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ABSTRACT

The problem of factoring a polynomial in a single or several
variables over a finite field, the rational numbers or the com-
plex numbers is one of the success stories in the discipline
of symbolic computation. In the early 1960s implementors
investigated the constructive methods known from classical
algebra books, but—with the exception of Gauss’s distinct
degree factorization algorithm—found the algorithms quite
inefficient in practice [16]. The contributions in algorithmic
techniques that have been made over the next 40 years are
truly a hallmark of symbolic computation research.

The early pioneers, Berlekamp, Musser, Wang, Weinberg-
er, Zassenhaus and others applied new ideas like random-
ization, that even before the now famous algorithms for pri-
mality testing by Rabin and Strassen, and like generic pro-
gramming with coefficient domains as abstract data classes,
and they introduced the powerful Hensel lifting lemma to
computer algebra. We note that while de-randomization for
integer primality testing has been accomplished recently [1],
the same remains open for the problem of computing a root
of a polynomial modulo a large prime [12, Research Problem
14.48].

Polynomial-time complexity for rational coefficients was
established in the early 1980s by the now-famous lattice ba-
sis reduction algorithm of A. Lenstra, H. W. Lenstra, Jr.,
and L. Lovasz. The case of many variables first became
an application of the DeMillo and Lipton/Schwartz/Zippel
lemma [30] and then triggered a fundamental generaliza-
tion from the standard sparse (distributed) representation
of polynomials to the one by straight line and black box
programs [11, 17, 19]. Effective versions of the Hilbert irre-
ducibility theorem are needed for the probabilistic analysis,
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which serendipitously later have also played a role in the
PCP characterization of NP [2]. Unlike many other prob-
lems in commutative algebra and algebraic geometry, such
as algebraic system solving, the polynomial factoring prob-
lem is of probabilistic polynomial-time complexity in the
number of variables.

Complex coefficients in multivariate factors can be rep-
resented either by exact algebraic numbers or by impre-
cise floating point numbers. The latter formulation is a
cornerstone in the new computer algebra subject of SNAP
(Symbolic-Numeric Algorthms for Polynomials) (see, e.g.,
[4]). The approaches for both exact and imprecise coeffi-
cients are manifold, including Ruppert’s partial differential
equations [26, 27, 6, 10] and Gao’s and Lauder’s far-reaching
generalization of Eisenstein’s criterion in the multivariate
case to Newton polytope decomposition [8, 9]. The cur-
rently best algorithms were all discovered recently within
the past ten years.

The baby steps/giant steps technique and fast distinct
and equal degree factorization implementations have, at last,
yielded in the mid 1990s theoretical and practical improve-
ments over the original univariate Berlekamp algorithm for
coeflicients in finite fields [13, 29, 18, 3]. The average time
analysis for selected algorithms is also completed [5]. For bi-
variate polynomials over finite fields, surprisingly Grobner
basis techniques are useful in practice [23].

New polynomial-time complexity results are the compu-
tation of low degree factors of very high degree sparse (la-
cunary) polynomials by H. W. Lenstra, Jr. [20, 21], and
the deterministic distinct degree factorization for multivari-
ate polynomials over large finite fields [7]. However, many
problems with high degree polynomials over large finite fields
in sparse or straight line program representations, such as
computing a root modulo a large prime, are not known to
be in random polynomial time or NP-hard (cf. [24, 25, 15]).

Finally, in 2000 Mark van Hoeij [14] reintroduced lat-
tice basis reduction, now in the Berlekamp-Zassenhaus algo-
rithm, to conquer the hard-to-factor Swinnerton-Dyer poly-
nomials in practice. Sasaki in 1993 had already hinted of
the used approach [28].

In my talk I will discuss a selection of the highlights, state
remaining open problems, and give some applications in-
cluding an unusual one due to Moni Naor [22].

Categories and Subject Descriptors

F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Computations on polynomials; 1.1.2 [Symbolic and
Algebraic Manipulation]: Algebraic algorithms



General Terms

algorithms
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