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Abstract 

 
 In this paper, we classified existing address 

autoconfiguration schemes based on two 
communication models: centralized and distributed 
schemes. We defined performance metrics and 
evaluated four existing address autoconfiguration 
schemes. We suggested requirements for an address 
autoconfiguration scheme. 
 
1. Introduction 
1 

A Mobile Ad hoc Network (MANET) usually 
doesn’t have any fixed infrastructure or administration 
and the network’s topology may change quickly and 
unexpectedly. A network protocol may affect the entire 
network performance because of these characteristics 
of MANET. We must deliberate to choose one. 

Addressing is an imperative step for MANET nodes 
to communicate with each other. In this paper, we 
classified current address autoconfiguration schemes 
and defined important performance metrics of address 
autoconfiguration schemes. We evaluated the address 
autoconfiguration schemes in terms of various 
performance metrics.  

This paper is organized as follows: In section 2, we 
classify the address autoconfiguration schemes based 
on communication models. In section 3, we describe 
the fundamental performance metrics for address 
autoconfiguration schemes in MANET, and in section 
4, we describe our simulation environments. We show 
the performance of each approach through our 
simulation study in section 5. Finally, our conclusion is 
presented in section 6. 
 
2. Classification of Address Autoconfigu-

ration Schemes 
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We classified the address autoconfiguration 
schemes by communication models: one is the 
centralized schemes, and the other is the distributed 
schemes. The main concept of the centralized schemes 
is that a node will be a server node acting as DHCP 
server. A new node should communicate with the 
server node to get an address. In contrast, the 
distributed schemes operate in such a way that every 
node must communicate with each other to get an 
address.  

 
2.1. The Centralized Schemes 

 
In the centralized schemes, one server node is 

elected for a MANET. We see instances of centralized 
schemes in  [1] [2] [3]. The server node refers to an 
agent node  [1], a leader node  [2], or an address 
authority  [3], in each scheme, respectively, but the 
operation of the server nodes is similar to each other. 
The server node maintains an address pool and is 
responsible for the address allocation. When two or 
more MANETs merge, the number of server nodes is 
reduced to one. 

In these methods, the duplicated addresses by 
network merger can be simply detected using the 
server node’s address pool. However, the server node 
becomes burdened and may be a single point of failure. 
The larger the number of hop counts from a new node 
to the server node, the longer these mechanisms take to 
find the server node and to get an address. 

Günes et al. proposed a centralized agent based 
address configuration scheme [1]. The address-agent 
node maintains the Address List (AL). It periodically 
broadcasts a Verify Packet that contains the AL and a 
time stamp. Every node that wants to remain in 
MANET replies an Address Confirm packet to the 
agent. If the agent doesn’t receive the Address 
Confirm packet before timeout, it removes the node 
from the AL. If the network merging is detected, the 
number of agent nodes must be reduced to one. The 
agent having more nodes will remain as the agent of 
the merged network. If the number of nodes is equal, 



the agent having a lower MAC address will be the 
agent of the merged network. 

 
2.2. The Distributed Schemes 

 
Perkins et al. proposed a distributed Duplicated 

Address Detection (DAD) scheme called Strong DAD 
[4]. A new node randomly selects an IP address and 
examines whether it is used in a MANET. If the 
chosen address is already used, it retries until it gets an 
unused address. The new node uses a temporary 
address for communication among other MANET 
nodes. The address allocation time increases in 
proportion to the number of failures. The maximum 
number of hop counts in a MANET also affects the 
allocation time. In this paper, the authors did not 
present any ideas for a network partition and network 
merger. 

Sanket et al. suggested an agent-based distributed 
address autoconfiguration, MANETconf, using the 
distributed agreement concept  [5]. Unlike Strong DAD, 
a new node, which is called a requestor, asks for an 
address to one of the neighbors in MANET, which is 
called an initiator. The initiator then randomly selects 
an address and gets agreements from all other nodes in 
MANET and assigns the address to its requestor. To 
acquire agreements, the initiator uses a modified DAD, 
receiving not NACK but ACK, which may result in an 
ACK explosion. Every node manages the list of all 
nodes in order to count the ACK messages to be 
received and decides the limit of the waiting time. To 
deal with the network partitioning and merging, the 
node with the lowest IP address has the role of group 
leader. The group leader periodically broadcasts a 
message including the Universally Unique Identifier 
(UUID). If a node doesn’t receive the message from a 
group leader, it can perceive the network partitioning. 
On the other hand, if a node will receive the messages 
from two or more group leaders, the node can 
recognize the network to be merged. Because this 
scheme manages the list of all nodes and collects 
response messages from all nodes, it can easily decide 
the success or failure of acquiring agreements. The 
node list can be used to find the conflict addresses 
when two or more networks are merged. It may take a 
longer time to allocate an address when the initiator 
fails to get agreements. An additional weakness is that 
synchronization of the node lists among nodes is 
needed, which may break the consistency of the lists. 
As a result, it fails to guarantee the uniqueness of the 
assigned address. 

Hongbo et al. proposed a conflict free distributed 
address configuration scheme named Prophet Address 
Allocation using a function that produces an integer 

sequence  [6]. The address of a MANET node must be 
unique during its lifetime. They tried to design a 
function that produces a sequence that satisfies the 
extremely long interval between occurrences of the 
same number. The probability of more than one 
occurrence of the same number in the different 
sequences must be extremely low. It is difficult to 
design such a function in distributed manner. The 
Prophet allocation has obvious advantages: short 
address allocation time and low communication 
overhead. If the address length is less than 16 bits, the 
conflict ratio is too high to use for address allocation in 
MANET. The authors suggested the address length be 
24 bits. However, if the address length is 24 bits, the 
conflict ratio is also very low in random selection as 
well in Prophet. The address conflict still occurs even 
if 24 bits are used. Prophet may need a method to 
avoid address conflict. 

In addition, there are other distributed mechanisms 
that split the address space to avoid conflict among 
addresses. They need a method to gather unused 
addresses to prevent an address leak problem  [7] [8] [9]. 
The hybrid mechanisms in  [10] [11] separate a 
MANET into sub networks. Other researchers have 
studied address configuration from a different point of 
view: they suggested solutions to detect and solve the 
conflict when it occurs with the aid of routing 
protocols, which do not involve the allocation 
mechanism  [12] [13]. The distributed mechanism 
presented in  [14] gives the role of the leader to the new 
node. The leader allocates an address of (highest 
known address + 1) to the next new node. The new 
leader information is announced by flooding packets. 
A mechanism using a variable length address instead 
of an IP address is presented in  [15]. In this work, it is 
required to add some fields to all network layer packet 
headers. 

 
3. Performance Metrics for Address 

Autoconfiguration Schemes 
 
We defined performance metrics for address 

autoconfiguration schemes in MANET as follows: 
 

3.1. Uniqueness 
 
Every MANET node must get a unique address for 

each network interface because the duplicated 
addresses may cause severe problems in routing. The 
incorrect information may result in misrouting or 
failure of service. Therefore, the nodes having 
duplicated addresses should change their addresses. 



The address changing also may cause a break in 
service and produce incorrect routing information. 

Guaranteeing the uniqueness of an allocated address 
is the most important performance metric because 
address conflicts affect the entire performance and 
traffic of the network. 

 
3.2. Scalability  

 
We can consider two factors in terms of scalability: 

communication overheads and allocation latency. 
Communication overheads mean the number of 
packets that is spent for nodes to get addresses. The 
allocation latency is the waiting time for a node to get 
an address. A good address autoconfiguration scheme 
rarely depends on the total number of nodes in the 
network or the network size.  

 
3.3. Independency of routing protocols 

 
The routing protocols can be classified into two 

groups: a proactive routing algorithm and a reactive 
routing algorithm. Address autoconfiguration schemes 
must operate with both routing protocols for the nodes 
to join a MANET regardless of their routing algorithm. 

  
3.4. Reusability: Garbage collection and IP leaks 

 
If a MANET node leaves the network, the address 

of the node must return to the address pool. The 
centralized mechanism can handle this problem easily, 
but the distributed mechanism has difficulty. The 
schemes that do not have any policies for address reuse 
may suffer an address leak problem. To prevent 
address leak, garbage collection which requires 
additional overheads is necessary. 

 
3.5. Availability  

 
Address autoconfiguration schemes must always be 

available regardless of network status. For example, 
we can consider the following network status or 
events: network partition and merger, node mobility, 
and message loss. 

A good address autoconfiguration scheme must 
operate even if MANET is partitioned or merged. 
Handling the network merger is more complex because 
it causes the address conflict problem. The address 
conflict happens in network merging because address 
allocation schemes only guarantee the uniqueness in a 
MANET. 

Address autoconfiguration schemes should quickly 
detect the network merging and address conflict, and 

then should solve the address conflicts in the merged 
network. Most protocols introduce a group ID to solve 
the network partition and merger. To detect the 
network partition and merger, a leader node in a 
MANET periodically broadcasts its existence with a 
group ID or a network ID. If two or more nodes that 
have a different group ID meet, they can detect the 
network merging. If a node doesn’t receive the 
message from the leader, it can perceive the network 
partitioning.  

In addition, address autoconfiguration schemes 
must continue the allocation process when a new node 
requiring an address and a MANET node participating 
allocation of address move during the process of 
address allocation.  

A MANET is inherently unreliable, and the 
transmission error rate is high. The nodes will be 
abruptly crashed or depart from the network. Some 
messages may be lost during the address allocation 
process. Address autoconfiguration schemes should 
prepare the message loss. 

 
4. Simulation Environments 

 
We simulated four address autoconfiguration 

schemes: MANETconf  [5],  Prophet  [6],  Strong DAD 
 [4],  and Zeroconf  [1]. To show the results of the 
uniqueness of allocated addresses for the network with 
huge nodes, we made a java program. It is hard to 
simulate with ns-2 in the large network environment. 

 
4.1. Java Simulation Environments  

 
The Prophet and random allocation are simulated in 

java to compare the address uniqueness in a large 
network. In java simulation for Prophet, an agent is 
randomly selected among all nodes in the network 
when a new node arrives. The number of neighbors is 
uniformly distributed between 1 and 8. Node mobility 
was not considered because we believe that the random 
selection takes the place of the movement effect. After 
the address allocation for the previous node has been 
completed, the next new node arrives. All nodes stay 
in the network until the end of the simulation and the 
number of nodes always increases. 

 
4.2. Ns-2 Simulation Environments 

 
We used ns-2 simulator of version 2.27 with 

modified Random Waypoint Models  [16] [17] [18]. The 
maximum speed of nodes is 5 m/s; the minimum speed 
of nodes is 1m/s, and the pause time is set at 10 
seconds. Table I shows two different simulation 



environments. The inter-arrival time of new nodes was 
uniformly distributed between [0, 10] seconds. To 
make a well connected network, we added 
preconfigured nodes before starting the simulations. 
Network partition and merger were not considered.  

 
5. Performance Evaluation 
 
5.1. Uniqueness 
 

The most important metric is the uniqueness of the 
allocated addresses because address conflicts may 
cause abnormal behavior in routing protocol and 
applications. 

Zeroconf does not allow the conflict of addresses 
because an address agent node allocates all addresses 
based on the MAC addresses of the requesting nodes. 
Strong DAD and MANETconf perform DAD before 
allocating an address. Strong DAD uses NACK and 
MANETconf uses ACK as a mean of getting 
agreements for use of an address. 

In contrast, Prophet does not have a method to 
verify the address conflict. In Prophet, each node has a 
unique modular function to generate a positive integer 
sequence.  

1mod
1

++= ∏
=

Rpaaddress
k

i

e
i

i  (1) 

Here, a is a randomly selected address for the first 
node. The primes pi satisfy p1 < p2 < … < pk. We use 
the value k as 209 by their simulation codes, and pk as 
1291, the 209th prime number. The R varies from 251 
to 65521 and 16777211 according to its address bits: 8 
bits, 16 bits, and 24 bits. 

For a node, the function can be expressed as 
(address = a + C*pi mod R + 1), where C is a constant. 
It has a form of Linear-Congruential Generator (LCG) 
used in random number generation  [19]. If we use 
modulus R as a non-prime value such as 2m, the 
number of conflicts increases because if the prime used 
for the sequence is a divisor of R, the period of one 
sequence decreases. The Modulus 251, 65521, and 

16777211 are the closest prime numbers to the address 
ranges, respectively. 

Even though Prophet uses the prime modulus for 
reducing the number of conflicts, the nodes with 
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Figure 1. The number of conflict addresses between Prophet 
and Random Allocation 

  

TABLE I 
Simulation parameters 

Parameters Environment I Environment II 

The number of nodes 35, 40, …, 60 50, 60, …, 90 

Preconfigured nodes 30 40 

Area 750m x 750m 1000m x 1000m 

Simulation time 900 seconds 900 seconds 

Address range 1 ~ 65534 (16 bits) 1 ~ 254 (8 bits) 

Routing protocol AODV/DSDV AODV/DSDV 



duplicated addresses still exist in MANET. We show 
how many nodes with duplicate addresses exist using 
our Java Program. We compared random allocation 
mechanism using random function to Prophet. In 
random allocation, a new node chooses a uniformly 
distributed random number less than the address range 
and takes the number as its address. 

The function in Prophet cannot avoid address 
conflicts. Each node produces a sequence in the same 
domain. Two or more of the same numbers can be 
generated from the multiple sequences. The uniqueness 
is guaranteed only in one sequence, but it is not 
guaranteed among multiple sequences. Figure 1 shows 
the number of address conflicts according to the 
number of nodes. With the 8 bits address in Figure 1(a), 
Prophet shows many conflict nodes even though the 
number of nodes is small. With the 16 bits address in 
Figure 1(b) and the 24 bits address in Figure 1(c), the 
conflict ratio decreases but still remains. In addition, 
Prophet and random selection show similar results. 
The number of conflicts in Prophet is smaller than that 
of random allocation. However, when the number of 
nodes is 100,000, the difference is at most 250. 

As a result, Prophet fits for the network with huge 
address ranges and with small nodes: 24 bits address 
length and at most 150 nodes, which is a waste of the 
address space. In such a case, even random allocation 
has a conflict ratio close to zero.  

 
5.2. Scalability  

 
We measured two factors in terms of the scalability 

metric: communication overheads and allocation 
latency. Figure 2 shows the total number of packets as 
the number of nodes increases. Prophet is outstanding 
in communication overheads because a new node 
needs to communicate with only its agent in order to 
obtain an address. MANETconf and Strong DAD 
show similar results because they use DAD process. 
Zeroconf needs a lot of messages because it 
periodically sends the confirm message in order to 
manage its address pool. The messages are increase as 
the number of nodes increases. Zeroconf is not suitable 
for a network with many nodes.  

Figure 3 shows an average allocation latency as the 
number of nodes increases. Prophet also shows a very 
low latency that is almost constant regardless of the 
number of nodes. Strong DAD shows a constant line 
because it must wait for a fixed time i.e., the time it 
takes for the DAD process to complete three times. 
Each DAD process needs 1.5 seconds because we 
define the maximum hop size is 10 and the latency for 
one hop is 0.15 seconds. Thus, the allocation latency 
of Strong DAD approaches 4.5 seconds or higher. 

MANETconf is also not affected by increasing the 
number of nodes. Even though MANETconf uses 
DAD process, it always shows better results than 
Strong DAD because MANETconf performs DAD 
process one time and resends messages only to nodes 
that do not respond. On the other hand, Zeroconf is 
affected by the number of nodes. Figure 3 (b) shows 
increasing latency according to the number of nodes. A 
new node must wait for the second flooding message 
from the leader node in order to obtain an address. The 
leader node periodically floods the message every 2 
seconds. Therefore, allocation latency of Zeroconf is 
higher than 2 seconds.  

 
5.3. Independency, Reusability, and Availability  

 
All Protocols operate with any routing protocol. 

However, it will be better if Zeroconf and 
MANETconf operate with proactive routing protocols 
because they should also maintain information of all 
MANET nodes.  

In Zeroconf, it is easy to handle the address pool 
since it is a centralized mechanism. Its reusability of 
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(a) Environment I 
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(b) Environment II 
 

Figure 2. Total packets according to the number of nodes 



addresses is also high. It does not require an additional 
garbage collection process and does not allow address 
leak. MANETconf and Strong DAD are also good at 
reusability because they use DAD process before 
address allocation if they minimize their message loss. 
Prophet provides reusability using the rotating 
sequence. It assumes that a MANET node stays at a 
MANET for a while and leaves the network. Prophet 
implicitly returns the addresses to the pool. However, 
if the length of sequence is short, the address conflicts 
occur in the network. It does not check whether an 
address is being used or not. 

In the aspect of availability, Strong DAD does not 
provide a solution for network partitioning and 
merging. MANETconf and Prophet have the same 
approach that uses a group ID to detect them. Zeroconf 
also provides a similar approach such that its leader 
node periodically checks all nodes and their addresses. 
The period may affect the network performance 
because if it is too short, the traffic becomes highly 
congested. In Table II, we arrange the performance 

evaluation of each scheme in terms of 3 metrics: 
independency, reusability, and availability.  

 
6. Conclusion  

 
We compared four address allocation schemes in 

terms of uniqueness, scalability, independency, 
reusability, and availability using simulation. The 
centralized scheme is simple and shows good results 
with respect to uniqueness and reusability. It has a 
weak point in scalability because it produces a lot of 
messages. In addition, the leader node may be a single 
point of failure. Strong DAD and MANETconf may 
take a long time to obtain an address because they use 
DAD process before allocation. Prophet results in low 
communication overhead and low allocation latency. 
However, it doesn’t guarantee the uniqueness of 
allocated addresses.  

We need to compare these four protocols with other 
distributed or centralized schemes that are not 
evaluated in this paper. 
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