
FROM m-GAIA TO GRASSHOPPER: ENGINEERING

MOBILE AGENT APPLICATIONS

W. Sutandiyo, M. B. Chhetri, S. Krishnaswamy, S. W. Loke

School of Computer Science and Engineering

Monash University

Abstract

There is a need for agent oriented software engineering (AOSE) methodologies that support the

conceptual modelling of mobile agent systems. In this paper, we present m-GAIA, our extension to

the GAIA methodology for modelling mobile agent systems. m-GAIA incorporates explicit

constructs to perform the analysis and design of multiagent systems which include mobile agents.

We also present our experiences in mapping the conceptual models developed in m-GAIA to an

implementation using the Grasshopper mobile agent toolkit.

1. Introduction

A property of agents is the ability to move from one host to another to perform computations.

While not all agents require such a property, agent mobility has been recognized as beneficial in a

number of applications, including information-centric applications [3] and a sizeable number of

mobile agent toolkits (http://mole.informatik.uni-stuttgart.de/mal/preview/preview.html) have been

developed for mobile multiagent applications. While agent mobility may not be needed in all

multiagent systems, we contend that it can be disadvantageous if it is a concept only confined to

(and considered in) the implementation phase, or as an after-thought in engineering multiagent

systems (e.g., used for optimising applications). The advantages of agent mobility might remain

unexploited, adding mobility to agents after the system implementation can be problematic, or

development of multiagent systems where some agents can be mobile might proceed in an ad hoc

manner, if agent mobility is not considered in the earlier phases of agent-oriented software

development. Whether agents are mobile or stationary does have an impact on the architecture and

required components of a multiagent system, and how they can be made so, can be an important

factor in deciding which agent toolkit to use for implementation. The why and how of agent

mobility, or its dismissal, should be considered, and if needed, its rationale documented at design

time. Such consideration of agent mobility should also support toolkit independence (as far as the

required functionality will allow). On the other hand, there will some applications where agent

mobility is obviously useful and more efficient, but an implementation in some mobile agent toolkit

without the auspices of an integrated agent-oriented analysis and design is clearly less than ideal.

What is the current state of the art in methodologies for the engineering of multiagent systems

where some agents are mobile? Several approaches (or methodologies) for addressing the analysis

and design phases of agent-oriented software have been reviewed [7]. Our analysis of these

approaches shows that there has been little focus on supporting the conceptual modelling needs of

mobile agent systems. The two approaches that do support analysis and design of mobile agent

systems include MaSE [6] and some Petri Net based techniques [4]. MaSE includes a move activity

in its analysis phase, and in the design phase, mobile components that allow specification of the

activities that result from the move operation. While focussing on only one aspect of modelling

mobile agent systems. MaSE ignores other aspects such as distinguishing conceptually between

agents that can be mobile and those that cannot, and modelling the concepts of locations, migration
rationale and itineraries for mobile agents. Moreover, MaSE extends the object-oriented approach

rather than start with a “pure” multiagent background [7]. The Petri Net approaches typically model

only an aspect of the agents (e.g. itineraries in [4]) and is not as comprehensive as methodologies

such as GAIA [8].

We note that while multiagent systems constructed using the above methodologies might be

mobile, we say that they lack support for modelling mobile agent systems as the concept of agent

mobility is not explicit in the analysis and design phases, and has not been given adequate

attention. In our work, we have extended the GAIA [8] methodology for conceptual modelling of

multiagent systems to support the analysis and design of mobile agent systems. In this paper, we

present m-GAIA, our extension to the GAIA methodology and illustrate its applicability in

supporting the analysis and design of a mobile agent application, namely, a smart lecture theatre

system. We also present our experiences in mapping the analysis and design specifications

developed using m-GAIA to the Grasshopper™ (http://www.grasshopper.de) [1] toolkit for

implementing mobile agent systems. The paper is organised as follows. In section 2, we present m-

GAIA. Section 3 outlines the architecture and operation of the smart lecture theatre system and

presents the implementation of the smart lecture theatre system using the Grasshopper toolkit. It

maps the m-GAIA conceptual methodology to a mobile agent implementation environment. Section

4 concludes the paper.

2. m-GAIA

We present m-GAIA as an enhancement of GAIA [8] to facilitate conceptual modelling of mobile

agent systems. The GAIA methodology allows the software developer to analyse and design the

system after the requirements are collected [2] [5] and move from abstract (analysis) to concrete

(design) level of agent systems. Figure 1 without the mobility model illustrates the GAIA

methodology structure. It consists of the analysis and design phases. The objective of the analysis

phase is to obtain an understanding of the system and its structure. The analysis phase consists of

the roles model and the interaction model. The roles model identifies the roles in the system and the

interaction model identifies the interactions between the roles found. There are four attributes of

roles: responsibilities, permissions, activities, and protocols.

� Responsibilities consist of two properties: liveness property defines the continual execution

of the role within the system; safety property is a condition that must be maintained to avoid

system behaviour that is contrary to its system requirements.

� Permissions define the access privileges or rights of roles.

� Activities are tasks that need to be performed by roles without interaction with other roles.

� Protocols are activities that involve interactions with other roles.

The objectives of the design phase are to convert the system from an abstract level to a concrete

level and to ease implementation. The design phase consists of the agent model, the services model,
and the acquaintance model. The agent model is used to map the roles to agent types. The services

model lists the services that each role can provide and be associated with. The acquaintance model

defines the relationships between agents.

Our rationale for choosing GAIA was its modularity and simplicity, which provide scope for

extensioning while retaining consistancy in notation. In order to support conceptual modelling of

mobile multiagent systems, m-GAIA incorporates the existing models of GAIA and adds a new

model, namely, the mobility model. The following section describes m-GAIA. The basic ideas of

m-GAIA are borrowed from the existing GAIA methodology. As such, m-GAIA still consists of

two phases, which are the analysis and design phases. The analysis phase includes the roles model

and the interaction model. The design phase includes the agent model, the acquaintance model, the

services model, and the mobility model. The structure of m-GAIA’s models is illustrated in Figure
1 below.

In order to help developers analyse and design the entire multiagent systems (including mobile

agents), each model in m-GAIA has particular features that are consistent with the GAIA

methodology. The roles model of m-GAIA identifies the roles to take into account within the entire

system. Besides identifying the roles, the roles model also includes protocols. The protocols are

activities that a role encounters within the system lifecycle and it involves interaction with other

agents. The interaction model of m-GAIA defines the interactions between protocols with other

roles. The agent model of m-GAIA is used to identify the agent types and how many agents are

involved within the entire system. However, unlike in GAIA, in m-GAIA we include constructs to

distinguish between agents that possess the characteristic of mobility and those that do not. The

services model of m-GAIA is the list of services that each role can provide and be associated with.

The acquaintance model defines the communication links between each agent. The mobility model

of m-GAIA defines the mobility characteristics of agents further, such as identifying the

movements and travel path of each mobile agent. m-GAIA’s models still serve the same purpose as

the corresponding models in GAIA.

Like GAIA, m-GAIA has abstract concepts and concrete concepts. The abstract entities are entities

used during the analysis process and they do not necessarily have direct correlations in the run-time

system. The concrete entities are entities that are considered during the design process. The

concrete entities have direct correlations in implementation of the run-time system. Table 1

summarises the abstract and concrete concepts of m-GAIA.

Figure 1: Structure of m-GAIA’s Models

Requirements

Statement

Mobility

Model
Acquaintance

Model

Services

Model

Agent Model

Interaction

Model

Role Model

Analysis

Design

Abstract Concepts Concrete Concepts

Roles Agent types

Role types Services

Permissions Acquaintances

Responsibilities Place types
Protocols Atomic movement
Activities Travel paths
Liveness properties
Safety properties

It must be noted that in Table 1, the italicised concepts are unique to m-GAIA and mainly aim to

support modelling agent mobility in multiagent system. The additional features involve

modifications to two of the existing GAIA’s models, which occur in the roles model and the agent

model: (1) In the roles model, the roles identified are categorized into three distinct role types,

which are system, interface, and user roles. (2) In the agent model, the agents are categorised into

mobile or stationary. In addition, m-GAIA has the mobility model, which GAIA does not. Steps in

building the mobility model and its sub components will be discussed further in section 2.2. The

interaction model, the services model, and the acquaintance model are imported from GAIA into

m-GAIA without change.

2.1. Analysis Phase of m-GAIA

Like the GAIA methodology, the analysis phase of m-GAIA consists of the roles model and the

interaction model. However, in m-GAIA, modifications have been made to roles model. The

following section will discuss the role schema and the modification which has been made.

2.1.1. The Roles Model

The roles model of m-GAIA aims to identify the roles within the entire system. Each role identified

is categorized into three different role types - system, interface, and user roles. The purpose of

categorising roles is to clarify each role’s responsibilities within the system. A system role is

defined as a role that interacts with other parts of the system and not the user. An interface role is a

role that interacts with the user and the other parts of the system. A user role is a role that

represents the human user itself. Despite the modification in the roles model, the remaining

components are the same as in GAIA. The roles model of m-GAIA is illustrated in Figure 2.

Table.1: Abstract and Concrete Concepts in m-GAIA

Role Schema: name of role –role type

Description:

Short English description of the role

Protocol and Activities:

 Protocols and activities in which the role plays a part

Permissions:

“rights” associated with role

Responsibilities:

Liveness: Liveness responsibilities
Safety: Safety responsibilities

Figure 2: Template for role schemata in m-GAIA

2.2. Design Phase of m-GAIA

The design phase of m-GAIA consists of the agent model, the acquaintance model, the services

model, and an additional model called the mobility model. We modified GAIA’s agent model to

specify the mobility characteristic of agents. The acquaintance model and the services model are

the same as those in GAIA. The following section will discuss the agent model and the

modifications which have been made.

2.2.1. The Agent Model

The agent model is used to identify the number of agents, the agent types, and the relationship

between the roles identified (in the role model) and the agent types in the system. Unlike GAIA’s

agent model, m-GAIA’s agent model classifies the agents into two different categories - mobile (by

adding a notation of “m” sign) and stationary. The categorisation of agent types caters for mobility

characteristic of agents. Furthermore, we modify the agent model to allow similar behaviour roles

to be grouped into one category. This is notational illustrated by grouping the role names between

parentheses as shown in Figure 3. This modification is for convenience of presentation. Figure 3

illustrates the agent model of m-GAIA.

2.1.2. The Mobility Model

The mobility model enhances GAIA to incorporate support for modelling of mobile agents in

multiagent systems. The analysis phase of m-GAIA involves identifying the roles and the

interactions of each role. Unlike the analysis phase, the design phase of m-GAIA involves agents.

Therefore, the mobility model is best fitted into the design phase rather than in the analysis phase,

as mobility is a characteristic of agents and not roles. Furthermore, mobility is not an interaction as

an agent does not need to be mobile to communicate. These considerations motivated the inclusion

of the mobility model in the design phase. The mobility model is derived from the agent model. In

the agent model, the agent types are categorised into mobile and stationary. Mobile agents are able

to move from one place to another place in order to perform the tasks assigned. Therefore, in order

to model the mobility characteristics of mobile agents, the mobility model identifies place types.

Place types are locations that the mobile agent can visit or reside in. The place types define the

working environment of mobile agents. In the Grasshopper [1] mobile agent toolkit, the place type

concept is also equivalent to agent’s environment called places. The place in the Grasshopper’s

toolkit is also the mobile agent’s execution environment; the mobile agents are able to move from

one place to another place. There are four steps in constructing the mobility model:

1. Identify place types.

2. Identify the relationships between agent types and place types

A symbol for agent type
m mark for mobile agent
R symbol for role name
r symbol for roles names that are grouped into one role name
x instance qualifiers of agent model

A1 A2

R1 R2 R3 (r1, r2, …, ra)

x x

An

Rk

x

m

Figure 3: Agent model of m-GAIA

3. Define the cardinality between agent types and place types

4. Identify the travel path of each mobile agent.

Step 1: Place Types
Table 2 illustrates the place types in a mobility model. Pi denotes place types (i = {1, 2… n}).

Place Types Description Instances

P1

P2

Pn

Table 3 defines the instances operators of place types.

Operator Description

n There will be exactly n instances

m … n There will be between m and n instances

* There will be 0 or more instances

+ There will be 1 or more instances

Step 2: Agents and Places Specifications
Step 2 of the mobility model is derived from step 1 and the agent model. In this step, we identify

the relationship between agent types and place types. It also defines the constraints of the

relationship. The agents and places specifications are derived from the place types identified in step

1 of mobility model. Table 4 illustrates the agents and places specifications of mobility model. Let

A be the symbol for agent types and m the number of agent types. We are aware that mobile agents

have been defined in the agent model however the ticks (�) sign to indicate mobile agents in the

agents and places specifications are included for the purpose of clarity.

Agent Types Mobile Place Types Constraints

A1

 P1, P2

A2

 P3

Am Pn

Step 3: Cardinality of Agents and Places
The cardinality between agent types and place types shows how many agents of an agent type can

reside in a place of a place type. The cardinality of agents and places (step 3) is based on the agents

and places specifications (step 2). Figure 4 illustrates the cardinality of agents and places of the

mobility model. The cardinality operators identify the constraint relationship between agent and

place types. Table 3 defines the cardinality operators of agent types and place types.

 …

Table 2: Place Types

Short English description of
places types

Instances
Operators
indicates how
many place
types exist in
the system

Table 3: Instances Operators

A tick sign to
identify if the
specific agent is
mobile or non-
mobile

 …

Table 4: Agents and Places Specifications

 …

The
constraints of
agents and
place types
relationship

Step4: Travel Schema of Mobile Agent Types
The travel schema of each mobile agent type includes origin, final destination, list of atomic
movements, and paths. The origin is the place type where the mobile agent starts the movement to

accomplish the tasks assigned. The final destination is the place type where mobile agent will

reside after it completed the tasks assigned. The atomic movement is the smallest granularity

movement required to accomplish the tasks assigned. The paths are the list of atomic movements

that the mobile agent may travel in order to accomplish the tasks assigned. Figure 5 below

illustrates the template for the travel schemata of mobile agents.

The travel paths of each mobile agent might occur many times in the entire system lifecycle.

Therefore the number of times paths are travelled is defined with the counting operators as

summarised in Table 6 below.

Operator Description

n There will be exactly n instances

m … n There will be between m and n instances

* There will be 0 or more instances

+ There will be 1 or more instances

A travel path of a mobile agent is constructed with a combination of the atomic movements of the

mobile agent. Therefore, the operators to indicate the composition of atomic movements is

summarised in Table 7.

Operator Description

x.y x followed by y

x | y x or y occurs

[x] x is optional

Figure 4: Cardinality of Agents and Places

Am Pn
x

Cardinality Operator

Agent Type: name of agent
Description: Short English description the mobility of agent
Origin: The origin place type of agent
Final Destination: The final destination place type of agent
List of atomic movements:

Lists of possible movements of agent
Movement ID Short English description of the atomic movement

Paths:

Lists of paths of agent to accomplish each task assigned
Path ID List of atomic movements involve in this particular path

Figure 5: Template for travel schemata of mobile agents

Table 6: Counting operators

Table 7: Path Operators

3. Mapping m-GAIA Models to a Grasshopper Implementation

In this section we present an application that we term “Smart Lecture Theatre” that includes a

combination of mobile and stationary agents. We have performed a design and analysis of this

system using m-GAIA and in this section demonstrate how the m-GAIA models map to an

implementation of such applications using current mobile agent toolkits. The Smart Lecture

Theatre is based on the pervasive computing concept of “Smart rooms” as presented in Hewlett

Packard’s Cooltown project [KB2001]. The Smart Lecture Theatre aims to support users of lecture

theatres namely lecturers and students in universities. The basic architecture of Smart Lecture

Theatre system focuses on the ability for a user to fire queries from his/her device (such as mobile

devices or desktop). Besides querying the Smart Lecture Theatre system, the users are able to

perform tasks such as booking the lecture theatre and negotiating with other users to arrange

swapping of bookings.

Each transaction corresponding to the lecture theatre is taken care of by an individual agent.

Therefore, the Smart Lecture Theatre system uses multiple agents where each agent has a specific

task assigned. Within the Smart Lecture Theatre architecture, the agents may either be stationary or

mobile. Each agent will seek to perform and fulfil the task assigned. For example, if a student needs

to find out the contact details of lecturer A, he/she will fire a query from his/her user device. Each

student is represented by an unique user agent. Once the query has been triggered, the user agent

creates query agent which will migrate to the “Smart Lecture Theatre“ and attempt to get an answer

to the student’s query. Thus, it is obvious that the design of Smart Lecture Theatre requires mobile

agents in order to move from the user device to the lecture theatre to accomplish the task-assigned.

Further, if a lecturer A requires the lecture theatre for a specific time slot and the room has been

booked by another lecturer B, the negotiation agent of Lecturer A will be required to travel to the

user device of Lecturer B and request a possible swap of time slots.

This section documents the transition from the conceptual m-GAIA model of the Smart Lecture

Theatre to the actual implementation using the Grasshopper Software Development Kit. This

enables us to evaluate the transition from the conceptual m-GAIA methodology to an

implementation and analyse how m-GAIA supports current mobile agent implementation

environments/toolkits.

3.1 Implementation of the Smart Lecture Theatre System in Grasshopper

The SLT System as implemented in Grasshopper chiefly consists of two components – the user

device on which the Staff, Student and the Administrator agents are created and reside, and the

system device on which the LTAgent resides and interacts with the SLT database. Depending upon

the type of user and the user needs, the QueryAgent, BookingAgent, NegotiationAgent or the

UpdateAgent are initiated in the user device. These agents are mobile and migrate to the system

device and interact with the LTAgent to process the queries input by the users. The students have

the least privileges and can only query the SLT system for simple details such as unit details or

lecturer details. The Administrator does the database administration and is able to perform updates

on the database. The staffs have the most important functionality and are able to make lecture hall

bookings by deploying mobile agents. If another lecturer has already made the booking, the lecturer

requesting the booking can negotiate the booking by deploying the NegotiationAgent. While the

system device is always up and running, and is registered with a region registry, the users can start

up their devices as and when they want to use the system. Once they have finished using the

system, they can choose to close the application. However in the case of the staff users, the agency

on the user device has to be up and running throughout the lifecycle of the system in order to

facilitate negotiation of bookings. The SLT System setup in Grasshopper is indicated in Figure 7
shown below.

Figure 7: Component Structure of the SLT Structure in Grasshopper

3.2. Mapping m-GAIA to Grasshopper

The analysis phase of m-GAIA results in the roles model and the interaction model. From these

abstract models, the design phase of m-GAIA provides us with agent model, acquaintance model,
services model and mobility model. Starting from the agent model, there is a one-to-one

correspondence between the agent types identified in m-GAIA and the actual Grasshopper agents

that will be realised in the SLT system. Also there is a complete mapping of the mobility model

into the mobility of the agents in the Grasshopper environment. In Grasshopper, the mobile agents

are derived from the class de.ikv.grasshopper.agent.MobileAgent while the stationary agents are

derived from the class de.ikv.grasshopper.agent.StationaryAgent. The services, which are derived

from the services model, are directly implemented as methods in the grasshopper agents. The safety

properties of the m-GAIA roles model are taken into consideration while defining these methods.

Some of the methods will be executed during run-time only if the safety conditions hold true. The

chief safety conditions that need to be met are the establishment of a connection between the

different user devices and also the connection establishment with the SLT database. Whenever the

connection fails to be established, an appropriate error message is displayed. While some of the

services map onto methods within the agents, some of them are decomposed into a number of

methods.

The activities translate into simple methods in the grasshopper agents. However the protocols,

which represent the interaction between the different agents, are implemented in the Grasshopper

platform by using the Communication Service that provides for interaction between the different

agents by method invocation. In order to use the communication service the following steps have to

be performed:

� Implementation of the server side (in this case, LectureTheatreAgent)

� Generation of the server proxy

SLT Database

Place
Student Agency

Lecturer Agency

Administrator
Agency

Place

Place

Place
LT Agency

Region

MA

SA

SA

SA

SA MA

MA

Region

Management

Communication

(User Device)

(User Device)

(User Device)

(System Device)

� Implementation of the client side (the QueryAgent, the BookingAgent and the

UpdateAgent)

The place types in the mobility model translate into places within the agencies in Grasshopper. The

place in which the LectureTheatreAgent resides becomes the LT place, and the places in which the

other agents reside become the UD places. The travel schema that is defined in the mobility model

is realised in the SLT system during run time. The LTAgent assumes the system role as defined in

the role model of the analysis phase. The QueryAgent, the BookingAgent, UpdateAgent and the

NegotiationAgent assume the interface role and the Student, Staff and the Administrator agents

take on the user role.

4. Conclusions and Future Directions

Mobile agents are increasingly being seen and used as a suitable technology to support distributed

computing applications. Current agent-oriented software engineering methodologies do not support

the explicit modelling of mobile agent systems. In this paper, we have presented our extension of

the GAIA methodology to support modelling mobile agent systems and demonstrated its mapping

to an implementation using the Grasshopper toolkit. This is but a first step towards building

methodologies that support the analysis and design of mobile agent applications. There remain

several open issues such as whether existing methodologies should be extended or new

methodologies developed, determining the specific constructs for modelling mobility of agents (e.g.

location, and itineraries).

5. References

[1] BAUMER C., BREUGST M., CHOY S., MABEDANZ T., ‘Grasshopper – A Universal Agent Platform based on

OMG MASIF and FIPA Standards’ in URL:

http://www.cordis.lu/infowin/acts/analysys/products/thematic/agents/ch4.htm

[2] JUAN T., PEARCE A., STERLING L., ‘ROADMAP: Extending the Gaia Methodology for Complex Open

Systems’, Proceedings of the first international joint conference on Autonomous agents and multiagent systems: part I,
July 2002.

[3] KLUSCH M., ZAMBONELLI F., (ed) ‘Cooperative Information Agents – Best Papers of CIA 2001’, International
Journal of Co-operative Information Systems, 2002 Vol. 11, No. 3 and 4.

[4] LING, S and LOKE, S.W.: Verification of Itineraries for Mobile Agent Enabled Interorganizational Workflow.

Proc. Of the 4th Int. Workshop on Mobility in Databases and Distributed Systems. 2001. IEEE Computer Society.

(ISBN 0-7695-1230-5). pp. 582-586.

[5] P. MORAITIS, E.PETRAKI, N.I. SPANOUDAKIS, ‘Engineering JADE Agents with the Gaia Methodology’,

Agent Technology Workshop 2002, LNAI 2592, pp. 77-91, 2003, Springer-Verlag, Berlin, Heidelberg 2003.

[6] A. SELF, S.A.DELOACH, ‘Designing and Specifying Mobility within the Multiagent Systems Engineering

Methodology’, Special Track on Agents, Interactions, Mobility, and Systems (AIMS) at The 18th ACM Symposium on
Applied Computing (SAC 2003), March 9-12, 2003, Melbourne, Florida, USA.

[7] WEI�, G. ‘Agent Orientation in Software Engineering’, Knowledge Engineering Review, 2002, Vol. 16, No.4, pp.

349-373

[8] WOOLDRIDGE, M., JENNINGS N.R., and KINNY, D., ‘The Gaia Methodology for Agent-Oriented Analysis

and Design’, 2000, Journal of Autonomous Agents and Multi-Agent Systems, Vol.3, No. 3, pp. 285-312

