
A Comparison Study of Address Autoconfiguration Schemes
for Mobile Ad hoc Network

Soyeon Ahn, Namhoon Kim, Woohyun Kim and Younghee Lee
Information and Communications University,

Computer Networks Lab., School of Engineering,

Abstract

 In this paper, we classified existing address

autoconfiguration schemes based on two
communication models: centralized and distributed
schemes. We defined performance metrics and
evaluated four existing address autoconfiguration
schemes. We suggested requirements for an address
autoconfiguration scheme.

1. Introduction
1

A Mobile Ad hoc Network (MANET) usually
doesn’t have any fixed infrastructure or administration
and the network’s topology may change quickly and
unexpectedly. A network protocol may affect the entire
network performance because of these characteristics
of MANET. We must deliberate to choose one.

Addressing is an imperative step for MANET nodes
to communicate with each other. In this paper, we
classified current address autoconfiguration schemes
and defined important performance metrics of address
autoconfiguration schemes. We evaluated the address
autoconfiguration schemes in terms of various
performance metrics.

This paper is organized as follows: In section 2, we
classify the address autoconfiguration schemes based
on communication models. In section 3, we describe
the fundamental performance metrics for address
autoconfiguration schemes in MANET, and in section
4, we describe our simulation environments. We show
the performance of each approach through our
simulation study in section 5. Finally, our conclusion is
presented in section 6.

2. Classification of Address Autoconfigu-

ration Schemes

This work is supported in part by Grant No. R01-2003-000-10562-0
from Korea Science and Engineering Foundation

We classified the address autoconfiguration
schemes by communication models: one is the
centralized schemes, and the other is the distributed
schemes. The main concept of the centralized schemes
is that a node will be a server node acting as DHCP
server. A new node should communicate with the
server node to get an address. In contrast, the
distributed schemes operate in such a way that every
node must communicate with each other to get an
address.

2.1. The Centralized Schemes

In the centralized schemes, one server node is

elected for a MANET. We see instances of centralized
schemes in [1] [2] [3]. The server node refers to an
agent node [1], a leader node [2], or an address
authority [3], in each scheme, respectively, but the
operation of the server nodes is similar to each other.
The server node maintains an address pool and is
responsible for the address allocation. When two or
more MANETs merge, the number of server nodes is
reduced to one.

In these methods, the duplicated addresses by
network merger can be simply detected using the
server node’s address pool. However, the server node
becomes burdened and may be a single point of failure.
The larger the number of hop counts from a new node
to the server node, the longer these mechanisms take to
find the server node and to get an address.

Günes et al. proposed a centralized agent based
address configuration scheme [1]. The address-agent
node maintains the Address List (AL). It periodically
broadcasts a Verify Packet that contains the AL and a
time stamp. Every node that wants to remain in
MANET replies an Address Confirm packet to the
agent. If the agent doesn’t receive the Address
Confirm packet before timeout, it removes the node
from the AL. If the network merging is detected, the
number of agent nodes must be reduced to one. The
agent having more nodes will remain as the agent of
the merged network. If the number of nodes is equal,

the agent having a lower MAC address will be the
agent of the merged network.

2.2. The Distributed Schemes

Perkins et al. proposed a distributed Duplicated

Address Detection (DAD) scheme called Strong DAD
[4]. A new node randomly selects an IP address and
examines whether it is used in a MANET. If the
chosen address is already used, it retries until it gets an
unused address. The new node uses a temporary
address for communication among other MANET
nodes. The address allocation time increases in
proportion to the number of failures. The maximum
number of hop counts in a MANET also affects the
allocation time. In this paper, the authors did not
present any ideas for a network partition and network
merger.

Sanket et al. suggested an agent-based distributed
address autoconfiguration, MANETconf, using the
distributed agreement concept [5]. Unlike Strong DAD,
a new node, which is called a requestor, asks for an
address to one of the neighbors in MANET, which is
called an initiator. The initiator then randomly selects
an address and gets agreements from all other nodes in
MANET and assigns the address to its requestor. To
acquire agreements, the initiator uses a modified DAD,
receiving not NACK but ACK, which may result in an
ACK explosion. Every node manages the list of all
nodes in order to count the ACK messages to be
received and decides the limit of the waiting time. To
deal with the network partitioning and merging, the
node with the lowest IP address has the role of group
leader. The group leader periodically broadcasts a
message including the Universally Unique Identifier
(UUID). If a node doesn’t receive the message from a
group leader, it can perceive the network partitioning.
On the other hand, if a node will receive the messages
from two or more group leaders, the node can
recognize the network to be merged. Because this
scheme manages the list of all nodes and collects
response messages from all nodes, it can easily decide
the success or failure of acquiring agreements. The
node list can be used to find the conflict addresses
when two or more networks are merged. It may take a
longer time to allocate an address when the initiator
fails to get agreements. An additional weakness is that
synchronization of the node lists among nodes is
needed, which may break the consistency of the lists.
As a result, it fails to guarantee the uniqueness of the
assigned address.

Hongbo et al. proposed a conflict free distributed
address configuration scheme named Prophet Address
Allocation using a function that produces an integer

sequence [6]. The address of a MANET node must be
unique during its lifetime. They tried to design a
function that produces a sequence that satisfies the
extremely long interval between occurrences of the
same number. The probability of more than one
occurrence of the same number in the different
sequences must be extremely low. It is difficult to
design such a function in distributed manner. The
Prophet allocation has obvious advantages: short
address allocation time and low communication
overhead. If the address length is less than 16 bits, the
conflict ratio is too high to use for address allocation in
MANET. The authors suggested the address length be
24 bits. However, if the address length is 24 bits, the
conflict ratio is also very low in random selection as
well in Prophet. The address conflict still occurs even
if 24 bits are used. Prophet may need a method to
avoid address conflict.

In addition, there are other distributed mechanisms
that split the address space to avoid conflict among
addresses. They need a method to gather unused
addresses to prevent an address leak problem [7] [8] [9].
The hybrid mechanisms in [10] [11] separate a
MANET into sub networks. Other researchers have
studied address configuration from a different point of
view: they suggested solutions to detect and solve the
conflict when it occurs with the aid of routing
protocols, which do not involve the allocation
mechanism [12] [13]. The distributed mechanism
presented in [14] gives the role of the leader to the new
node. The leader allocates an address of (highest
known address + 1) to the next new node. The new
leader information is announced by flooding packets.
A mechanism using a variable length address instead
of an IP address is presented in [15]. In this work, it is
required to add some fields to all network layer packet
headers.

3. Performance Metrics for Address

Autoconfiguration Schemes

We defined performance metrics for address

autoconfiguration schemes in MANET as follows:

3.1. Uniqueness

Every MANET node must get a unique address for

each network interface because the duplicated
addresses may cause severe problems in routing. The
incorrect information may result in misrouting or
failure of service. Therefore, the nodes having
duplicated addresses should change their addresses.

The address changing also may cause a break in
service and produce incorrect routing information.

Guaranteeing the uniqueness of an allocated address
is the most important performance metric because
address conflicts affect the entire performance and
traffic of the network.

3.2. Scalability

We can consider two factors in terms of scalability:

communication overheads and allocation latency.
Communication overheads mean the number of
packets that is spent for nodes to get addresses. The
allocation latency is the waiting time for a node to get
an address. A good address autoconfiguration scheme
rarely depends on the total number of nodes in the
network or the network size.

3.3. Independency of routing protocols

The routing protocols can be classified into two

groups: a proactive routing algorithm and a reactive
routing algorithm. Address autoconfiguration schemes
must operate with both routing protocols for the nodes
to join a MANET regardless of their routing algorithm.

3.4. Reusability: Garbage collection and IP leaks

If a MANET node leaves the network, the address

of the node must return to the address pool. The
centralized mechanism can handle this problem easily,
but the distributed mechanism has difficulty. The
schemes that do not have any policies for address reuse
may suffer an address leak problem. To prevent
address leak, garbage collection which requires
additional overheads is necessary.

3.5. Availability

Address autoconfiguration schemes must always be

available regardless of network status. For example,
we can consider the following network status or
events: network partition and merger, node mobility,
and message loss.

A good address autoconfiguration scheme must
operate even if MANET is partitioned or merged.
Handling the network merger is more complex because
it causes the address conflict problem. The address
conflict happens in network merging because address
allocation schemes only guarantee the uniqueness in a
MANET.

Address autoconfiguration schemes should quickly
detect the network merging and address conflict, and

then should solve the address conflicts in the merged
network. Most protocols introduce a group ID to solve
the network partition and merger. To detect the
network partition and merger, a leader node in a
MANET periodically broadcasts its existence with a
group ID or a network ID. If two or more nodes that
have a different group ID meet, they can detect the
network merging. If a node doesn’t receive the
message from the leader, it can perceive the network
partitioning.

In addition, address autoconfiguration schemes
must continue the allocation process when a new node
requiring an address and a MANET node participating
allocation of address move during the process of
address allocation.

A MANET is inherently unreliable, and the
transmission error rate is high. The nodes will be
abruptly crashed or depart from the network. Some
messages may be lost during the address allocation
process. Address autoconfiguration schemes should
prepare the message loss.

4. Simulation Environments

We simulated four address autoconfiguration

schemes: MANETconf [5], Prophet [6], Strong DAD
 [4], and Zeroconf [1]. To show the results of the
uniqueness of allocated addresses for the network with
huge nodes, we made a java program. It is hard to
simulate with ns-2 in the large network environment.

4.1. Java Simulation Environments

The Prophet and random allocation are simulated in

java to compare the address uniqueness in a large
network. In java simulation for Prophet, an agent is
randomly selected among all nodes in the network
when a new node arrives. The number of neighbors is
uniformly distributed between 1 and 8. Node mobility
was not considered because we believe that the random
selection takes the place of the movement effect. After
the address allocation for the previous node has been
completed, the next new node arrives. All nodes stay
in the network until the end of the simulation and the
number of nodes always increases.

4.2. Ns-2 Simulation Environments

We used ns-2 simulator of version 2.27 with

modified Random Waypoint Models [16] [17] [18]. The
maximum speed of nodes is 5 m/s; the minimum speed
of nodes is 1m/s, and the pause time is set at 10
seconds. Table I shows two different simulation

environments. The inter-arrival time of new nodes was
uniformly distributed between [0, 10] seconds. To
make a well connected network, we added
preconfigured nodes before starting the simulations.
Network partition and merger were not considered.

5. Performance Evaluation

5.1. Uniqueness

The most important metric is the uniqueness of the
allocated addresses because address conflicts may
cause abnormal behavior in routing protocol and
applications.

Zeroconf does not allow the conflict of addresses
because an address agent node allocates all addresses
based on the MAC addresses of the requesting nodes.
Strong DAD and MANETconf perform DAD before
allocating an address. Strong DAD uses NACK and
MANETconf uses ACK as a mean of getting
agreements for use of an address.

In contrast, Prophet does not have a method to
verify the address conflict. In Prophet, each node has a
unique modular function to generate a positive integer
sequence.

1mod
1

++= ∏
=

Rpaaddress
k

i

e
i

i (1)

Here, a is a randomly selected address for the first
node. The primes pi satisfy p1 < p2 < … < pk. We use
the value k as 209 by their simulation codes, and pk as
1291, the 209th prime number. The R varies from 251
to 65521 and 16777211 according to its address bits: 8
bits, 16 bits, and 24 bits.

For a node, the function can be expressed as
(address = a + C*pi mod R + 1), where C is a constant.
It has a form of Linear-Congruential Generator (LCG)
used in random number generation [19]. If we use
modulus R as a non-prime value such as 2m, the
number of conflicts increases because if the prime used
for the sequence is a divisor of R, the period of one
sequence decreases. The Modulus 251, 65521, and

16777211 are the closest prime numbers to the address
ranges, respectively.

Even though Prophet uses the prime modulus for
reducing the number of conflicts, the nodes with

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250

n
u
m
b
e
r

o
f

c
o
n
f
l
i
c
t

 number of nodes

 Conflict Addresses in 8 bits Address

Prophet(mod 251) random selection

(a) Conflict in 8 bits address

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5000 10000 15000 20000 25000

n
u
m
b
e
r

o
f

c
o
n
f
l
i
c
t

 number of nodes

 Conflict Addresses in 16 bits Address

Prophet(mod 65521) random selection

(b) Conflicts in 16 bits address

 0

 100

 200

 300

 400

 500

 600

 0 20000 40000 60000 80000 100000

n
u
m
b
e
r

o
f

c
o
n
f
l
i
c
t

 number of nodes

 Conflict Addresses in 24 bits Address

Prophet(mod 16777211) random selection

(c) Conflicts in 24 bits address

Figure 1. The number of conflict addresses between Prophet
and Random Allocation

TABLE I
Simulation parameters

Parameters Environment I Environment II

The number of nodes 35, 40, …, 60 50, 60, …, 90

Preconfigured nodes 30 40

Area 750m x 750m 1000m x 1000m

Simulation time 900 seconds 900 seconds

Address range 1 ~ 65534 (16 bits) 1 ~ 254 (8 bits)

Routing protocol AODV/DSDV AODV/DSDV

duplicated addresses still exist in MANET. We show
how many nodes with duplicate addresses exist using
our Java Program. We compared random allocation
mechanism using random function to Prophet. In
random allocation, a new node chooses a uniformly
distributed random number less than the address range
and takes the number as its address.

The function in Prophet cannot avoid address
conflicts. Each node produces a sequence in the same
domain. Two or more of the same numbers can be
generated from the multiple sequences. The uniqueness
is guaranteed only in one sequence, but it is not
guaranteed among multiple sequences. Figure 1 shows
the number of address conflicts according to the
number of nodes. With the 8 bits address in Figure 1(a),
Prophet shows many conflict nodes even though the
number of nodes is small. With the 16 bits address in
Figure 1(b) and the 24 bits address in Figure 1(c), the
conflict ratio decreases but still remains. In addition,
Prophet and random selection show similar results.
The number of conflicts in Prophet is smaller than that
of random allocation. However, when the number of
nodes is 100,000, the difference is at most 250.

As a result, Prophet fits for the network with huge
address ranges and with small nodes: 24 bits address
length and at most 150 nodes, which is a waste of the
address space. In such a case, even random allocation
has a conflict ratio close to zero.

5.2. Scalability

We measured two factors in terms of the scalability

metric: communication overheads and allocation
latency. Figure 2 shows the total number of packets as
the number of nodes increases. Prophet is outstanding
in communication overheads because a new node
needs to communicate with only its agent in order to
obtain an address. MANETconf and Strong DAD
show similar results because they use DAD process.
Zeroconf needs a lot of messages because it
periodically sends the confirm message in order to
manage its address pool. The messages are increase as
the number of nodes increases. Zeroconf is not suitable
for a network with many nodes.

Figure 3 shows an average allocation latency as the
number of nodes increases. Prophet also shows a very
low latency that is almost constant regardless of the
number of nodes. Strong DAD shows a constant line
because it must wait for a fixed time i.e., the time it
takes for the DAD process to complete three times.
Each DAD process needs 1.5 seconds because we
define the maximum hop size is 10 and the latency for
one hop is 0.15 seconds. Thus, the allocation latency
of Strong DAD approaches 4.5 seconds or higher.

MANETconf is also not affected by increasing the
number of nodes. Even though MANETconf uses
DAD process, it always shows better results than
Strong DAD because MANETconf performs DAD
process one time and resends messages only to nodes
that do not respond. On the other hand, Zeroconf is
affected by the number of nodes. Figure 3 (b) shows
increasing latency according to the number of nodes. A
new node must wait for the second flooding message
from the leader node in order to obtain an address. The
leader node periodically floods the message every 2
seconds. Therefore, allocation latency of Zeroconf is
higher than 2 seconds.

5.3. Independency, Reusability, and Availability

All Protocols operate with any routing protocol.

However, it will be better if Zeroconf and
MANETconf operate with proactive routing protocols
because they should also maintain information of all
MANET nodes.

In Zeroconf, it is easy to handle the address pool
since it is a centralized mechanism. Its reusability of

 0

 10000

 20000

 30000

 40000

 50000

 60000

 25 30 35 40 45 50 55 60 65

n
u
m
b
e
r

o
f

p
a
c
k
e
t
s

 number of nodes

 Total Packets

 MANETconf Prophet StrongDAD Zeroconf

(a) Environment I

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 40 50 60 70 80 90 100

n
u
m
b
e
r

o
f

p
a
c
k
e
t
s

 number of nodes

 Total Packets

 MANETconf Prophet StrongDAD Zeroconf

(b) Environment II

Figure 2. Total packets according to the number of nodes

addresses is also high. It does not require an additional
garbage collection process and does not allow address
leak. MANETconf and Strong DAD are also good at
reusability because they use DAD process before
address allocation if they minimize their message loss.
Prophet provides reusability using the rotating
sequence. It assumes that a MANET node stays at a
MANET for a while and leaves the network. Prophet
implicitly returns the addresses to the pool. However,
if the length of sequence is short, the address conflicts
occur in the network. It does not check whether an
address is being used or not.

In the aspect of availability, Strong DAD does not
provide a solution for network partitioning and
merging. MANETconf and Prophet have the same
approach that uses a group ID to detect them. Zeroconf
also provides a similar approach such that its leader
node periodically checks all nodes and their addresses.
The period may affect the network performance
because if it is too short, the traffic becomes highly
congested. In Table II, we arrange the performance

evaluation of each scheme in terms of 3 metrics:
independency, reusability, and availability.

6. Conclusion

We compared four address allocation schemes in

terms of uniqueness, scalability, independency,
reusability, and availability using simulation. The
centralized scheme is simple and shows good results
with respect to uniqueness and reusability. It has a
weak point in scalability because it produces a lot of
messages. In addition, the leader node may be a single
point of failure. Strong DAD and MANETconf may
take a long time to obtain an address because they use
DAD process before allocation. Prophet results in low
communication overhead and low allocation latency.
However, it doesn’t guarantee the uniqueness of
allocated addresses.

We need to compare these four protocols with other
distributed or centralized schemes that are not
evaluated in this paper.

7. Acknowledgment

We thank Woohyuk Jang and Bioinformatics and

Software Systems Lab. for helping our simulation
study.

8. References

[1] M. Günes and J. Reibel, “An IP address configuration

Algorithm for Zeroconf. Mobile Multi-hop Ad-hoc
Networks,” Proc. of the International Workshop on
Broadband Wireless Ad-Hoc Networks and Services,
September 2002.

[2] S. Toner and D. O'Mahony, “Self-Organizing Node

Address Management in Ad-hoc Networks,” Springer
Verlag Lecture notes in Computer Science 2775,
Springer Verlag, 2003, pp 476-483.

[3] Y. Sun and E. Belding-Royer, “Dynamic Address

Configuration in Mobile Ad hoc Networks,” UCSB
Technical Report 2003-11, June 2003.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 25 30 35 40 45 50 55 60 65

l
a
t
e
n
c
y

 number of nodes

 Average Latency

 MANETconf Prophet StrongDAD Zeroconf

(a) Environment I

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 40 50 60 70 80 90 100

l
a
t
e
n
c
y

 number of nodes

 Average Latency

 MANETconf Prophet StrongDAD Zeroconf

(b) Environment II

 Figure 3. Average latency according to the number of nodes

TABLE II
Performance Evaluations in terms of three Metrics

Performance
Metric MANETconf Prophet Strong

DAD Zeroconf

Independency
of Routing
Algorithms

Yes Yes Yes Yes

Reusability High Low High High

Availability Medium Medium Low Medium

[4] C. Perkins, J. Malinen, R. Wakikawa, E. Belding-Royer

and Y. Sun, “IP Address Autoconfiguration for Ad Hoc
Networks,” draft-ietf-manet- autoconf-01.txt, November
2001.

[5] S. Nesargi and R. Prakash, “MANETconf Configuration

of Hosts in a Mobile Ad Hoc Network,” Proc. of IEEE
INFOCOM, June 2002.

[6] H. Zhou, L. Ni, and M. Mutka, “Prophet Address

Allocation for Large Scale MANETs,” Proc. of IEEE
INFOCOM, March 2003.

[7] A. Misra, S. Das, A. McAuley, and S. K. Das,

“Autoconfiguration, Registration and Mobility
Management for Pervasive Computing,” IEEE Personal
Communications (Special Issue on Pervasive
Computing), Volume 8, Issue 4, August 2001, pp. 24-31.

[8] M. Mohsin and R. Prakash, “IP Address Assignment in a

Mobile Ad Hoc Network,” IEEE Military
Communications Conference (MILCOM), October 2002.

[9] T. Ramakrishnan, “A Protocol for Dynamic

Configuration Of Nodes in MANETs,” Master’s thesis,
Computer Science, University of Texas at Dallas, August
2002. (advisor: Ravi Prakash)

[10] K. Weniger and M. Zitterbart, “IPv6 Autoconfiguration

in Large Scale Mobile Ad-Hoc Networks,” Proc. of
European Wireless 2002, Feb. 2002.

[11] K. Manousakis, A. McAuley, R. Morera, and J. Baras,

“Routing Domain Configuration for More Efficient and
Rapidly Deployable Mobile Networks,” Army Science
Conference, Dec. 2002.

[12] K. Weniger, “Passive Duplicate Address Detection in

Mobile Ad hoc Networks,” Proc. of IEEE WCNC 2003,
March 2003.

[13] N. Vaidya, “Weak Duplicate Address Detection in

Mobile Ad Hoc Networks,” Proc. of ACM MobiHoc,
June 2002.

[14] P. Patchipulusu, “Dynamic Address Allocation

Protocols for Mobile Ad Hoc Networks,” Master’s
thesis, Computer Science, Texas A&M University,
August 2001. (advisor: N. Vaidya)

[15] J. Boleng, “Efficient Network Layer Addressing for

Mobile Ad Hoc Networks,” Proc. of 2002 International
Conference on Wireless Networks (ICWN), June 2002.

[16] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva,

“A Performance Comparison of Multi-Hop Wireless
Ad Hoc Routing Protocols”, Proc. of the Fourth
Annual ACM/IEEE Inter-national Conference on

Mobile Computing and Networking, October 1998, pp.
85–97.

[17] J. Yoon, M. Liu and B. Noble, “Sound Mobility

Models,” Proc. of ACM MobiCom, September 2003.

[18] J. Yoon, M. Liu and B. Noble, “Random Waypoint

Considered Harmful,” Proc. of IEEE INFOCOM, April
2003.

[19] R. Jain, “The Art of Computer Systems Performance

Analysis,” John Wiley & Sons, 1991, pp 439-440.

