FSM. Some
selections of input/output symbol sequences and the states may generate large
FSMs.

To capture the essence of the proposed techniques, consider the example of
Figure 1. The original FSM is depicted in Figure 1(a) in terms of its STG. The
FSM has two input bits and one output bit. Assume one has decided that a
watermark of length 2 is satisfactory and suppose the proposed watermark is
represented by input/output sequence ((00,1)(11,0)). Figure 1(b) illustrates the
new FSM obtained after augmentation and state selection.

Assume that the input/output pairs available are not satisfactory. Then,
in this case, the number of inputs is first incremented by one (for illustrative
purposes). Two extra transition relations can hence be added. The resulting
FSM is depicted in Figure 1(c).

In the remainder of the paper we will restrict ourselves to deterministic FSMs,
using the same notation of [14] and [15].

Definition 1 Let a FSM be a tuple M = (Σ,4, Q, q0, δ, λ), where Σ and 4 are
respectively the input and output alphabets, Q is a finite set of states, q0 ∈ Q
is the initial state, δ(q, a) : Q × Σ → Q

⋃

{φ} is the transition relation, and
λ(q, a) : Q×Σ → Q

⋃

{ε} is the output relation.

q ∈ Q, a ∈ Σ, b ∈ 4 refer to a state, an input and an output, respectively. φ
denotes an unspecified next state while ε is an unspecified output. A FSM can be
identified by the mapping of all its input and output sequences, or IO mapping.

Definition 2 An IO mapping is defined to be the sequence of input/output pairs
((a1, b1), (a2, b2), . . . , (ak, bk)) ∈ (Σ× (4

⋃

{ε}))k specifying the output sequence
of the FSM for a given input sequence.

Let us define Σ∗ and 4∗ as the sets of all strings in Σ and in 4, respectively. Let
s = (a1, . . . , ak) ∈ Σ∗ be an arbitrary input sequence and let d = (b1, . . . , bk) ∈
4∗ be an output sequence. Moreover, define λ(q, s) to be the output symbol of



Fig. 1. An example of two possible ways of watermarking a FSM: a) original FSM; b)
adding transitions; c) augmenting input and adding transitions

the FSM and δ(q, s) its state when s has been applied in state q. String s is said
to be contained in M iff a state reached by applying s to state q0 is still in M ,
i.e. iff δ(q0, s) ∈ Q.

Completely specified FSMs (CSFSMs) contain every element of set Σ∗, i.e.
every input sequence in Σ∗ results in a unique output sequence in 4∗. An in-
completely specified FSM (ISFSM) is one in which there exist some transition
relations with unspecified destination and/or output, i.e. there exist a set of
input sequences for which no output is specified. Call Iu ⊂ Σ∗ such set. Con-



versely, there exist a set of output sequences which can be produced only by
unspecified input sequences. Call Ou ⊂ 4∗ such set. The problem of minimiz-
ing the number of states in CSFSMs can be solved in polynomial time [16]. For
ISFSMs the problem is known to be NP-complete [17]. Algorithms for reducing
such machines are proposed in [14, 15, 16].

Let M ′ = (Σ′,4′, Q′, q′0, δ
′, λ′) be an ISFSM and PM ′ be the set of all possi-

ble completely specified implementations of M ′. Thus, for each p ∈ PM ′ , every
element of Iu and Ou is eventually associated to an element of 4∗ and Σ∗, re-
spectively. Let us select an arbitrary sequence sσ ⊂ Iu and the corresponding
output sequence dσ ∈ 4∗. Let tuple σ = {sσ, dσ}, call it IO signature.

Consider first an active watermarking regime. The problem of synthesizing
a watermark for an ISFSM M ′ is equivalent to that of finding a minimum sized
machine M ′′, whose specified IO mapping has been augmented by an IO sig-
nature σ on specification of M ′. It is also required that robustness constraint
specified as Pm and Pu. be satisfied. The problem is formulated as following

Problem 1. Minimize size of M ′′, s.t.

Pm ≤ Pm , Pu ≤ Pu , (1)

where Pm and Pu are constraints on the watermark robustness. Note that the
size is measured in terms of added states and logic.

Problem 1 can be partitioned into two tasks. The first task consists of com-
puting the size of IO signature σ so as to satisfy the constraints on the confidence.
The second task is that of finding the actual IO signature so as to minimize
the overhead of M ′′. The IO signature must be generated with some degree of
randomness to ensure that, using the same algorithm one cannot generate an
identical code. The randomized algorithm is controlled by key k. The key k is
provided by the user to control the generation of the IO signature and of the
sequence of states activated by the it. k is used to select from n best state se-
quences and IO signatures. In this case, the minimality of the overhead might
not be guaranteed.

In case keeping the IO signature secret were not possible, then one of the
following approaches could be used. The authentication of the generated IO
signature can be achieved by registering the key of a specific design in a third
party database, similarly as in copyright and trademark registration.

An alternative solution is that of explicitly creating an IO signature based on
the method proposed in [11]. The user specifies a string which is converted into
a number by standard one-way hash function like MD5. In this manner, one can
guarantee that there will be no two identical IO signatures generated by two dif-
ferent strings and it is computationally intractable to obtain the string from the
IO signature. Using this signature, one can find a state sequence that minimizes
the overhead, even though an absolute minimum can not be guaranteed.

Synthesizing watermarks in CSFSMs requires first that the machine be trans-
lated onto a ISFSM. This can be accomplished by extending the input and/or
output alphabets Σ and 4. The resulting machine is then handled by solving



Problem 1. Hence, the procedure can be seen as a preprocessing step to a general
watermark synthesis step.

A passive watermarking scheme consists of generating signature σ from a
given ISFSM without modifying the machine itself. The process consists of first
minimizing the FSM using, for example, the techniques proposed in [14], thus
synthesizing a CSFSM. Then, a subset of all the sections of the non-specified IO
mapping are designated as a IO signature. Randomization of the signature, con-
trolled by key k, used to select unspecified IO sequences. Hence, the probability
of accidentally synthesizing the same watermark are bounded by the degrees of
freedom of the algorithm and/or by its level of randomization.

At least two approaches exist to the generation of IO signature σ. The first
involves the generation of new transition relations in the FSM’s STG or STT,
while the second calls for the augmentation of Σ,4 or Q. All these modifications
are likely to but do not necessarily increase the size of the machine.

Let q′ ∈ Q′ denote a state in an ISFSM M ′ and let q′0 be its reset state. Let

I
(q′)
u be the set of all the input configurations in q′ for which no next state is

specified, call such configurations free. Define U ′ to be the set of all the states

with incompletely specified transition relations, i.e. U ′ = {q′ ∈ Q′ | |I
(q′)
u | > 0}.

The total number of free input configurations n is bounded as follows

n ≤ nmax =
∑

q′∈Q′

|I(q′)
u |. (2)

Every state q′ ∈ U ′ must necessarily be reachable |I
(q′)
u | times, using each time

one of the remaining free input configurations in I
(q′)
u . Suppose that a sequence

x exists of all the visited states, call s the input sequence which forces x. The
resulting output sequence d, of length n, will be one of [2|4|]n possible imple-
mentations. Hence, the odds that an identical sequence be produced by M is

Pu =
1

[

2|4|
]n
− 1

. (3)

The second term of the denominator is given by the fact that one of such sequence
will result from the given input sequence in the CSFSM in PM ′ . By setting
Pu ≤ Pu and solving (3) with respect to n one obtains

n ≥ nmin =
1

| 4 |
log2

∣

∣

∣

∣

1 +
1

Pu

∣

∣

∣

∣

. (4)

In some cases it is not possible to satisfy both (2) and (4) to meet specifica-
tion (1), i.e. nmin > nmax. Hence, either (1) must be relaxed and/or nmax must
be increased.

Suppose constraints (2) and (4) are satisfied, then an output sequence dσ ∈
4∗ and the states which can produce it must be selected. The required output
is generated by an n-long sequence of states in U ′. The sequence can be seen
as a path pσ = (q′0, u

′
1, . . . , u

′
n−1) covering a subset of the states in U ′, with or



without repetition. It is assumed, but it is not necessary, that q′0 ∈ U ′. If this
were not the case, a different first state, say q′′0 ∈ U ′, could be selected for pσ

and input sequence sσ would need to be augmented by an input sequence s such
that δ′(q0, s) = q′′0 . The generation of pσ does not contribute to the probability
of coincidence Pu, but it does determine the impact state minimization will
have on the final machine. The second factor impacting the effectiveness of the
optimization is the selection of input sequence sσ .

For a given output sequence dσ , input sequence sσ is generated in two steps:
selection of pσ and derivation of sσ. Sequence pσ represents a path through n
of the states in U ′ from the original STG. Every time a state u′ is touched by

the path, it looses one of its |I
(u′)
u | free input configurations. We propose to use

an algorithm based on the Euler path search which can be targeted to minimize
the number of visited states and/or to maximize the number of remaining free
configurations per state.

As an illustration, consider the ISFSM example given earlier. For each state
assume there exist three out of four free input configurations. Assume that n = 2,
then two possible paths pσ are shown in Figure 2 (a) and (b). In the example of
Figure 2 (a) the number of inputs was unchanged, while in 2 (b) it was incre-
mented by one. Consider the example of Figure 2 (a). Path pσ, represented in

1-0/0

q3 q2

q1q0
110/0

001/1

110/0

000/1

000/0

11/0

q3 q2

q1q0

00/0

00/1

1-/0

00/1

01/1

a) b) 

Fig. 2. Two possible paths pσ for a given U ′: a) path based on minimum visited states
criterion; b) path based on maximum remaining free configurations

bold, is selected by maximizing the number of remaining free configurations per
state. Note that the path may begin in a state other than the reset state q0. In
this case, one must additionally find the input sequence leading to pσ ’s initial
state.

Once pσ for Figure 2 (a) has been selected, input sequence sσ is derived from
a path on a decision tree rooted in q0 and whose leaves correspond to state
u′n−1. The solid bold line in Figure 3 represents pσ , while the dotted line shows

the path needed to reach pσ’s initial state. At each level i exactly |I
(u′

i
)

u | < |Σ|



q0

u1

u2

u3

00 01 11

00 10
01

01

Fig. 3. Decision tree to compute sσ

branches exist. Each branch represents the decision of using a certain free input

configuration at a given state. There exists Πn
i=1|I

(u′
i
)

u | possible paths connect-
ing the root state q0 to u′n−1. One or more of these paths is associated with the
smallest CSFSM M ≡ M ′. The problem of finding such path is NP-complete
since in best case the machine associated with one path must be synthesized,
which in itself is an NP-complete problem. As an illustration, if the path repre-
sented in bold in Figure 3 is used for ISFSM M ′, the resulting IO signature is
{sσ, dσ} = {(1, 1, 0, 0, 1, 0); (0, 0, 1)}.

Several alternatives are proposed for the generation of the input sequence
sσ to minimize overhead. The first method consists of performing an exhaus-
tive search of the decision tree. For each path a CSFSM is synthesized and the
smallest machine is selected. The second method is a Monte Carlo approach, in
which a set of input sequences are selected at random from all the feasible ones.
The CSFSMs corresponding to such sequences are generated and the smallest
one is selected. The third method is based on a branch-and-bound search. At
each level of the tree an estimate is computed for the machine associated with
each sub-tree underlying any decision. Such estimate is computed using a Monte
Carlo approach. All the sub-trees with higher estimates are pruned, while the
surviving trees are explored into the next level, i.e. the next state of pσ. The
search stops at the leaves. The complete algorithm for active watermarking in
FSMs is described as follows:

1. if the FSM is CSFSM then augment Σ
2. compute the minimum size of sσ, nmin, from Pu

3. if nmin > nmax then augment Σ or 4
4. using k, randomly generate new output sequence dσ ∈ 4∗

5. compute path pσ

6. compute input sequence sσ

As a byproduct of Step 6 the FSM is synthesized. A passive watermarking scheme
is applied to ISFSMs only. The method assumes that randomization can be in-
troduced by the FSM synthesis. It consists of converting the original ISFSM onto



a CSFSM using a given optimization criterion. Then, an IO signature is selected
at random from all the possible ones available. The only way to synthesize a
CSFSM from the original ISFSM which contains an identical IO signature is to
use the same synthesis engine with an identical set of parameters and optimiza-
tion criteria. Hence, Pu can be derived in this case as the inverse of all possible
machines which can be generated from an ISFSM of a certain size and structure
with the given engine.

Detecting a signature σ entails applying input sequence sσ to the machine
and observing the output sequence d. See Figure 4. If no tampering has occurred,

s

d

Pm/PfM* EC

Fig. 4. Detection of signature under some tampering

then necessarily d = dσ and Pm = 0, i.e. no misses are possible. To properly
analyze the effects of tampering, let us consider the following scenarios:

1. specifications on the IO mapping of the original machine are known,
2. IO mapping of the original machine is not known but the STG of the modified

machine is known,
3. no STG is known.

In case (1), infringement cannot be prevented, since the aggressor can resynthe-
size the FSM from specifications using techniques proposed, e.g. in [15].

In case (2) the aggressor may either: (a) modify state transition relations,
i.e. changing the output or next state associated with a transition relation, or
(b) apply the techniques proposed in this paper to watermark CSFSMs. In both
cases, part or the totality of the watermark will be unchanged, but it may be
corrupted locally. Tampering (a) may in fact result in a change in the function-
ality of the machine, it is therefore counterproductive. Tampering (b) will only
result in literal swaps and deletions within pairs of reset states, similar to gene
deletion within DNA sequences.

To combat tampering (2)b, we propose an approach based on the concept of
genome search. Such approach was successfully used in topological watermarking
[6, 7]. The method is essentially a selective pattern matching. It is assumed for
simplicity that the output dσ is a chain of sequences all rooted in a single reset
state q0. This restriction is however not necessary as multiple reset states can
be used. Suppose the IO signature is

pσ = (q0, q2, q1, q0, q3, q4, q0, q1, q2, q0)

{sσ, dσ} = { (01, 01, 00, 10, 01, 00, 11, 10, 01); (0, 1, 1, 0, 1, 0, 1, 1, 1) } .



Suppose that tampering has removed or corrupted the median section of dσ ,
i.e. (0, 1, 0), then the sections of the IO signature which are still intact can be
matched to σ using the genome_search algorithm described in detail in [6]. The
algorithm returns an estimate of the probability that the design contains in fact
watermark σ. Note that by construction, it is known when the reset state is
reached. Hence, the boundary symbols or operons of each “gene” are known.
Also note that if this or any other error correction algorithm is used, then our
estimation of Pu is un upperbound on the true value, i.e. it is an optimistic
estimate. It this case changes to the way Pu is estimated should be applied
based on the details of the algorithm. An alternative method is that of using
correction schemes such as CRC to detect and correct corrupted subsequences.

Finally, consider case (3), let us analyze the possible attempts to remove the
watermark using netlist manipulations. Obviously, it is not possible to foresee
all possible tampering techniques. Instead, we will analyze those that are more
likely to be performed under following assumptions.

Assumption 1 A netlist or a structural HDL description is available for tam-
pering.

Assumption 2 All input and output pins are well documented and extra I/O
pins (if any) used for watermarking are introduced as extra test pins and/or
signal pins.

In [11] it has been proven that generating a STG from a given netlist is an
NP-Complete problem. For medium and large scale FSMs, it is unlikely that
the STG can be obtained from its netlist. Therefore, if the netlist is obtained
by reverse engineering, the aggressor has no other options but to perform one
of the following modifications to remove or hide the watermark: (a) embed the
FSM into a bigger one, (b) delete some of the circuitry related to the test inputs,
(c) Add dummy I/O bits and/or shuffle the bit order using unknown mapping
functions.

In scenario (a), the aggressor tries to hide the watermark under a wrap to
mask the original IP from input/output probing. The watermark is still intact
but it may not be easily observable, if at all possible. In this case, the detection
technique proposed earlier cannot be exploited. However, simulation or on-chip
measurements can be used to logically insulate the original IP from the wrap.

In scenario (b), by knowing that the watermark should be related to the extra
test pins, the aggressor might try ro remove the registers and circuitry related
to those inputs. In this case. the attempt would damage the original behavior
because the IO signature is an integral part of the FSM. Therefore, this attempt
shall not be successful.

In scenario (c), the aggressor adds new dummy input and/or output bits
and dummy circuitry to the FSM. In this case IP forensic can use the following
exhaustive method. Let us assume that there were n input bits and m output bits
in the original watermarked FSM. Moreover assume that dn and dm extra bits



have been added. Then, one needs to apply the input sequence to each possible
subset of n bits of the n + dn inputs. The output is observed to reconstruct the
correct sequence. Although it is time consuming, it is guaranteed that the IO
mapping can be found exactly, since the watermark is intact.

3 Structural or Netlist Watermarks

In the following two sections it is useful to introduce a mathematical formalism
which helps describing the watermarking algorithms being used. Let Σ∗ be the
set of all strings in a finite alphabet Σ, e.g. Σ = {0, 1}. Assume there exists a
compact representation or signature for a given design at some abstraction level.
Let s ∈ S be one of all possible physical implementations of the design, let σs be
its signature. Define signature mapping S → Σ∗ : M as the mapping of a subset
of all the layout features onto a signature σs = M(s). Let us define S → S : F
as a mapping which transforms implementation s onto a new implementation
s′ = F(s).

The structural level of abstraction is an intermediate representation of a
circuit. Generally, after a compilation phase behavioral representations can be
converted into a physical implementation by constructing the symbolic connec-
tivity map of all the necessary electrical devices. Such map is usually represented
in terms of a schematic or a netlist.

For instance, a schematic or netlist can be represented through a graph
G(N, E). The nodes of the graph correspond to general blocks, or single de-
vices, as well as nets. The (directed) edges define connectivity. Let us define H
as the set of all blocks in Ω. Let N be the set of all nets, with E = H ∪N . Let
On be the set of edges in net n ∈ N which are connected to an output. The
set of edges leading to an input is called In, while the set of edges connected
to a high-impedance pin or pass transistor gate is called Pn. For simplicity, we
assume that exactly one edge can be connected to an output, i.e. |On| = 1, this
condition is however not necessary. The pin number |n| and the type and port of
the gates connected by n are necessary but not sufficient properties to uniquely
identify the net. A set of constraints on sets On, In and Pn for each net, can be
imposed so as to make these properties define the net uniquely, to all practical
purposes.

Consider the gate-level circuit in Figure 5(a) and the corresponding connec-
tivity graph of Figure 5(b). Let N ′ ⊆ N = {n ∈ N : |n| is prime}. Next, impose
the following constraints on each net n′ ∈ N ′:

O(n′) = {gates of type ωO(|n′|)};
I(n′) = {gates of type ωI(|n′|)}; |I(n′)| = `I(|n′|);
P(n′) = {gates of type ωP(|n′|)}; |P(n′)| = `P(|n′|),

(5)

where ωO(), ωI(), ωP(), `I() and `P() are net size-dependent parameters, gener-
ated using, for example, a parametrized pseudorandom sequence determined by
key k.
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Fig. 5. (a) Gate-level circuit; (b) Connectivity graph

It is trivial to infer that an arbitrary signature can be implanted in the
structure of the netlist. Such signature can be at the hart of the watermark,
which, in this case, is known as a structural watermark. In the case of Figure 5,
Equations (5), written compactly, form the signature for net C as: σC(C) =
(latch; a, d, c, 3;−, 0).

4 Watermarking Physical Implementations

Let us describe the particular mapping used in this paper to generate design
signatures from given physical implementationof a circuit. The same technique
can be used to implant an arbitrary signature in terms of an extraneous active
or inactive circuit. Let us assume that the granularity of the original circuit is
given. As a result, the set of fundamental components, such as transistors or
standard cells, is determined. Call such components atomic blocks and Ω their
set. In s, every component ω ∈ Ω may have multiple instantiations.

A layout implementation defines a set of all relative positions and orientations
of every component instantiation in the circuit. Interconnect can be represented
in a similar fashion where components are replaced by pins, Steiner points, and
bends. A composition, containing the details of all relative positions and ori-
entations, is called topology. Let us now use the layout’s atomic blocks, pins,
Steiner points, and interconnect bends, which are in turn represented by a set of
primitives called bubbles, as proposed in [18]. A bubble is a point associated with
a given layer. Let B be the set of all bubbles in the design. Every atomic block
is mapped onto m distinct bubbles according to a specific mapping Ω → B : B,
where m is a finite natural number. For simplicity, but without loss of generality,



suppose that m is constant over Ω. Note that |B| grows linearly with the number
of atomic blocks and pins.

Paths can be represented by a continuous curve of finite length which begins
and ends in a bubble. Such curve is known as rough routing [19]. The design rules
of a given technology can be seen as minimum spacing constraints between the
perimeters of bubbles and paths. Alternatively, after proper scaling of the design
rules, one can consider bubbles as points, and paths as curves of zero-thickness.
For simplicity we have adopted this convention. Let topological routing be an
equivalence class of rough routings connecting its pins. Two rough routings of
a wire are equivalent when one can be obtained from the other by continuous
deformation with no violations of any of the scaled design rules. Assume that
every pair of bubbles is connected by an edge, then if a topological routing crosses
such an edge, it is said to intersect topologically the edge.

If every region in the layout is partitioned in simply connected regions, each
containing no bubbles, then such regions are called simple regions. Figure 6(a)
shows an interconnect and some obstacles, while Figure 6(b) depicts the corre-
sponding partition into simple regions. The rough routing connecting bubble 4
to 0 can be represented in terms of the sequence of all topological intersections.
In this case such a sequence is: σ = (23,13,37,36,38,58,59,50). Note that symbol
Xi Xj represents the topological intersection of the rough routing with the edge
spanned by bubbles Xi and Xj . Define E` as the set of all simple regions in a
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Fig. 6. Bubbles and rough routings

given layer ` and a planar subset T` ⊂ E` as one in which distinct edges do not
intersect or they intersect at only one of the vertices. In addition, if T` has a
convex boundary or convex hull, it is said to be maximally planar. Under these
conditions, T` is called triangulation [20]. Let us now assume that an arbitrary
triangulation T` is in place for each layer. Let B` be the set of all the bubbles



associated with T`. For convenience, although not needed, let us set four bubbles
at the extremities of the union of all the layers, so as to encompass every layer.

Sequence σ is a non-unique representation of all the rough routings associated
with the class of this topological routing. Hence, to make such representation
resilient to minor modifications, it is necessary to convert it onto a canonical
form. This is done simply removing adjacent identical edges, which form so-
called loops. The unique canonical form of an arbitrary topological routing τ is
called topological signature στ . The complexity of loop removal is higher when
it involves a large number of rough routings. The process in this case must be
recursively performed.

Triangulations are not unique. However if the method used to obtain a certain
triangulation is an invariant, then the signature is also invariant for a certain
design. Figure 7(a) for example shows a simple layout based on standard cells

(a) (b)

Fig. 7. (a) Layout; (b) Associated triangulation

organized in two rows with the corresponding interconnect. Figure 7(b) shows
a possible triangulation of the associated topology. The computational scheme
and circuit topology determine the final result [20].



Recall that the uniqueness of a signature is defined by probability Pu, its
robustness by Pm. Topological intersections are unique for a given design and
triangulation, while a triangulation is determined by the utilized algorithm and
by set B. For each layer the number of possible triangulations grows factorially
as (|B`| − 1)!/3!, hence it is reasonable to choose a layer `∗ which maximizes
|B`| over all layers. By a conservative estimate, NT , the total number of possible
triangulations over all layers, is then NT ≥ (|B`∗ | − 1)!/3!. Suppose now that
all N`∗ topological routings in `∗ consist of Ni i-terminal nets, i = 2, . . . , Nmax.
Then, all N`∗ topological routings can be represented in terms of N ′ two-terminal
sub-routings, with N ′ =

∑Nmax

i=2 Ni (i − 1). As a consequence, the number of

possible topological signatures can be computed as Nσ ≥ NT (N ′

2 ), hence the

estimate of Pu becomes Pu ≤
1

Nσ

. For example, suppose that for a given design
|B`∗ | = 20, N`∗ = 10, N2 = 3, N3 = 5, N4 = 2. Then, Nσ ≥ (20 − 1)!171/3! =
3.5× 1018, hence Pu ≤ 2.9× 10−19.

In the absence of tampering Pm = 0, i.e. the signature extracted from a
topology matches 100% with the one which is registered in the signature bank.
If tampering has occurred, it needs to be modeled in order to properly estimate
its effects on Pm. Let us consider the following tampering attempts: (1) routing
modification, (2) atomic block modification, and (3) atomic block move and/or
addition/deletion. Attempt (1) does not change triangulation, however it may
cause changes in the signature. Such changes are of three basic types: symbol
addition, deletion and swap. More than one symbol may be involved in the
change at any time, however, when this occurs, the change can be modeled in
terms of a composition of simple symbol modifications. Attempts (2) and (3)
may change the triangulation. However, their effects can be modeled in terms of
simple symbol operations.

Define Pr as the probability that a symbol change occurs. Then, the proba-

bility that a signature of size t mutates is Pt =
∑t

j=1(
|B|
j

) [Pr]
j × [(1−Pr)]

|B|−j .

Hence, for example, if t = 1 and Pr = 10−5, then Pm ≤ 9× 10−6.

Signature detection consists of the following phases

1. bubble extraction

2. transformation inference

3. bubble matching

4. triangulation

5. signature computation

The initial layout is flattened and all its layers are extracted and deconstructed
into polygons or basic standard cells. Using standard slicing techniques [21], the
layout is partitioned in rectilinear areas encompassing exactly one atomic block.
The complexity of this operation is O(|Ω| log|Ω|) where |Ω| is the number of
objects in the layout. Using mapping B, the design is entirely converted into a
bubble-based representation in O(|Ω|) time (phase 1).



In order to detect the presence of blocks with known signatures embedded in
the design, one has to infer the most likely orientation of every candidate block.
This operation is performed by matching complex interconnect patterns present
in both the host and the embedded design. Consider the designs of Figure 8.

(a) (b)

Fig. 8. Transformation inference: (a) embedded, (b) host design

Suppose the interconnects shown in shaded lines are to be used to determine
the orientation of the embedded circuit within the host. Let us first catalog all
the interconnects present in both layouts in order of size (equal to the num-
ber of interconnect segments) in O(n log n) time. Then, for each pair of inter-
connects of identical size, a transformation (4x,4y, θ, sx, sy) is derived which
maximizes the number of points that can be transformed from the embedded to
the host design. Note that sx, sy represent a possible scaling operation. Deriving
(4x,4y, θ, sx, sy) requires the solution of a system of eight linear equations for
each pair of candidate interconnects in the worst case. Then, the most frequently
occurring transformation is selected. The solution time of each system of equa-
tions is constant, the worst case time complexity is therefore quadratic in the
number of interconnects of identical size. (phase 2).

Next, the bubble representation of the host needs to be matched with that
of the transformed embedded design. This procedure is accomplished by super-
imposing the designs and by assigning every bubble in the host to exactly one
in the embedded design which minimizes the Euclidean distance. The search is
initially performed within a zero range, which is augmented multiple times by
a unit length until a neighbor is found. Figure 9 shows the range search process
(phase 3).

Finally, using optimal algorithms, a Delauney triangulation is computed in
O(|B| log|B|) time for both designs [20, p. 241] (phase 4). The line segment inter-
section algorithm is used for the computation of the edges being intersected by
each topological routing. The complexity of this operation is again O(|B| log|B|)



Fig. 9. Principle of range search

[20, p. 285]. The signature is derived from this information in a straightforward
way (phase 5). In summary, the complexity of entire signature detection process
is O(n log n), where n is the number of atomic blocks, pins and Steiner points
in the topology.

5 Examples

5.1 HDL Level

In our experiments we have used FSMs from the IWLS93 benchmark set. The
tools were implemented in C/C++ and run under UNIX and Linux operating
systems. Watermarking was performed on ISFSMs as well as CSFSMs. Con-
straint Pu was selected so as to require, in some cases, expansion of Σ and/or
4. The increase in the number of states |Q| and input/output bits |Σ| is ex-
pressed by the area estimates. The estimates are based on technology mapping
obtained with Sis[22] using the Msu script. Table 1 lists all relevant experimental
data and specifications on the robustness of the watermark. For the FSM min-
imization stage in the algorithm the tools Stamina and Nova[14] were used.
The area results are based on the actual circuit implementation after technology
mapping obtained via Sisand relate to the number of gates.

As expected, larger FSMs require less overhead for comparable robustness.
Note, as shown in benchmark ex1, that overhead can be traded for smaller
values of Pu. These overhead results are comparable to the ones obtained in
[11]. The overhead of benchmark s27 was extremely high due to the increase
of the output alphabet. Such expansion was however necessary to boost the
watermark’s confidence.



circuit # states # I/O # I/O chg. nmin orig. FSM Monte Carlo Pu Overhead
area CPU area CPU

s27 6 4/1 1/3 9 632 0s 1.53k 0.1s 1.4× 10−11 143%

bbara 10 4/2 1/1 10 1.16k 0.1s 2.01k 0.1s 9.3× 10−10 73%

dk14 7 3/5 1/0 7 1.48k 0.1s 1.84k 0.1s 2.9× 10−11 24%

styr 30 9/10 1/0 4 8.6k 0.1s 10.69k 0.1s 9.1× 10−13 22%

bbsse 16 7/7 1/0 10 2.28k 0s 2.62k 0.1s 2.9× 10−11 6.3%

cse 16 7/7 1/0 5 3.84k 0.1s 4.08k 0.1s 2.9× 10−11 6%

sse 16 7/7 0/0 3 2.29k 0s 2.43k 0.1s 4.7× 10−7 5.9%

ex1 20 9/19 0/0 4 5.37k 0.1s 5.55k 0.1s 1.3× 10−23 3.2%

ex1 20 9/19 0/0 2 5.37k 0.1s 5.40k 0.1s 3.6× 10−12 0.6%

viterbi 68 15/59 1/0 2 13.49k 1.5s 13.61k 15s 3.0× 10−36 0.8%

dec 56 16/23 1/0 2 14.75k 0.5s 14.78k 5s 1.4× 10−14 0.2%

scf 121 27/56 0/0 2 20.97k 3.4s 21.02k 34s 1.9× 10−34 0.2%

Table 1. IWLS 93 FSM benchmarks. The number of States and the number of I/O pins refer to
the original FSM, while I/O chg. refers to the modified FSM. Overhead is the extra area of the
modified FSM

Exhaustive search could be performed only in sse due to the extreme com-
putational complexity of the method. The CPU time in this case was 1.0 second
for an area of 2.33k gates. For the other circuits an estimate of a lowerbound
of the time required by the search can be computed. Such time estimates are
derived multiplying the time required by one minimization with the minimum

number of free configurations, i.e. 2|I
(min)
u

| nmin , where |I
(min)
u | = min

q′ ∈ U ′ |I
(q′)
u |.

In the Monte Carlo approach a maximum of ten input sequences sσ was
explored. Alternatively one could select such upperbound based on some estimate
or measurement of the standard deviation of the minimized machine’s size.

5.2 Structural and Physical Implementation Levels

A complete pass in a typical design flow was simulated in order to verify the
suitability of the approach. The tools utilized in the flow were implemented in
C/C++ running under UNIX/LINUX operating systems. All CPU times are
referred to a Sun UltraSparc 2 with 256MB of memory. The experiments were
based on a set of MCNC 86 and ISCAS 85/89 benchmarks. Each circuit was
synthesized and mapped to a SCMOS technology using Sis[23]. Place&route
was performed by TimberWolfSC-4.1[24].

To simulate the registration phase, a signature was generated for each bench-
mark. Then, small modifications were introduced in every benchmark to check
whether the signature was resilient to “official” Engineering Change Orders
(ECOs) and scaling. Later, a variable number of random non signature-invariant
mappings F were performed on the benchmark’s layout so as to maximize the
potential damage to the circuit. F introduced changes on atomic blocks, pins,
Steiner points, and nets, uniformly distributed over the entire circuit. Three
types of modifications were implemented: (1) translation/rotation, (2) swap,



and (3) stretch, aimed at simulating illegal tampering. The signatures associ-
ated to the modified designs were compared with the original ones. Finally, the
benchmarks were entirely redesigned and the signatures were again compared to
the original ones, thus estimating the event that a design could be mistakenly
detected even when a “legal” redesign had taken place.

Table 2 reports circuit data, such as device, IO pin, and net count. The
signature matching rates are given for several modification densities, simulating
an ECO applied to the circuit. The signature was constructed with a minimum
net size nn of 2, 3, 4 or 10 terminals, while no net size upperbound Nn was
used. As expected, small ECOs generally resulted in perfect matching, while

circ. nn/ dev./ ECO density re- CPU
Nn IO/nets 5 % 10 % des. [s]

s27 2/∞ 69/5/96 99.05 96.68 8.24 76.9

s27 3/∞ 100 100 7.80 53.0

s27 10/∞ 100 100 4.28 43.0

s444 2/∞ 709/9/932 100 93.0 10−6 1598

s444 10/∞ 100 93.5 10−6 1087

s832 4/∞ 1686/37/2127 100 - 10−6 1950

s832 10/∞ 100 - 10−6 1620

s1196 10/∞ 2105/28/2682 100 96.0 10−6 2383

Table 2. Signature matching with ECOs and re-design

re-designs resulted in very low matching rates. Moreover, small circuits were
less robust to tampering than large ones, due to the lower number of degrees of
freedom available to their design.

For the detection phase a large benchmark was selected as the host design.
Small benchmarks were embedded, at random locations, in the host. The de-
tection algorithm was run on this example to extract the original signature of
the host as well as that of the embedded designs. In various experiments the
embedded circuits made up 1% to 10% of the entire host. Finally, tampered
circuits were embedded in the host to verify the robustness of the approach in
the presence of multiple levels of tampering. Table 3 summarizes the results of
the detection experiment. Despite the presence of embedded circuits, the host
still maintained high signature matching (rows 3-6 in Table 3). The recognition
algorithm performed well in identifying both untampered embedded circuits and
heavily tampered ones.



embedded host nn/ ECO density CPU
circ. circ. Nn 0 % 10 % [s]

s27 s1196 1/∞ 73.8 73.8 218

s27 s1196 2/∞ 72.7 72.7 218

s27 s1196 5/∞ 72.7 72.7 218

s1196 - 1/∞ 100.0 99.2 1241

s1196 - 2/∞ 100.0 99.0 1241

s1196 - 5/∞ 100.0 98.6 1241

Table 3. Signature matching with embedded circuits

6 Conclusions

Protecting copyrights of intellectual property providers and integrators has be-
come a serious problem. It arises from a recent industry shift in which electronic
circuits are readily available in a form of virtual blocks at any abstraction lev-
els, thus allowing for abuses and theft. Several methods have been described to
generate watermarks at various levels of hierarchy during the electronic design
flow. Modifications to the flow have been described to integrated watermarks at
all abstraction levels. Ways of effectively detecting the presence of a watermark
have been suggested so as to minimize the disruption of product cycles while
allowing forensic analysis of large numbers of suspected circuits. If supported by
an enforcement infrastructure at the place of fabrication, the described methods
are effective in detecting and tracing intellectual property infringement before
fabrication, thus minimizing potential litigation.
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