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Abstract 

Neural network modeling typically ignores the role of knowledge in learning by starting 
from random weights. A new algorithm extends cascade-correlation by recruiting previously 
learned networks as well as single hidden units. Knowledge-based cascade-correlation 
(KBCC) finds, adapts, and uses its relevant knowledge to speed learning. In this paper, we 
describe KBCC and illustrate its performance on a small, but clear problem.  

1  Exist ing knowledge and new learning  

Most research on learning in neural networks has assumed that learning is done "from scratch", without the 
influence of previous knowledge. However, it is clear that when people learn, they make extensive use of their 
existing knowledge [1-3]. Use of prior knowledge in learning is responsible for the ease and speed with which 
people are able to learn new material, and for interference effects. A major limitation of neural network models of 
human cognition and learning is that these networks begin learning from only a random set of connection weights. 
This implements a tabula rasa  view of each learning task that few contemporary researchers would accept.  

In this paper, we propose a fundamental extension of cascade-correlation (CC), a generative learning algorithm that 
has been useful in the simulation of cognitive development [4-9]. CC builds its own network topology by recruiting 
new hidden units into a feed-forward network as needed in order to reduce network error [10]. Our extension, called 
knowledge-based cascade-correlation (KBCC) recruits previously learned networks in addition to the untrained 
hidden units recruited by CC. We refer to existing networks as potential source knowledge and to a current learning 
task as a target. Previously learned source networks compete with each other and with single hidden units to be 
recruited into the target network. KBCC is similar to recent neural network research on transfer [11], sequential 
learning [12], lifelong learning [13], multi-tasking [14], knowledge insertion [15], modularity [16], and input re-
coding [17], but it tries to accomplish these functions by storing and searching for knowledge within a unified 
generative network approach.  

2  D e s cription of  KBCC 

KBCC is similar to CC, except that KBCC treats previously learned networks like single candidate hidden units, in 
that they are all candidates for recruitment into a target network. A candidate unit and a candidate network both 
describe a differentiable function. The connection scheme for a sample KBCC network is shown in Figure 1. This 
scheme is similar to that in CC except that a recruited network can have multiple weighted sums as inputs and 
multiple outputs, whereas a single recruited unit only has one weighted sum as input and has a single output.  

Among the notational conventions we use in formulating KBCC are:  

oou
w , :  Weight between output ou of unit u and output unit o. 

cu iow , : Weight between output ou of unit u and input ic of candidate c. 

pof
,
′ : Derivative of the activation function of output unit o with respect to its input at pattern p. 

poi cc
f ,∇ : Partial derivative of candidate c output oc with respect to its input ic at pattern p. 

poV , :  Activation of output unit o at pattern p. 



poc
V , : Activation of output oc of candidate c at pattern p. 

pou
V , : Activation of output ou of unit u at pattern p. 

poT , : Target value of output o at pattern p. 
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Figure 1: A KBCC network with two hidden units, the first of which is a previously learned KBCC network. The 
network is shown in an output phase, where dashed lines represent trainable weights and solid lines represent frozen 
weights. Activation functions are shown inside each unit. The flow of activation is from left to right. 

 

Like CC networks, KBCC networks begin and end in output phase, where weights entering the output units 
are trained with the Quickprop algorithm [18] in order to reduce error. Weights entering output units are 
initialized using uniform random numbers within the range of -1 to 1. The function to minimize in the output 
phase is the sum-squared error over all outputs and all training patterns: 
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The partial derivative of F with respect to the weight oou
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Activation functions for output units are typically sigmoid but can alternatively be linear. An output phase 
continues until a certain number of epochs pass without solution, error reduction stagnates for a specified few 
consecutive epochs, or all output activations are within a particular range of their target value. In the last 
case, learning stops; in the first two cases, there is a shift to input phase.  

In the input phase, a new hidden unit is recruited into the network and installed downstream of all existing 
hidden units. The recruited unit is selected from a pool of candidates. During recruitment, candidates receive 
input from all existing network units, except output units, and these input weights are trained by trying to 
maximize a modified correlation between activation of the candidate and network error. Thus, the recruited 
candidate is the one that is best at tracking the network's current error. Candidates include, not only single 
units as in CC, but also source networks acquired in past learning. N is the number of candidates per type. 
Weights entering N single-unit candidates are initialized randomly using a uniform distribution within the 
range of -1 to 1. Activation functions of the single units are usually sigmoid, but asigmoid and Gaussian 
functions can also be used. For each previously learned network, input weights for N-1 instances are 
initialized in the same way. In addition, one instance of each stored network has weights of 1 between 



corresponding inputs of the target and source networks and 0s elsewhere. The purpose of these identity 
weights is to enable use of exact knowledge without much additional training. 

The function to maximize, again with the Quickprop algorithm [18], is the average covariance of the 
activation of each candidate c (independently) with the error at each output normalized by the sum-squared 
error.  
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OE  is the mean error at output unit o, and COV  is the mean activation output of candidate C. Gc is standardized by 

both the number of outputs for the candidate c (#Oc) and the number of outputs for the main network (#O). 

The partial derivative of Gc with respect to the weight 
cu iow ,  between output ou of unit u and input ic of candidate c 

is given by 
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where ooc ,σ  is the sign of the covariance between the output oc of candidate c and the activation of output unit o.  

An input phase continues until a certain number of input phase epochs passes without solution, or at least one 
correlation reaches a minimum value (default value = 0.2) and correlation maximization stagnates for specified few 
consecutive input phase epochs. When there is a shift to output phase, a set of weights is created from the output(s) 
of the best candidate to each output unit of the target network. All other candidates are discarded and the newly 
created weights are initialized using small random values with the sign opposite to that in the correlation. 

3  Demonstrat ion of  KBCC 

We used two kinds of experiments to assess the impact of source knowledge on learning a target task in 
KBCC. In one experiment, we varied the relevance of the single source of knowledge the network possessed 
to determine whether KBCC would learn faster if it had source knowledge that was more relevant. In another 
experiment, we gave networks two sources of knowledge, varying in relevance to a new target problem, to 
discover whether KBCC would use more relevant source knowledge. Both experiments involved learning 
whether a pair of Cartesian coordinates were or were not within a particular geometric shape. Source 
networks varied in terms of translation of the geometric shape.  

The input space was a square centered at the origin with sides of length 2. Target outputs specified that the output 
should be 0.5 if the point described in the input was inside of the figure and -0.5 if the point was outside of the 
figure. Networks were trained with a set of 225 patterns forming a perfect 15 x 15 grid covering the whole input 
space including the boundary. There were 200 randomly determined test patterns distributed uniformly over the 
input space but not used in training.  

We ran 20 KBCC networks in each condition of each experiment in order to assess the statistical reliability of 
results. Learning speed was measured by epochs to learn. Use of relevant knowledge was measured by identifying 
the source of knowledge that was recruited during input phases.  

Knowledge relevance was varied by changing the position of the two-dimensional geometric shape. The target shape 
in the second phase of knowledge-guided learning was a rectangle sized 0.4 x 1.6 centered at (-4/7, 0) in the input 
space. 

3.1  E f f e c t s  o f  s i n g l e - s o u r c e  k n o w l e d g e  r e l e v a n c e  o n  l e a r n i n g  s p e e d 

In this experiment, networks had to learn a rectangle (RectL) after having previously learned either a rectangle, two 
rectangles, or a circle centered at the origin (C), or to the left (L), or right (R) in the input space. The various 
experimental conditions are shown in Table 1. In a control condition, networks had no source knowledge when 



beginning the target task, essentially similar to ordinary CC networks. In input phases, the control condition had 8 
single-unit candidates; the other conditions each had 4 single-unit candidates and 4 source-network candidates.  

Table 1: Single-source Knowledge Conditions 
Name Description Relation to target 
RectL Rectangle centered at (-4/7, 0) Exact  
2RectLC 2 rectangles, centered at (-4/7, 0) and (0, 0) Exact/near, overly complex  
RectC Rectangle centered at (0, 0) Near relevant  
RectR Rectangle centered at (4/7, 0) Far relevant  
2RectCR 2 rectangles, centered at (0, 0) and (4/7, 0) Near/far, overly complex  
Circle Circle centered at (0, 0) with radius 0.5 Irrelevant  
None No knowledge  No relation 

A factorial ANOVA of the epochs to victory yielded a main effect of knowledge condition, F(6, 133) = 33.15, p < 
.0001. The mean epochs to victory, with standard deviation bars and homogeneous subsets, based on the LSD post 
hoc comparison method, are shown in Figure 2. Exact knowledge, whether alone or embedded in an overly complex 
structure produced the fastest learning, followed by relevant knowledge, distant and overly complex knowledge and 
irrelevant knowledge, and finally the control condition without any knowledge. Some example output activation 
diagrams from this simulation are shown in Figure 3.  
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Figure 2: Mean epochs to victory in the target phase, with standard deviation bars and homogeneous subsets. 

 
Figure 3: Output activation diagrams showing, from left to right, the target rectangle (RectL), a far but relevant 
source (RectR), and a far and overly complex source (2RectCR).  

3.2  S e l e c t i o n  o f  r e l e v a n t  k n o w l e d g e  f r o m  t w o  s o u r c e s  

In this experiment, networks first learned two tasks of varying relevance to the target task of learning RectL. The 
names of the various knowledge conditions, their relations to the target, and the mean times each network was 



recruited during input phases are shown in Table 2. Descriptions of the shapes in each condition name were 
provided in Table 1. In input phases, each target network had 3 single-unit candidates and 3 source-network 
candidates of each of the two types, for a total of 9 candidates.  

Table 2: Dual-source Knowledge Conditions and Mean Networks Recruited 
Name Relation to target Mean networks recruited 
  RectL RectR 2RectLC Circle 
RectL, RectR Exact vs. Relevant 1.0 0.0 n/a n/a 
RectL, 2RectLC Exact vs. Overly complex 0.95 n/a 0.15 n/a 
RectL, Circle Exact vs. Irrelevant 1.05 n/a n/a 0.0 
RectR, 2RectLC Relevant vs. Overly complex n/a 0.15 1.25 n/a 
RectR, Circle Relevant vs. Irrelevant n/a 1.25 n/a 2.55 
2RectLC, Circle Overly complex vs. Irrelevant n/a n/a 1.45 0.15 

The two means in each row of Table 2 were compared with a t-test for paired samples (except in the Exact vs. 
Relevant condition, where there was no variation in either variable). In each case, the mean difference was 
significant at p < .001, df = 19. Exact knowledge was always preferred, even when it was embedded in overly 
complex knowledge. Simple exact knowledge was preferred to overly complex knowledge that had exact knowledge 
embedded within it. Somewhat surprisingly, knowledge that we had thought would be irrelevant (the circle) was 
more often recruited than knowledge that we had predicted would be relevant (the rectangle positioned at the right). 
One reason that so many circle networks were recruited in this condition was that they were not particularly 
effective in learning the new problem (the rectangle at the left), and thus prolonged learning.  

4  D i s c u s s i o n 

These results show that KBCC is able to find, adapt, and use its existing knowledge in the learning of a new 
problem, significantly shortening the learning time. When exact knowledge is present, it is recruited for a 
quick solution. The more relevant the source knowledge is, the more likely it is recruited for solution of a 
target problem and the faster that new learning is likely to be. From either an engineering or a cognitive 
modeling viewpoint, these are the sorts of qualities one would like to see in a system that effectively uses its 
knowledge in new learning.  

In contrast to previous methods for using knowledge in learning, KBCC uses established techniques from generative 
learning algorithms [10]. Treating its existing networks like untrained single units, KBCC trains weights to the 
inputs of existing source networks to determine whether their outputs correlate with the target network's error. 
Network recruitment and integration accomplishes the input re-coding that may convert difficult problems into 
easier problems [17]. Inputs to a target network are re-coded onto the inputs to a source network in a way that helps 
to solve the target problem. KBCC trains the output weights from a recruited network in order to incorporate it into a 
solution of the current problem. This allows KBCC to use knowledge that is only partly relevant to the new task.  

Unlike many of the previous techniques for which both the inputs and outputs of the source and target task must 
match precisely, KBCC can potentially recruit any sort of function to use in a new task. Source network inputs and 
outputs can be arranged in different orders, employ different coding methods, and exist in different numbers than 
those in the target network. The wide range of recruitment objects offers more power and flexibility than most 
knowledge-based learners provide.   

KBCC allows for a combination of learning by analogy and/or induction. KBCC learns by analogy to its current 
knowledge whenever it can and switches to a more inductive mode if it needs to. Recruiting a network is learning by 
analogy, whereas recruiting a single unit is learning by induction. Both processes are seamlessly integrated in 
KBCC's approach to a new target task. Finally, KBCC is consistent with the CC algorithm that has been successful 
in simulating many aspects of cognitive development.  

Future work will explore a wider range of applications, including other kinds of shape transformations such as 
rotation and size changes, large-scale realistic problems, and simulations of psychological experiments on 
knowledge and learning. We are also examining whether KBCC can improve the quality of learning in cases of 
impoverished training sets, and whether and under which conditions knowledge interferes with learning.  
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