

An Architecture for Fault Tolerant and Service-based

Business Processes

Diego Zuquim Guimarães Garcia
1
, Maria Beatriz Felgar de Toledo

1

1
Institute of Computing – State University of Campinas

PO Box 6176 – 13.084-971 – Campinas – SP – Brazil

{diego.garcia,beatriz}@ic.unicamp.br

Abstract. A Business Process Management System (BPMS) supports business

processes and organizations depend on its availability. Web services have

been pointed as a suitable technology for BPMSs. Thus, the inclusion of fault

tolerance in the Web service architecture is essential for process continuity.

The goal of this paper is to propose a fault tolerant Web service architecture

to be used with BPMSs. The architecture provides service mediation and

monitoring, and uses Web service standards. The main contribution of this

paper is an architecture to support fault tolerance for business processes

based on Web services.

1. Introduction

Typically, Business Process Management Systems (BPMSs) are used for critical

activities by many organizations [van der Aalst et al. 2003]. Recently, Web services are

becoming important components for business processes. Thus, the availability of a

business process becomes dependent on the availability of the Web services used in the

business process.

 Fault tolerance is an important requirement for critical systems. However,

currently there is not a standard for fault tolerance in Web services, such as in other

technologies, for instance, CORBA (Common Object Request Broker Architecture)

[Object Management Group 2004].

 Considering this deficiency, several proposals for fault tolerance in Web services

are being developed. However, in the proposals, Web services are not considered as a

BPMS technology. Moreover, they do not deal with important requirements, such as the

use of mechanisms provided by Web service standards that support simplicity and

interoperability.

 This paper focuses on the area of fault tolerance for Web services. The main goal

is to propose an architecture that offers business process continuity even in the presence

of faults, by means of the high availability of Web service components.

 The architecture extends the Web service architecture and includes two new

components: broker and monitor. The broker component is responsible for interacting

with Web service registries and managing replicas (Web services with similar

functionality). The monitor component is responsible for monitoring services and

detecting errors. Furthermore, the standard Web service registry is extended for

including QoS information about Web services, in addition to functional information

[Lee et al. 2005].

 The proposed architecture enables BPMSs to use Web services in business

processes to support the cooperation among organizations. Moreover, it uses the basic

Web service architecture to guarantee compatibility with Web service standards [Fan

and Kambhampati 2005].

 Another important characteristic of the architecture is the fault tolerance. This

characteristic is implemented by the inclusion of mediation and monitoring mechanisms

to support the use of service replicas.

 The rest of the paper is organized as follows. Section 2 describes basic concepts,

including Business Process Management Systems, Web Services and Fault Tolerance.

Section 3 discusses the proposed fault tolerant architecture for Web service-based

BPMSs. Section 4 presents implementation aspects and a performance evaluation of the

architecture. Section 5 discusses related work. Section 6 presents conclusions and future

work.

2. Basic Concepts

This section presents some basic concepts for the better understanding of this paper.

2.1. Business Process Management Systems

Business Process Management Systems (BPMSs) support the control of business

processes. A business process is a collection of activities. Activities are descriptions of

work pieces that collectively realize a business goal, typically within the context of an

organizational structure. Differently from traditional Workflow Management Systems

(WfMSs), BPMSs focus on the management of dynamic interorganizational processes.

These processes comprise activities that may be performed by different business

partners [Hollingsworth 2004, Woodley and Gagnon 2005].

 BPMSs support Business Process Management (BPM). The life cycle of BPM

(Figure 1) starts with process modeling (Design phase). The process is then registered

with a BPMS, which can create process instances (Configuration phase). The BPMS

coordinates instance execution and records information collected during execution

(Enactment phase). The execution history is analyzed and used to improve process

models (Diagnosis phase) [van der Aalst et al. 2003].

Figure 1. Business Process Management (BPM) life cycle

2.2. Web Services

A Web service-based BPMS supports the management of business processes that use

Web services to achieve business goals [Leymann et al. 2002].

 The Web service technology is based on the Service Oriented Computing

[Papazoglou and Georgakopoulos 2003]. A Web service is an electronic service

identified by a URI (Uniform Resource Identifier). XML (eXtensible Markup Language)

standards are used to specify service interfaces and to invoke services through the Web.

Figure 2 shows the Web service architecture [Booth et al. 2004]. The Web service

technology comprises three basic standards [Alonso et al. 2004]:

• Web Services Description Language (WSDL): provides a model and a format for

specifying the abstract functionality of a Web service as well as the concrete

details of a service specification [Chinnici et al. 2005];

• Universal Description Discovery & Integration (UDDI): offers a Service

Registry (Figure 2) that supports the publication and discovery of Service

Providers, the Web services they make available and the technical interfaces that

Service Consumers may use to bind and interact with the Web services [Clement

et al. 2004];

• SOAP (formerly Simple Object Access Protocol): is a protocol intended for

exchanging structured information in a decentralized, distributed environment,

such as a Web service environment [Mitra 2003].

Figure 2. Basic Web service architecture

2.3. Fault Tolerance

System dependability is the ability of avoiding service failures that are more frequent

and severe than the acceptable [Avizienis et al. 2004].

 System dependability depends on some QoS aspects provided by the system.

Dependability includes the following attributes: availability, reliability, safety, integrity

and maintainability.

 Fault tolerance is a means to achieve dependability. It may be defined as the act

of avoiding service failures in the presence of faults. Frequently, the redundancy

mechanism is used for implementing fault tolerant techniques. A system is able to

tolerate a fault if it employs a type of redundancy [Gartner 1999].

 Fault tolerant techniques may be classified according to the application phases:

error detection, confinement, error recovery and fault treatment [Anderson and Lee

1981].

3. A BPMS Architecture

In this section, the proposed BPMS architecture is presented. It focuses on the necessity

of evolving BPMSs for the inclusion of functionalities for the appropriate management

of dynamic interorganizational processes. The architecture is based on the Web service

architecture. It supports fault tolerance.

 The proposed architecture includes components that are responsible for replica

management, error detection and confinement. In the fault tolerant architecture, multiple

replicas for the same Web service may be developed for different computational

platforms and executed in different locations.

 In the architecture, the configuration phase includes the publication of Web

services. Service providers use UDDI structures to register replicas. The UDDI API

(Application Program Interface) is used to provide the necessary data for the registration

of Web service replicas into UDDI registries.

 At the execution phase, a broker is used to create replica groups. After the

creation of the replica group, the broker selects the Web service to be used. At this

phase, a monitor is responsible for detecting errors. It verifies the status of the service

during its execution. If an error occurs, the monitor interacts with the broker for the

selection of a service replica.

 Next, the architecture components are described and the modifications included

into the basic Web service architecture are discussed.

3.1. Broker

The broker component is responsible for managing replicas. It creates Web service

replica groups using the UDDI tModel concept. Web services are aggregated by means

of specification sharing. Replica groups are dynamically defined and reflect the typical

dynamic Web service environment, in which new Web services are continually offered

and service offers are discontinued.

 The broker uses the extended UDDI registry, which includes QoS information.

Thus, the QoS demands of service consumers may be considered during the discovery of

the replicas that will form a group.

 Some properties of replica management may be defined in the broker

component. For instance, it is possible to define the number of service replicas that form

a replica group, in terms of the number of services of different providers and the number

of access points of a service.

3.2. Monitor

In the proposed architecture, the monitor component is responsible for error detection,

notification and confinement.

 It monitors the execution of Web services by means of message interception

[Baresi et al. 2006]. Moreover, it performs tests and analyzes service responses to detect

errors.

 The monitor notifies the broker if a Web service presents an error during its

invocation or execution, for instance, if the service rejects an invocation, does not

complete the execution or finalizes with an exception.

 In the case of service errors after service selection, the monitor can transfer

invocations to replicas discovered by the broker, with the purpose of guarantying the

continuity of the business process.

 The monitor component is responsible for obtaining from the consumer the

required Web service type, along with the operation to be executed and the parameters

required for the execution of the service. This component invokes the broker to perform

the mapping of the service type into an available Web service replica.

 Furthermore, the monitor can update the UDDI registry with the QoS

information obtained during service monitoring.

3.3. UDDI Registry

The current UDDI standard is not very mature [Du et al. 2006]. For instance, it still

lacks facilities for QoS description. In the proposed architecture, UDDI is extended to

include QoS information, which is used by the broker during service selection and

updated by the monitor. This extension enhances search flexibility. Searches can be

based on functional characteristics and refined with required QoS attributes.

 The UDDI information model [Clement et al. 2004] is composed of data

structure types expressed in XML. The extended UDDI information model (Figure 3)

aggregates the qosPolicy structure and its relationships. The data structure types are

described below:

• businessEntity: top-level structure that contains descriptive information about a

provider organization, such as contact and classification. Each businessEntity

may provide various businessServices;

• businessService: represents a logical Web service that may have multiple

implementations. It includes descriptive information about a Web service, such

as name and classification;

• bindingTemplate: represents a service implementation and provides the

information needed to bind with the service. Each bindingTemplate contains

information such as access point and transport protocol;

• tModel (Technical Model): represents unique concepts in UDDI, such as

namespaces and category systems. Examples include tModels based on WSDL

and other documents that specify service interfaces;

• publisherAssertion: defines an association of businessEntities. It can be used by

organizations to export their relationships, for instance subsidiary companies and

industry consortia;

• subscription: describes a request to keep track of activities in a UDDI registry

according to preferences provided with the request. Subscribers can register

themselves for receiving information about changes in any of the UDDI

structures;

• qosPolicy: represents a QoS policy for a Web service. The provided information

describes attributes of a Web service represented by the bindingTemplate

structure. References to tModels can be used to describe that a QoS policy

conforms to particular specifications.

Figure 3. Extended UDDI information model

 UDDI defines APIs [Clement et al. 2004] that standardize communication within

and between UDDI implementations. APIs are grouped into sets. The extended UDDI

registry includes extensions to the UDDI Inquiry, Publication and Subscription API sets

to manipulate QoS information. Moreover, it uses the UDDI Security API set during the

execution of operations in other sets.

 In order to describe a service compatible with a set of specifications, references

to the tModels that represent the specifications are included into the bindingTemplate

structure. The bindingTemplate structures that refer to the same set of tModels are of the

same type. Thus, tModels may be used as a base for replica group creation.

3.4. Component Interactions

The steps for service discovery and execution are presented in Figure 4. Subsequently,

the steps are described.

Figure 4. Fault tolerant Web service architecture for use with BPMSs

 There is one monitor for each process activity. The broker is a remote

component and, as well as the UDDI registry, a number of brokers can be used and

deployed in different locations, such as along with monitors, UDDI registries or

independently. These characteristics ensure autonomy in terms of the ability of defining

and executing processes and using brokers.

 The architecture enables BPMSs to use Web services as business process

activities. Thus, it is possible to include services provided by different organizations into

the business process of an organization.

 At process design time, activities represent Web services. They indicate service

types by means of tModels.

 At process enactment time, when an activity realized by a Web service is

reached, the BPMS requests a service that is able to implement the activity (Steps 1 and

2 in Figure 4).

 A broker discovers Web services of the required service type and with the

required QoS in the extended UDDI registry to create a replica group (Step 3). It

performs availability tests for selecting the service to be used (Step 4). Subsequently, the

broker returns the address of the selected service (Steps 5 and 6). Then, the BPMS may

use the service through the returned access point.

 At activity execution time, the monitor verifies the execution of the service (Step

7). If errors occur, the monitor requests the use of a service replica (Step 8). When

service execution is finished, results are reported back.

4. Implementation and Evaluation

This section presents implementation aspects of the proposed architecture and discusses

performance evaluation.

 The architecture was partially implemented using: Sun Java Development Kit

Version 1.5; Apache Axis Version 1.3 (providing SOAP and WSDL support); Apache

WS-Commons/Policy Version 0.9 (a WS-Policy implementation); and Apache Tomcat

Version 4.1.24 (an application server).

 The UDDI component was partially implemented using Apache jUDDI Version

0.9rc4, which is an open-source UDDI implementation compliant with the Version 2.0

specification that allows registries to be maintained for different purposes in different

environments.

 MySQL AB MySQL Version 5.0.16 was used to implement the UDDI database.

The QOS_POLICY table stores Web service QoS attributes. This table refers to the

BINDING_TEMPLATE table that stores Web service instances. It also refers to the

TMODEL table containing technical models for QoS-related concepts.

 In addition to directly using UDDI APIs through a SOAP API to interact with a

registry, client APIs based on particular programming languages can be used. An

extended client API for inquiry and publication operations based on Java was

implemented. This API includes classes that represent UDDI elements. Developers can

use it to access an extended registry without knowing about UDDI messages and

structures. UDDI4J Version 2.0.4, a Java class library supported by HP, IBM and SAP,

was used to implement the client API. UDDI4J has constructs that generate and parse

messages sent to and received from a standard UDDI registry.

 The extended UDDI is compatible with the basic UDDI and both types of UDDI

registries can coexist in the same environment.

 The architecture components were implemented as Web services. They interact

through the Apache Axis SOAP engine. This approach allows the use of the architecture

in restricted environments, such as intranets, and open environments, such as the

Internet. Moreover, this approach offers the possibility of using brokers with different

functionalities, according to consumer needs.

 The replica management and error detection functionalities were partially

implemented. The UDDI extension allows a refined replica group creation. Service

replica selection is based on QoS, including the interoperability, response time and

availability attributes. Service monitoring considers the response time attribute.

 The goal of this partial implementation was to test the approach effectiveness.

Some experiments were developed and the results are discussed below.

 The evaluation focused on the performance impact that was generated by the

inclusion of the fault tolerance support in the Web service architecture. In order to test

the fault tolerance support, faults were introduced in a controlled manner during the

experiments.

 The tests were executed on a computational environment with the configuration

shown in Table 1.

Table 1. System configuration

Operating system Linux Fedora Core 2.6.16-

1.2066_FC4

Java virtual

machine

Sun Java Runtime Environment

1.5.0_06

Application

server

Apache Tomcat 4.1.24

Database server MySQL AB MySQL 5.0.16

SOAP engine Apache Axis 1.3

UDDI registry Apache jUDDI 0.9rc4 (extended)

Network Ethernet / 100 Mbps

Processor Intel Pentium 4A / 2800 MHz /

133 MHz

Memory 512 MB / 266 MHz

Motherboard /

Chipset

Intel Sea Breeze D845GVSR /

Intel Brookdale-G i845GV

Hard disk Samsung SP0411N / 40 GB /

7200 RPM / Ultra-ATA 133

 Some experiments were developed to measure the impact in terms of response

time. Three situations were tested. Initially, the basic Web service architecture was

evaluated and the fault tolerance support was not employed. In this case, the consumer

discovers a Web service by means of the UDDI registry and invokes it directly. The

second situation was similar, but the fault tolerance support was used. To evaluate the

effectiveness of the fault tolerance support, in the third situation, faults were injected

into the system.

 The impact in terms of response time generated by the proposed fault tolerance

support was measured by the comparison of the results of the second and third situations

with the first situation.

 Figure 5(a) shows the response time for the three cases. The average response

time was approximately 68 ms, when the Web service architecture extensions were not

used. When the extensions were used, the response time was approximately 108 ms in

the case without faults and 138 ms in the case with faults.

 A Web service executed with fault tolerance presented an average additional cost

of 58.8 % in the response time, in opposition with the execution of the same service

without fault tolerance. When faults were introduced, the additional cost was increased

by 27.8 % in terms of response time of the same service in the case without faults.

 In order to assess the overhead of the broker and monitor components, other

experiments were executed. The overhead in terms of CPU usage was measured in two

situations: with and without faults.

 Figure 5(b) presents the CPU usage percentages. The average overhead

introduced by the broker was approximately 13.8 %, and by the monitor, 13.5 %, in the

situation without faults. With the introduction of faults, the average overhead was

approximately 16.3 % for the broker, and 13.8 % for the monitor.

Figure 5. Results: (a) response time and (b) CPU usage of the fault tolerant
architecture.

5. Related Work

This section presents some studies on fault tolerance in Web services. In the studies, the

use of mediation in the Web service architecture is shared. However, they employ

different fault tolerant mechanisms and techniques, such as passive replication, active

replication, N-version model and checkpointing/rollback. Typically, these studies do not

consider the use of Web service standard mechanisms and the application of Web

services in the BPM area.

 Dialani et al [Dialani et al. 2002] discuss that distributed computing and grid

computing applications should be designed with fault tolerance to achieve robustness.

However, the Web service community has not been focused on this aspect. This

deficiency influenced some modifications in the SOAP layer with the goal of offering

fault tolerance by checkpointing and rollback mechanisms. The proposed architecture

for the development of fault tolerant Web services focuses on error recovery and,

differently from the approach presented here, does not deal with the management of

multiple service replicas.

 Similarly to the approach proposed in this work, the passive replication

technique is explored in [Liang et al. 2003]. To achieve fault tolerance, some

modifications are proposed for the WSDL and SOAP standards with the purpose of

allowing the specification of Web service replicas and the redirection of service

requests, respectively. The approach presented here employs a mediation layer in the

Web service architecture, which offers the necessary functionalities for managing

replicas. Thus, it does not depend on modifications in the interface description language

and the message interchange protocol of Web services. The approach includes a UDDI

extension, but the extended UDDI is compatible with the standard.

 In [Santos et al. 2005], the active replication technique is used in Web services

to support consumer transparent fault tolerance. The architecture has a central

forwarding component that includes the mechanisms responsible for managing replicas.

It acts as a broker between Web service consumers and providers, as proposed in the

architecture presented here. To deal with the fault point represented by the forwarding

component, the architecture has a backup component. In the architecture proposed here,

the broker is implemented as a Web service and enables consumers to use different

brokers. Moreover, differently from the approach presented here, which uses UDDI

tModels for creating service replica groups, the forwarding component has a

configuration system for creating groups.

 A N-version model implementation for Web services is presented in [Looker et

al. 2005]. The N-version model is a design pattern for fault tolerance. In this model, in

order to avoid errors caused by, for instance, specification and implementation

problems, replicas are developed as different versions. In the proposal, the consumer

stub is incremented for enabling consumers to provide service lists. Here, in a similar

manner, replicas are Web services with similar functionality and the N-version model is

supported by the loose coupling of the Web service technology. However, differently

from the approach proposed here, the N-version model implementation demands the

consumer to obtain the Web service status.

6. Conclusion

In this paper, a fault tolerant Web service architecture for use with BPMSs was

described. Implementation aspects and a performance evaluation of the proposed

architecture were presented. The approach extends the basic Web service architecture

with the inclusion of broker and monitor components and a UDDI extension. The

extensions introduce a significant additional cost, but the cost is acceptable because of

the offered benefits. Business process continuity is offered by the fault tolerance

support.

 The main contributions of this paper are a fault tolerant architecture for Web

service-based BPMSs and its partial implementation.

 Future work includes the execution of additional tests to evaluate the approach

in different scenarios. Moreover, the proposed extensions may be enhanced to handle a

broader range of QoS attributes and to support mobile Web services. Providing services

in mobile environments comprises QoS issues that are not included in fixed

environments. Another direction is the inclusion of context-awareness facilities into the

architecture to enable the delivery of services that adapt to different contextual

dimensions. Furthermore, the absence of request redirection coordination generates an

unstable system. A load balancing mechanism may be used to avoid the redirection of

many consumer requests to the same replica.

References

Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2004). Web services: concepts,

architectures and applications. Springer-Verlag.

Anderson, T. and Lee, P. A. (1981). Fault tolerance - principles and practice. Prentice-

Hall, Englewood Cliffs.

Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. (2004). Basic concepts and

taxonomy of dependable and secure computing. IEEE Transactions on Dependable

and Secure Computing, 1(1):11–33.

Baresi, L., Guinea, S., and Plebani, P. (2006). WS-Policy for service monitoring. In

Bussler, C. and Shan, M.-C., editors, VLDB 6th International Workshop on

Technologies for E-Services, volume 3811 of LNCS, pages 72–83. Springer.

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., and

Orchard, D. (2004). Web services architecture, W3C working group note. Technical

Report 11-Feb-2004, W3C. http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/,

February.

Chinnici, R., Moreau, J.-J., Ryman, A., and Weerawarana, S. (2005). Web services

description language, part 1: Core language, version 2.0, W3C working draft.

Technical Report 10-May-2005, W3C. http://www.w3.org/TR/2005/WD-wsdl20-

20050510/, May.

Clement, L., Hately, A., von Riegen, C., and Rogers, T. (2004). UDDI, version 3.0.2,

UDDI spec technical committee draft. Technical Report 19-Oct-2004, OASIS.

http://uddi.org/pubs/uddi-v3.0.2-20041019.htm, October.

Dialani, V., Miles, S., Moreau, L., Roure, D. D., and Luck, M. (2002). Transparent fault

tolerance for web services based architectures. In Euro-Par’02: Proceedings of the

8th International Euro-Par Conference on Parallel Processing, pages 889–898,

London, UK. Springer-Verlag.

Du, Z., Huai, J., and Liu, Y. (2006). Ad-UDDI: An active and distributed service

registry. In Bussler, C. and Shan, M.-C., editors, VLDB 6th International Workshop

on Technologies for E-Services, volume 3811 of LNCS, pages 58–71. Springer.

Fan, J. and Kambhampati, S. (2005). A snapshot of public Web services. SIGMOD

Record, 34(1):24–32.

Gartner, F. C. (1999). Fundamentals of fault-tolerant distributed computing in

asynchronous environments. ACM Computing Surveys, 31(1):1–26.

Hollingsworth, D. (2004). The workflow reference model 10 years on. In Workflow

Handbook 2004. WfMC, Winchester, UK.

Lee, E., Jung, W., Lee, W., Park, Y., Lee, B., Kim, H., and Wu, C. (2005). A framework

to support QoS-aware usage of Web services. In ICWE ’05: Proceedings of the 5th

International Conference on Web Engineering, pages 318–327. Springer.

Leymann, F., Roller, D., and Schmidt, M.-T. (2002). Web services and business process

management. IBM Systems Journal, New Developments in Web Services and

Electronic Commerce, 41(2):198–211.

Liang, D., Fang, C.-L., Chen, C., and Lin, F. (2003). Fault tolerant web service. In

APSEC’03: Proceedings of the Tenth Asia-Pacific Software Engineering Conference,

pages 310–319, Washington, DC, USA. IEEE Computer Society.

Looker, N., Munro, M., and Xu, J. (2005). Increasing web service dependability through

consensus voting. In COMPSAC’05: Proceedings of the 29th Annual International

Computer Software and Applications Conference Volume 2, pages 66–69,

Washington, DC, USA. IEEE Computer Society.

Mitra, N. (2003). SOAP, part 0: Primer, version 1.2, W3C recommendation. Technical

Report 24-Jun-2003, W3C. http://www.w3.org/TR/2003/REC-soap12-part0-

20030624/, June.

Object Management Group (2004). Common object request broker architecture: Core

specification, version 3.0.3. Technical Report 12-Mar-2004, OMG.

http://www.omg.org/cgi-bin/apps/doc?formal/04-03-12.pdf, March.

Papazoglou, M. P. and Georgakopoulos, D. (2003). Service-oriented computing.

Communications of the ACM, 46(10):24–28.

Santos, G. T., Lung, L. C., and Montez, C. (2005). Ftweb: A fault tolerant infrastructure

for web services. In EDOC’05: Proceedings of the Ninth IEEE International EDOC

Enterprise Computing Conference, pages 95–105,Washington, DC, USA. IEEE

Computer Society.

van der Aalst, W. M. P., ter Hofstede, A. H. M., and Weske, M. (2003). Business

process management: A survey. In BPM’03: Proceedings of the 1st International

Conference on Business Process Management, pages 1–12. Springer.

Woodley, T. and Gagnon, S. (2005). Bpm and soa: Synergies and challenges. In

WISE’05: Proceedings of the 6th International Conference on Web Information

Systems Engineering, pages 679–688. Springer.

