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Abstract  
Standardization of a high performance blackplane 

bus, so that  it can accommodate boards developed by 
different vendors, implies the need for a standardized 
cache consistency protocol. In this paper we define a 
class of compatible consistency protocols supported by 
the current IEEE Futurebus design. We refer to this 
class as the MOESI class of protocols; the term 
"MOESI" is derived from the names of the states. This 
class of protocols has the property that  any system 
component can select (dynamically) any action permit- 
ted by any protocol in the class, and be assured that  
consistency is maintained throughout the system. 
Included in this class are actions suitable for copyback 
caches, write through caches and non-caching proces- 
sors. We show that  the Berkeley protocol and the Dra- 
gon protocol fall within this class, and can be extended 
to be compatible with other members of the class. The 
Illinois, Firefly and Write-Once protocols can be 
adapted to be compatible with this class; the facilities 
of the Futurebus currently do not support those proto- 
cols without adaptation. We discuss very briefly per- 
formance choices among protocols, and also other 
issues relating to a standard bus consistency protocol. 

A thought: ",4 foolish consistency is the hobgoblin of 
little minds, adored by little statesmen and philosophers 
and devines." [Emer41] 

1. Introduct ion 
Computer systems based on a common (shared) 

backplane bus have become popular for a number of 
reasons: (a) The cost of such a system tends to be low. 
(b) The backplane bus provides a standard intercon- 
nect which only has to be designed once. (c) The stan- 
dard interconnect permits independent design of indi- 
vidual boards. (d) It  also permits those independently 
designed boards to come from different vendors (mix 
and match). (e) Additional boards can be added to 
such a system, to incrementally add features such as 
I/O processors, memory or additional CPUs. The 
advantages of such a design have led to a number of 
standard buses, including the S-100, VME bus [Fish84, 
P1014], Multibus [Coop83], Multibus-II, Nu Bus 
[TexaS3], IEEE Fastbus [ANSI86], et cetera; see 
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iGust84, Borr85] for an overview. Each new bus has 
been introduced to remedy real or perceived 
deficiencies in then available buses. 

Existing buses are not considered by many to be 
adequate to support the new generation of high perfor- 
mance 32-bit microprocessors such as the Fairchild 
Clipper [Cho86, Fair85], The MIPS machine [Mous86], 
the 68020 [Moto84], the ZS0000 [Phil85], the 80386 
[Elay85], and the 32332 [Mate85]. A bus for this class 
of processor should be able to provide very high 
bandwidth for block transfers, while still permit t ing 
slower and less costly system components to communi- 
cate at lower rates. The need for a bus with these 
characteristics prompted the IEEE to set up the 
Futurebus (P896) standards committee, with a charter 
to propose a standard design for a high performance 
bus. The signal lines and electrical characteristics of 
Futurebus have been largely decided [Borr84, Bala84, 
P896] and are close to formal adoption. 

An important  application for a backplane bus is to 
support multi-(micro)-processor systems. The trend of 
technology over the last few years has led to the 
current situation in which it is considerably less 
expensive to provide N mips via K processors of N/K 
mips each than to build a single (uniprocessor) which 
delivers N mips [Smit84b]. Multiprocessor systems 
built around a backplane bus not only provide a con- 
venient way to configure such systems but also provide 
expansibility the number of processors can be 
increased as more processing power is needed. (We 
note, but do not further discuss, the fact that  success- 
fully programming such systems is difficult.) 

Two factors require that  high performance mul- 
tiprocessor systems have cache memories [Smit82, 
84a]. First, the access t ime to main memory across a 
bus, no mat ter  how fast the bus and the main memory 
(within reason), is likely to be so large as to appreci- 
ably slow down the processor. Second, simple calcula- 
tions will show that  no feasible bus design can provide 
adequate bandwidth to memory for any reasonable 
number  of high performance processors. A cache 
memory (of sufficient size and adequate performance) 
solves the first problem by reducing the average 
memory access t ime substantially - by as much as 90% 
[Smit82]. The cache also cuts the memory bandwidth 
requirement, since most references are satisfied locally 
with no bus activity. Cache memories, thus, are a 
necessity for high performance multiprocessor systems 
with a shared memory. 

Cache memories, however, introduce the cache 
consistency problem, which refers to the fact tha t  the 
contents of a given location of main memory can reside 
simultaneously in both main memory and in zero or 
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more cache memories. If such a system is to correctly 
and deterministically execute computations, all refer- 
ences to a given location, no mat ter  from which proces- 
sor they originate, should reference the same value; 
i.e. the contents of the cache memories must  be con- 
sistent. 

There are a number  of approaches to the cache 
consistency problem; the features and operation of the 
chosen solution depend largely on the type of computer 
architecture in which they are to operate. The cache 
can be shared; there can be a combination of private 
caches and a shared cache, with the shared cache hold- 
ing the shared data; data modifications can be broad- 
cast, with all other processors invalidating their 
copies; or a global or distributed directory can be 
maintained to keep track of which cache has what 
information [Arch84, Cens78, Tang76]. Surveys of the 
various cache consistency mechanisms appear in 
[Smit82, 84a, 85d], directions for memory hierarchy 
and cache research are discussed in [Smit85a] and a 
complete bibliography of the l i terature on cache 
memories appears in [Smit86]. 

With the increasing performance of microproces- 
sors, a solution to the cache consistency problem in a 
system with buses became necessary and the first pub- 
lished bus consistency protocol appeared in [Good83]; 
such protocols are means of maintaining distributed 
directories. Other bus based consistency protocols 
have been given in [Fran84, Papa84, Rudo84, and 
Katz85]. An excellent survey and comparison of some 
of these appears in [Arch85], and another comparison 
appears in [Vern85]. 

I t  seems clear that  any new bus design must  
incorporate features and facilities sufficient to support 
one or more of the bus based cache consistency proto- 
cols. To the extent that  these protocols are of 
significantly different performance, support for the 
higher (highest) performance protocols should be avail- 
able. Conversely, it is also important that  the bus be 
able to support lower performance (i.e., lower cost) 
cards, and in particular, the bus must be able to sup- 
port both sophisticated cache masters  (i.e., copy back 
caches), simpler ones (e.g., write through caches) and 
non-caching components (e.g. I/O processors). As 
explained below, the IEEE Futurebus has been 
designed with these goals in mind. 

Because the Futurebus is intended to be a stan- 
dard interface to which can be attached boards from 
different vendors, it would seem highly desirable that  
the Futurebus standard specify a protocol (or a class of 
compatible protocols), such that  any board adhering to 
that  standard could expect to maintain cache con- 
sistency; otherwise, in general, consistency could not 
be ensured. For that  reason, the IEEE P896.2 work- 
ing group on caching in the Futurebus has been work- 
ing on defining a standard protocol (or class of compa- 
tible protocols) for cache consistency. In this paper, we 
present a class of compatible consistency protocols 
which are supported by the IEEE Futurebus design. 
By a class of protocols, we mean that  different 
caches/processors may use different algorithms for 
what to cache when. By compa t ib l e ,  we mean that  as 
lon~ as each cache/processor uses a protocol from the 

class we define, the overall memory system state will 
remain consistent. Our class of compatible protocols, 
as we explain below, includes those suitable for non- 
caching boards (e.g. I/O processors) and write through 
caches, as well as copy-back caches. 

In the next section of this paper (2), we summar-  
ize, to the extent useful for our discussion, the electri- 
cal characteristics of the Futurebus. That  is followed 
in section 3 by our MOESI model for consistency 
schemes, a definition of the signal lines we need, and 
the class of consistency protocols that  we specify. In 
section 4, we discuss the extent to which existing pro- 
tocols are compatible with the class we define. Other 
issues in proposing a cache consistency standard are 
briefly considered in section 5. Conclusions and over- 
view appear in section 6. 

2. Futurebus Electrical Features 
The Futurebus incorporates numerous features 

that  support the efficient implementation of a variety 
of cache consistency protocols. Some of these features 
were added solely to support caching, while others are 
a natural  consequence of designing a generic, high- 
performance, asynchronous bus. In this section, we 
describe the electrical and related characteristics of 
the bus. 

2.1. Broadcast Address Cycle 
Common to all of the possible Futurebus cache 

consistency protocols is the need to monitor system bus 
activity by caches that  are not currently accessing the 
bus; this activity is sometimes called snooping. Shared 
memory image integrity is maintained by the ability 
of each cache to detect when other modules are per- 
forming an action that  might affect the state of a line 
in the local cache. This means that  all caches must  
participate in the address-time control handshake. 

On the Futurebus all address cycles are broadcast 
to all subsystems. A single bus master  issues an 
address and an address strobe, and it must  continue to 
assert  the address until all other Futurebus modules 
signal that  they no longer need the address. In the 
case of a processor/cache bus interface this means that  
the cache must  check the address for a hit in its direc- 
tory before allowing the address cycle to complete. 

2.2. Open Collector Signals 
Figure 1 illustrates how a broadcast handshake 

works. All bus signals are open-collector driven and 
passively terminated. The effect of multiple drivers on 
a single line is similar to having a number of children 
stepping on a garden hose. A child's foot on the hose 
(open-collector driver on) can stop the flow (low logic 
level), but the removal of one foot will not cause flow 
to resume (high logic level) as long as someone else is 
stepping on the hose (another driver is on). Similarly 
with open-collector signals, if you need to know when 
the first module reaches a particular state, have it pull 
the signal low. And if you need to know when "all" 
modules have reached a particular state, arrange to 
have them all pulling the signal low initially and wait 
for the signal to go high. This will only occur when all 
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Figure I: Broadcast handshake on Futurebus. 

the drivers have "let go" of the signal. (In summary, 
drive low, float high.) 

We do note that  an unavoidable perturbation of 
the signal occurs when one driver releases an open- 
collector signal that  is still being asserted by another 
driver. The current that  is no longer passing through 
the released driver must  now be sunk through a driver 
that  is physically located elsewhere in the backplane. 
This current switch manifests itself as a small glitch, 
called a wi red -OR glitch, whose duration and ampli- 
tude are a function of the distance between drivers, 
and the amount of current that  is no longer being sup- 
plied by the released driver. The wired-OR glitch 
problem is deterministically solved by using an asym- 
metrical inertial delay line, or low pass filter [Gust83]. 
The exacted penalty on the Futurebus is that  broad- 
cast handshaking is 25 nanoseconds slower than  single 
slave transactions. The reward is that  broadcast 
operations are guaranteed to work, no mat ter  how new 
or old, fast or slow, a particular board may be. 

As shown in Figure 2, the current bus master  first  
issues an address, then signals the event by asserting 
the address strobe, AS*. All other bus modules assert  
AK* immediately (address acknowledge), but each 
releases AI* (address acknowledge inverse) and allows 
it to rise only after it is finished with the address and 
is ready to go on. Only after AI* has risen may the 
bus master  remove the address from the bus. See 
[Borr84], [P896] for further details. 

2.3. Bus Overv iew 
To summarize some of the more significant 

features of the electrical protocols of the futurebus, we 
note the following: (a) Every unit on the bus may 
examine the address on every address cycle. (b) Only 
those units participating need monitor data transfer  
cycles, which can therefore proceed at a high rate. (c) 
The fact that  all units must  acknowledge the address 
cycle implies that  any unit has t ime to signal any sort 
of "exception", as when it detects a hit in its cache. (d) 
The nature of the connection level handshake means 
that  more than two parties can participate in a 
transfer, as when more than one cache updates its 
copy of a line. 

3. The  MOESI  Model  a n d  Class  of  P ro toco l s  

3.1. The  M O E S I  States 
From results in [Smit79, 82, 85b] and the discus- 

sion in [Good83], it is clear that  the best performance 
and greatest  reduction in bus traffic can be obtained 

with the use of a copy-back cache. With such a 
cache, data modifications are first made to the line in 
the cache, and then the modifications are written to 
memory only when the line is replaced. For such a 
cache, it is possible to observe that  each line in the 
cache may be assigned to one of five states, which par- 
tition pairwise and can be specified with three bits: 
validity, exclusiveness, and ownership; see Figure 3. 

AK* 

A,* J S 
AD<31-0> m 

AD<31-O>"  

CM<5-O>* 

ST<2-O)m 

Figure 2: Futurebus parallel protocol. 

3.1.1. Val idi ty  
Data in shared memory is either val id  or inval id.  

Shared memory modules will not need to distinguish 
valid data from invalid data; instead, caches associ- 
ated with each master  will keep t rack of the invalidity 
of the data that  resides in shared memory. In the 
absence of information to the contrary, data in shared 
memory is defined to be valid (e.g. at  power-on), 
although here the term "valid" relates only to the con- 
sistency protocol and not to the semantics of the sys- 
tem. The s h a r e d  m e m o r y  image  or s h a r e d  i m a g e  is 

OWNERSHIP 

: V A L I D I T Y  

EXCLUSIVENESS 

Figure 3: Three characteristics of cached data. 
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the union of all valid data corresponding to every loca- 
tion of the system address space. 

3.1.2. Exclusiveness 
The set of all valid data residing in caches can be 

classified into exclusive data and shared  data. 
Exclusive data is cached data that is contained in one 
and only one cache. Non-exclusive data is cached data 
that may be in more than one cache. The term 
shared is used to describe non-exclusive data even 
though the number of other cached copies is not known 
and may be zero. Exclusive data must match the copy 
in main memory. 

3.1.3. Ownership 
Valid data residing in a cache may also be charac- 

terized as being or not being owned.  To own data 
means to assume responsibility for its accuracy or vali- 
dity for the entire system. Data in main memory may 
or may not be valid, but that the main memory is not 
responsible for that determination. That determina- 
tion is made by the cache that owns that line of data; 
in particular, if main memory does not contain valid 
data, the owning cache is responsible for ensuring 
that: (a) main memory is correctly updated, (b) 
ownership is passed to another cache, or (c) the owning 
cache substitutes for main memory in transfers. 

All data is said to be owned uniquely either by 
one and only one cache or by main memory. There- 
fore, another way to define the shared memory image 
is as the set of all owned data; main memory is the 
default owner. 

3.1.4. Resulting State Model 
The shared memory is not responsible for tracking 

the state of the data it holds. All such responsibility 
resides with the caches. We therefore refer to d a t a  
stored in caches when referring to the state of the 
data. 

There are eight possible ways to apply the three 
characteristics of cached data to a particular cached 
data line. However, it is pointless to consider the 
exclusiveness or ownership of a data line that is 
known to be invalid. The five remaining states are: (1) 
Exclusive owned; (2) Shareable owned; (3) Exclusive 
unowned; (4) Shareable unowned; (5) Invalid. The 
purpose of the owned category is to distinguish a copy 
that has been modified from that in main memory. 
Substituting the term modified for owned results in 
the more familiar terminology: (1) Exclusive modified; 
(2) Shareable modified; (3) Exclusive unmodified; (4) 
Shareable unmodified; (5) Invalid. These state labels 
can be abbreviated by using the salient feature of each 
state: (1) Modified; (2) Owned; (3) Exclusive; (4) 
Shareable; (5) Invalid. 

It is useful to agree beforehand on a consistent 
terminology. To that end the three above lists are to 
be considered completely equivalent, with the last set 
the preferred terminology. In addition, the single-letter 
abbreviations M, O, E, S, and I, are also appropriate, 
hence the acronym "MOESr'  cache states. Figure 3 
illustrates the way that validity, exclusiveness, and 
ownership combine to delineate each of the five states. 

I "lntervenient" I 

/leD/ 
/'Only cached/  \ "Shareable \ 

/ copy" / . D a t a \  data" \ 

i / owner"- s 

O 
e 

Figure 4: MOES[ state pairs. 

We can learn something about the utility of cache 
states in maintaining cache coherence by examining 
the common qualities of certain state pairs. See Fig- 
ure 4. 

M data is also known as modified, exclusive 
modified, and exclusive owned data. 0 data is owned, 
shareable modified, or shareable owned data. The com- 
mon characteristic of M and 0 data is that  the cache 
holding such data is responsible for the accuracy of 
that data for the entire system. This means that if the 
M or 0 data is not correctly stored in the shared 
memory, the owner cache must somehow make sure 
that no other module reads that incorrect data. The 
term describing this responsibility is intervention. M 
and O data are intervenient states. 

E data is exclusive, exclusive unmodified, or 
exclusive unowned data. M and E data have in com- 
mon that they are the only cached copy corresponding 
to a particular address range of the shared memory 
image. Suppose that a cache client wishes to change 
M or E data. Since it knows that no other cache holds 
a copy, it needs not warn any other caches that the 
data it holds is about to become invalid. 

S data is also known as shareable, shareable 
unmodified, or shareable unowned data. S and E data 
are both unowned. This means that a cache holding S 
or E data is not responsible for the integrity of 
accesses to its data line by other system modules. Note 
that the S state does not imply that main memory is 
valid. 

S and O data have the common characteristic that 
they are non-exclusive copies of the data. This means 
that any attempt by the cache client to locally modify 
S or O data requires that a message be broadcast to 
other caches notifying them of the change. 

3.2. Signal Lines for Implementing MOESI Con- 
sistency 

To implement our consistency protocol(s), we need 
six signal lines on the Futurebus backplane; three are 
used by the master for the transaction to indicate his 
intentions; the other three are used for other units on 
the bus to assert either status or control. To imple- 
ment versions of other protocols (e.g. Write-Once, IUi- 
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nois), we also need a seventh signal, BS, (busy), to 
abort a transaction. 

3.2.1. Cache Master Signals 
We define the CA signal, when asserted, to mean 

"I am a copy-back cache and at the end of this transac- 
tion, I will retain a copy of the referenced data, or I 
am a write-through cache and have just read this 
data"; this is called the cache master signal. This 
signal is  important so that other units can distinguish 
operations in which a cache loads data or a copy-back 
cache retains data, from operations with non-caching 
units and/or writes by write-through caches. 

We define the IM signal, called intent  to modi fy  
to mean "in this transaction I will modify the refer- 
enced data." This is necessary so that other units can 
either discard or update their copies of the data. 

Finally, we define the BC (broadcast)  signal to 
mean "if I do modify the data, I will place the 
modifications on the bus so that you and/or the 
memory can update itself." If IM is asserted and BC is 
not, then units holding the data must discard it; the 
data cannot be updated. Broadcast transactions are 
generally slower than non-broadcast, due to wired.or 
glitches (see section 2.2). 

3.2.2. Response Signals 
The Cache Hit (CH) line is generally used by 

units with caches to respond during the address cycle 
to say: "I have a copy of the referenced data, which I 
will retain at the end of this transaction." (In a few 
cases, CH is not asserted by one specific cache in the 
transaction, so that it can listen and see if CH is 
asserted by any other cache.) This response is neces- 
sary so that the cache performing the transaction 
and/or owning caches can determine which element of 
the paired (S,E) and (O,M) states they should enter. 
When the value of CH doesn't affect anything, i.e. 
when no other cache would be listening, it is shown as 
a "don't care" (CH?) in Table 2. 

In the event that another cache in the system 
(other than that of the bus master) is the owner of a 
data line, it is necessary to use the DI, or Data  Inter-  
vent ion signal, which indicates that the unit asserting 
this line is the owner of the data, and will preempt a 
response from memory. I.e. on a read, it will supply 
the data, and on a write, it will capture the informa- 
tion and update itself. 

The SL line (select) is used on a broadcast 
transfer by a slave cache that wishes to connect on a 
transfer and update its own copy of a line. Memory 
also will assert this line when it participates in a tran- 
saction. 

Finally, the BS (busy) line is needed when cer- 
tain protocols (e.g. Write-Once, Illinois) are to be 
implemented on Futurebus. This is because Futurebus 
currently has no mechanism by which a transfer f ro~  
one cache to another can also update main memory . 
BS is used to abort a transaction and update memory 
before that transaction can resume. 

*An extension to the Futurobus protocol to permit main memory to be updated on 
a transfer is under discusalon. 

MOESI Protocol: 

Event: I Read 
note: I 
Prom 
State 

M M 

Result State and Bus Signals 

Local 
Write Pass 

2 3 Fl4ush 

I,BC?,W M E,CA,BC?,W 

CH:0/M, CH:S/E 
0 0 CA,IM,BC,W CA,BC?,W I,BC?,W 

or 
M,CA,IM 

E E M -- I 

s I s 

CH:S/E, 
CA,R 

or 
S,CA,R* 

Cm0/M 
CA,IM,BC,W 

or 
M,CA,IM 

or 
S,IM,BC,W* 

or 
S,IM,W* 

M,CA,IM,R 
or 

Read>Write 
or 

I, IM,BC,W*,** 
or 

I,IM,W*,** 
or 

Read>Write* 

or 
I,R** 

Table I 

3.3. Protocol Class Definition 
Given the cache master and response signals 

defined above, we can define a class of compatible 
protocols supported by Futurebus. The complete 
class of protocols is defined in Tables 1 and 2. (Where 
a choice is shown, the first entry is preferred, as we 
discuss later.) Rather than discuss every entry in 
those tables, which is neither necessary nor feasible in 
this limited space, we comment on the more important 
features of our protocol definition. First we discuss the 
behavior of a copy  back  cache. 
1. A cache with a read miss places the data in S or E 

states depending on whether anyone else has that 
information in its local cache (via CH). 

2. A unit writing to data in the O or S states must 
either broadcast the changes (CA, IM, BC) 
(remaining in or going to O or going to M, depend- 
ing on CH), or simply invalidate the copies in the 
other caches (CA, IM, not BC), and go to the M 
state. 

MC~I Protocol: Result State and Bus Slam,Is 

l Bus Event ' 
Event: CA,~YM,~BC CA,IM,'BC ~CA,~IM,~BC CA IM,BCI~CA,IM,~BCI~CA,IM,BC! 
note: 5 6 7 8 9 10 

From 

StMe at O,CH,DI I,DI M,DI, CH? -- M,DI, CH? 

o o,~,Di ~,DI ~o/M, s,~,~o~ i o,D1,~ 

E S,CH I E,CH? -- I 

S S,CH I S,CH S,SL, CH I 
or I 

I I I I I I 

Table 2 

M, ~.~, CH? I 

I 
0, SI,, C~ I 

J 

or I 

S,SL, CH i 
or I I 
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3. A unit generating a write miss may either request 
a copy and invalidate other copies simultaneously 
(CA, IM, Read), or use two transactions to read 
the line (into state S or E) and then modify it 
(entering O or M). 

4, A cache in an intervenient state (O or M), when it 
sees a read miss (not IM, not BC, columns 5, 7), 
must supply the data. When it sees a write by a 
non-caching master (not CA,IM, not BC, col. 9), it 
must capture the write. When it sees a broadcast 
write, by a caching master, (CA, IM, BC, col. 8), it 
must relinquish ownership and either update 
itself or invalidate itself; on a broadcast write 
from a non-copyback unit (col. 10), it must update 
itself. When it sees a write miss (CA, IM, not BC, 
col. 6), it must supply the data, and then invali- 
date itself. 

5. A cache in a non-intervenient state (S or E) goes 
to state S on a read (cols. 5, 7) and raises CH, 
except when the read is by a non-caching master 
(col. 7), in which case if in state E, it remains 
there. On a non-broadcast write (cols. 6, 9), it 
must invalidate its copy. For a broadcast write 
(cols. 8, 10), it may either update itself or invali- 
date its own copy. 
Our protocol also works for write through 

caches. A write through cache has two states: V 
(valid) and I (invalid); a write through cache is not 
capable of ownership. We equate the V state of the 
write through cache with the S state of the copy-back 
cache, and show the protocol definition in Table 1 as 
well (designated by "*"); we comment on some of the 
significant features here. 
6. A write through cache on a write simply writes 

through, with or without broadcast. If  the cache 
is to do write allocate, it does a read first, then a 
write. 

7. A write through cache on a read miss does a nor- 
mal read, asserting CA. 

8. On a read on the bus (cols 5, 7), the cache remains 
valid. On a broadcast write (cols. 8, 10), it can 
either become invalid or update itself. On a non- 
broadcast write (cols. 6, 9), it must become 
invalid, since it is not capable of intervention or 
ownership. 
Our protocol also applies to processors without 

caches, as is also shown in Table 1 (marked with "**"). 
Such a processor writes with or without broadcast (as 
with a write through cache), and reads without assert- 
ing CA. A non-caching unit never responds to bus 
events. 

We note some additional alternatives to those 
shown in Tables 1 and 2. In particular: 
9. Any transition of the form CH:O/M can be 

replaced by O. State M can change at any time to 
state O, although with a loss of protocol efficiency. 

10. Any transition of the form CH:S/E can be replaced 
by S. State E can change at any time to state S, 
although with a loss of protocol efficiency. 

11. Any transition to or remaining in E or S on a bus 
event can be changed to I, not CH. 

12. The state E may be replaced by the state M, 
although with a loss of efficiency, due to the now 
required write-back. 

3.4. Protocol Choice, Compatibility, and Variation 
We've defined above and in Tables 1 and 2, a class 

of protocols, such that for many states and events, 
there is a choice of action. There are some observa- 
tions we can make about that situation. First, we note 
that different boards on the bus can implement 
different protocols, provided that each comes from this 
class. Second, we note that that each bus user can 
change the protocol it is using, either statically, 
dynamically, or can use protocols selectively. For 
example, a given cache can make some pages copy 
back, some write through, and some uncacheable (as 
with the Fairchild CLIPPER [Cho86]). Further, as 
noted, caches of different types (write through, copy 
back, etc.) can coexist on the bus simultaneously. As 
an extreme case, it would introduce no errors if a 
board were to select an action at each instant from the 
available set using a random number generator or a 
selection algorithm such as round robin. 

4. Protocol Compatibility and Other Protocols 
As noted in the introduction, a number of other 

bus based cache consistency protocols have been previ- 
ously defined. The question arises as to whether any 
(or all) of these preexisting protocols can: (a) be imple- 
mented on the Futurebus, and (b) whether there exists 
an implementation which falls within the class of pro- 
tocols defined here. 

In this section, we look at a number of the earlier 
protocols (Berkeley, Illinois, Dragon, Firefly, Write- 
Once) and address those questions. In each case, we 
do not discuss the protocol definition in any detail, but 
instead refer the reader to either the original paper or 
to a recent comparison lArch85]. Our definitions of 
the protocols and their mapping into our scheme are 
presented only to the extent necessary to convey the 
important points. In particular, we show the definition 
of each algorithm only to the extent necessary to 
define the algorithm relative to the Futurebus facili- 
ties and to its interaction with other caches using the 
same protocol. If a given board were to use one of 
these algorithms on a Futurebus system in which 
other boards were using other protocols, it would be 
necessary to define the behavior of the board with 
respect to bus events not generated by its own algo- 
rithm. We do not do that here. 

4.1. Berkeley Protocol 
The "Berkeley Protocol" is so called because it was 

defined by a group at UC Berkeley [Katz85] as the 
consistency scheme to be used for the SPUR multipro- 
cessor RISC computer being constructed there. The 
states in that protocol map into M, O, S and I; there is 
no state that corresponds to E. The facilities of 
Futurebus are sufficient to implement the Berkeley 
Protocol, and a state diagram for the implementation 
appears in Table 3. The only difference between Table 
3 and the protocol as defined in [Katz85] is that in 
Table 3 the CH signal is generated for compatibility 
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with our mechanism; the CH signal is not used in 
[Katz85]. 

Berkeley Protocol: Result State and Bus Signals 

Event: ~Lo al. -External 
Write I CA,'IM,~BC i CA,~,~BC 

note: I 1 2 I 5 t 
Prom l I I 
State I I I 

. I M M I o,cH,Di l i , o i  

o ,I o M.CA,~ I O.C~.DI I I . D , ,  , 

s i s  i s,o  i 

Table 3 

4.2. Dragon Protocol  
The "Dragon Protocol" is that used in the Dragon 

Processor at Xerox PARC, and is defined in [McCr84] 
and [Arch85]; we rely heavily on the latter due to the 
vagueness of the definition in the first paper• 

The Dragon protocol is implementable almost 
• exactly using the Futurebus features. The one excep- 
tion is that when a broadcast write is done on the 
Futurebus, it affects all caches holding the line and 
also main memory. Such a write for the Dragon proto- 
col does not update main memory; main memory is 
updated only on a replacement. Extra memory 
updates, however, cause no incompatibility. An imple- 
mentation of the Dragon protocol using the Futurebus 
features appears in Table 4. 

Dragon Protocol: Result State and Bus Signals 

External 
I----------~ :81 CA'8~4'BC Event: ~ Read Write 

note: J I 2 
Prc~ 
State 

M I M M 

0 i 0 CH:0/M 0,DI,CH S,SL,CH 
CA,IM,BC,W 

E i E M S,CH 

m 

I ctt:o/M, 
S I S CA,IM,BC,W S,CH S,SL,CH 

,los'S/E, 
I I CA,R Read>Write I I 

CA,~~,~BC 

O,DI,CH 

Table 4 

4.3. Write-Once Protocol  

The "write once protocol" was defined in [Good83] 
and was the first bus based consistency protocol 
invented. The name comes from the fact that  the first 
write to a datum is broadcast in order to invalidate the 
other copies. 

The write-once protocol requires that on an inter- 
venient action, memory be updated at the same time 
that the intervenient cache supplies the data to the 
active cache. This is not possible with Futurebus, so 
an exact implementation is not possible. We replace 
intervention with an abort (BS), followed by an 
immediate write back ("push") to main memory; when 

Notes  on Tables  
Format: result state (M, O, E, S, I), bus signals (CA, 
IM, BC, BS, SL, DI, CH), action (R, W) 
*Write Through Cache, **No Cache 
Read>Write : two transactions; Read, followed by 
Write 
CA = cache master signal 
IM = "intent to modify" - used on address cycle to sig- 
nal a write (data modify) 
BC = "broadcast" - signals intent to broadcast data 
write 

CH = issued by a slave or 3'rd party cache on the bus 
which will retain the referenced item, CH? = don't 
care. CH:O/M = I f C H t h e n  Oelse  M. CH: S/E = If 
CH then S else E. 
DI = response by slave signalling intervention 
SL = response by slave or 3'rd party signalling con- 
nect on write 
BS = "busy" - aborts transaction 
W = issue write on bus 
R = issue read on bus 
Any transition of the form CH:O/M can be replaced by 
O 
Any transition of the form CH:S/E can be replaced by 
S 
Any transition to E or S (on bus events) (and CH) can 
be changed to I , 'CH 
1: read by local processor 
2: write by local processor 
3: push of dirty line by local processor and keep copy 
4: push dirty line and discard copy 
5: read by cache master on bu~ (including WT cache) 
6: read for modify by cache master (i.e. write miss by 
copy back cache) or address only invalidate signal 
7: read by processor without cache 
8: broadcast write by cache master 
9: write by processor without cache or write past WT 
cache 
10: broadcast write by non-cache processor or write 
past WT cache 
.- not a legal case. error condition 

Write Once Protocol: 

Local- 
R~ad Event: ! 

• note: 
Prom 
State 

Result State and Bus Signals 

External 
Write 2 Ii CA"~'~BC 

I 
I 

M I BS;S,CA,W 

CA~IM,~BC 

I,DI or 
~S;S,CA,W 

E E M i S,CH I 

S S E,CA,IM,W ,i S,CH I 

M,CA,IM,R or I 
I S,CA,R Read>Write I I I 

Table 5 
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the tran§action is restarted, memory is up to date and 
intervention is no longer required. 

We show our implementation of the write-once 
protocol in Table 5. We note that the definition of the 
algorithm as given in [Good83] and also in [Arch85] is 
somewhat ambiguous; the varying possible interpreta- 
tions are reflected by two states in which two actions 
are connected by "or". 

4.4. Illinois Protocol  
The Illinois protocol was defined in [Papa84]. 

There are two of ways in which Futurebus cannot 
exactly implement this protocol. First, it requires that 
main memory be updated at the time that a dirty 
block is passed from one cache to another; we do that 
function by aborting the transaction (BS), updating 
memory, and allowing the transaction to restart. 
Second, all caches are to respond on a match to their 
local directory, and a bus priority mechanism deter- 
mines which gets bus access; we cannot permit that  in 
our protocol. Our implementation has either an inter- 
venient cache or main memory respond (which is 
always a unique respondent); caches in states S and E 
never respond• 

It is possible to map the states of the Illinois pro- 
tocol into our states, but we note that the S state has a 
different meaning. The Illinois protocol defines the S 
state as consistent with memory; that is not the case 
for the protocol as we have defined it. 

Our implementation of the Illinois protocol, as 
supported by the Futurebus, is shown in Table 6. 

4.5. Firefly Protocol  
The "Firefly Protocol" refers to a consistency 

scheme being implemented at DEC SRC; the only 
definition available is provided in lArch85]. 

The Firefly protocol requires that when an inter- 
venient cache provides data, memory be updated. We 
again do that function by aborting the transaction, 
updating main memory, and restarting. This also 
means that their S and E states are consistent with 
main memory, whereas our S state is consistent with 
the owner but not necessarily with main memory• 
Finally, all of their caches respond on a read (as with 
the Illinois protocol), which we do not permit; we leave 
it to main memory or the intervenient cache to 
respond, as appropriate. 

Our implementation of the Firefly protocol, as 
supported by the Futurebus, is shown in Table 7. 

5. Other  Considera t ions  for  a F u t u r e b u s  Con- 
sistency S t a n d a r d  

There are some other issues in defining a cache 
consistency standard for a standard bus, other than 
the protocols to be used. We note those here very 
briefly, without exploring them in detail. 

5.1. A S t a n d a r d  Line Size 
The line size (block size) is the size of the data 

unit in the cache. Lines are transferred in their 
entirety to a cache, where the line contents are associ- 
ated with an address tag. The entire discussion above 

has implicitly assumed that the line size is constant 
across all caches in the system. 

If the line size is not constant throughout the sys- 
tem, some very difficult problems can arise. For exam- 
ple, let cache A (with a line of 64 bytes) do a read. 
Cache B (with a line of 32 bytes) has part of that line 

Illinois Protocol: 

i 

• Event: Read L°cal 
note: I 
Prom 
State 

M M M 

E E M 

S S M,CA, IM 

C~.:S/E, 
I CA,R M,CA, IM,R 

Result State and Bus Signals 

External 
Write 
2 

CA,~IM,'BC CA,~,~BC 
5 

BS;S,CA,W ~S;S,CA,W 

S,CH I 

S,CH I 

I I 

Table 6 

resident in state M. Cache B is therefore required to 
supply part of the line requested by cache A, but 
where is the rest of the line to come from? 

The opinion of the P896.2 working group is that 
the difficulties of managing a non-constant line size 
are such as to require that a given system standardize 
on a given line size, and that further, it is the respon- 
sibility of the working group to recommend a size. A 
recommended line size has not yet been selected, but 
we refer the reader to [Smit85c] for a discussion of the 
data and methodology to be used for such a recommen- 
dation. 

Firefl 

Event: 
• note: 
Prom 
State 

Protocol: Result State and Bus Signals 

Local External 
Relad Write2 CA'8~'BC CA, ~~, ~BC 

BS;E,CA,W M M M 

E E M S,CH -- 

OH:S/E, 
S S CA,IM,BC,W S,CH B,SL, CH 

0H:S/E, 
I CA,R Read>Write I I 

Table 7 

There is also the problem of supporting sector  
caches  [Hill84]. The implications of that design have 
not been fully explored at this time, and it is undeter- 
mined whether the address sector size, the transfer 
subsector size or both must be standardized. (The 
latter almost certainly needs to be fixed, for the same 
reasons noted above• Consistency status also appears 
to be necessarily associated with the transfer subsec- 
tor, rather than the address sector•) 

It is also worth noting the problem of "line 
crossers"; i.e• a processor operation which makes a 
reference which overlaps 2 or more lines. It should be 
clear that the processor&ache interface must be able to 
treat this as a separate transaction for each line 
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involved, and to generate bus transactions on that  
basis. 

5.2. Performance Issues and Enhancements 
As noted earlier in this paper, the preferred proto- 

col choice (from Tables 1,2) was always the first entry 
in a given box. That  preference is based on results 
from [Arch85], which presents the results of simula- 
tions which are based only on a model of program 
behavior [Dubo82]. That  work needs to be supple- 
mented with experiments based on real multiproeessor 
shared memory address traces. 

One of the more interesting observations from 
[Arch85] was that  it was desirable to broadcast writes 
to other caches rather  than to invalidate them, if those 
other caches have the line in them. A refinement on 
that  is to have a cache examine the replacement status 
of a line written by another cache. If  the line is quite 
recently used (e.g. most recently used element of two 
element set), it can be updated, and if it is nearing 
t ime for replacement (e.g. least recently used element 
of two element set), it can be discarded. (See [Puza83] 
for a related idea.) 

We also note that  the preferred protocol is sensi- 
tive to the implementation of the bus, the memory and 
the caches. Changes in their relative performance can 
change the cost of various bus operations (e.g. memory 
read, intervenient cache read, etc.) and change the pre- 
ferred actions. 

6. Conclusions and Summary 
In this paper, we have discussed the problem of 

defining a cache consistency protocol for a standard 
bus, in particular the IEEE Futurebus. We have 
defined a class of compatible protocols, such that  each 
cache in the system may implement one of the proto- 
cols in this class and still maintain consistency with 
other caches implementing different (compatible) pro- 
tocols. This permits the coexistence of copy back 
caches, write through caches and non-caching boards 
in the same system. 

We have shown that  a number of previously pub- 
lished protocols (Berkeley, Illinois, Dragon, Firefly, 
Write Once) can be supported (either as defined or 
with minor modifications) on the Futurebus, and we 
have defined them in that  context. 

Finally, we have very briefly discussed some other 
issues relating to a standard caching mechanism, 
including that  of a standard line size and the support 
of sector caches. 

There are a number of aspects of this work that  
must  be continued. All implications of caching stan- 
dardization must  be fully explored, including line size, 
sector caches, and how one might implement a system 
with multiple buses and still maintain consistency. 
Further research is required (with better data than 
[Arch85]) to determine the best performance choice (or 
cost/performance choice) to be made in our class of 
compatible protocols. Proper mechanisms must  also be 
defined for issuing commands across the bus to cause 
other caches to become consistent with main memory. 
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