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ABSTRACT

Systems of Systems are large-scale information centric
component-based systems. Because they can be more easily
expressed as an information flow, they are built following
the data-flow paradigm. These systems present high avail-
ability requirements that make their runtime evolution nec-
essary. This means that integration and system testing will
have to be performed at runtime as well. Already exist-
ing techniques for runtime integration and testing are usu-
ally focused on component-based systems which follow the
client-server paradigm, and are not well suited for data-flow
systems. In this paper we present virtual components, a way
of defining units of data-flow behaviour that greatly simpli-
fies the definition and maintenance of integration tests when
the system evolves at runtime. We present and discuss an
example of how to use virtual components for this purpose.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: testing and debugging

General Terms
Design

1. INTRODUCTION

Systems of Systems (SoS) are large-scale component-
based systems in which the sub-components are elaborate
and complex systems in their own right. An example of such
systems are Maritime Safety and Security (MSS) SoS, whose
primary tasks are sensing issues at sea, analysing these is-
sues forming a situational awareness picture, and initiating
appropriate actions, in case of serious issues [8, 14, 18]. Sys-
tems of Systems will have to be adapted more often than a
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normal system, for example, an MSS system must be able to
evolve at the same time as the situation at sea. The evolu-
tion of such a system must be done at runtime, as downtime
is never acceptable for such critical missions.

The organisation and workflow of these systems is too
dynamic and too complex to be modelled after traditional
monolithic methods. The component paradigm offers more
flexibility to modify the system at runtime, thanks to the
loose coupling between each of the parts forming the sys-
tem. Moreover, as the main purpose of a SoS is usually data
sharing and processing, they are more naturally expressed
by following the data-flow paradigm. Therefore, large parts
of these systems are built following this paradigm, where
each component reacts to new data inputs by processing
them and generating data outputs that the next compo-
nent in the flow will then process. Of course, systems which
can not afford to be stopped and which are organised in
a component-based data-flow are not restricted to the MSS
world. They all have in common that every instance of these
systems will eventually have to be updated, either to correct
some detected malfunctions, or to adapt to the new needs
of the surrounding world.

The objective of integration testing is to uncover errors in
the interaction between components and their environment
(other components or the platform). The integration of a
system must be assessed on the final platform, before start-
ing the system and every time the system is modified. As
described in the next section, various techniques for integra-
tion testing of a data-flow system exist, but in this paper we
concentrate on testing data-flows as units. Closely related
to functional testing, this technique relies on the fact that
the system specification defines precise expectations on how
the data is processed between two points in the data-flow.

The contributions presented in this paper are the follow-

ing:

e The formalisation of data-flow testing as unit for inte-
gration testing of data-flow systems.

e The adaptation of this technique to Built-In Testing,
allowing better maintainability and joint usage with
other testing techniques.

e A way to specify test-cases so that a minimal amount
of effort is needed to adapt them when the system
architecture evolves.

e A method to identify which are the test-cases required
for regression testing after the system architecture
evolves.



The paper is structured as follows. In Section 2, a brief
description of related work and the methods on which our
contributions rely will be presented. Section 3 introduces
the notion of virtual components, whose purpose is to ex-
press the functional expectations of a data-flow in a way to
make their management easy and compatible with the rest
of the testing framework. The usage of these virtual com-
ponents in the context of runtime evolution and runtime
testing is described in Section 4. An example of how to use
the presented contributions in practice is given in Section 5.
Finally, Section 6 concludes this article and presents future
works.

2. BACKGROUND
2.1 Integration Testing

In order to validate complex systems, one primordial step
consists in performing unit testing on each “part” of the sys-
tem. Depending on the paradigm on which the system is
built, a “part” of the system can be a module, a class, a
component, etc. Even if each part of the system respects
ideally their specification and has been successfully tested
in isolation, the entire system might still not be free from
errors: errors can be introduced when integrating the parts
together. The main types of errors have been well described
by Abdullah et al. [1]:

e Interface errors: when a component uses another one
with a wrong usage of the interface.

e Interpretation errors: when the functionality provided
by a component B is not the one required by the com-
ponent A.

e Pass through parameters: when a component is ex-
pected to just pass data without modification, but ac-
tually processes it.

In addition, even if all the components are correctly assem-
bled with each other, there might be errors due to missing
functionality in the system, or because the global behaviour
does not fit to the requirements.

In order to ensure the quality of the integration, not only
the interactions of the components have to be taken into
account, but also the framework on which the components
will be executed. While both verification and validation are
useful for this task, verification tends to be difficult. First,
because it requires both the model of the framework, and
the models of the components themselves. Further, the in-
creased complexity of the entire system often results in ex-
ponentially increasing complexity of the proof. This is one
of the reasons why we are currently focusing only on valida-
tion, and more specifically testing. Nevertheless, it is worth
mentioning the work by Garlan et al. [9] on modelling a
generic publish/subscribe architecture for verifying systems
based on this type of architecture using LTL properties. Ex-
tending this work, Baresi et al. [2] have proposed language
support for modelling and verifying the system efficiently by
reducing the number of states to explore. In this paper, we
concentrate on the usage of testing for assessing the inte-
gration, and how this can be supported by the component-
framework so that this type of testing fits with the rest of
the testing process.
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Figure 1: Example of a “data-flow” organisation.

2.2 Data-flow Integration Testing

The systems we are concerned with are mainly targeted
for data processing. For this reason, they are often organised
following the data-flow paradigm. This paradigm, which can
also be found referred to as “message-driven architecture” or
as “data push technology”, is based on the notion of com-
ponents receiving input data, processing it, and generating
output data that typically forms either part of the input
data of another component, or the output of the entire sys-
tem. The series of components through which the data is
processed correspond to a “flow”. Figure 1 presents such an
organisation, with two data-flows. This is to be contrasted
with the usual “call-reply” organisation, which the system in
Figure 2 follows.

B

Al
(

I

) C

2 9 @

' D

Figure 2: Example of a “call-reply” organisation.

One of the main advantages of this organisation is that the
system architecture follows closely the data processing or-
ganisation of the system, helping the designer to easily trans-
late the specification into an implementation. The data-flow
paradigm also simplifies the concurrent execution of compo-
nents, as this is managed automatically by the framework.
Further, components are loosely coupled: when a component
generates data received by another, there is no expectation
of behaviour from any of them, they only expect the correct
data type. This is very different from the traditional “call-
reply” organisation, where caller components always have
precise requirements on the response. This loose coupling
eases runtime reconfiguration of the system.

Before going further with respect to past work, let us note
that the “data-flow” paradigm we use should not be confused
with the “definition-use dependencies” sometimes called sim-
ilarly [13]. White and Leung [20] have presented a method to
implement regression integration testing in systems follow-
ing the “call-reply” organisation. Each module A which calls
module B can have a set of test cases to validate the correct
behaviour of module B with respect to its needs. When the
system is modified, e.g., a component has been changed, only
the interactions directly involved with the modified compo-
nent have to be re-validated. This means it is necessary to
run only the test cases which either are used by the changed



component to validate other components, or which are used
by other components to validate the changed component.

Unfortunately, the fact that components are loosely cou-
pled also means that integration is harder to test: it is not
possible to directly validate a component implementation
against the requirements of the components to which it is
connected, simply because there are no requirements.

In [4], Bertolino et al. present a method to determine in
a data-flow based system which sequence of component ex-
ecution is most worthy to test for assessing the component
integration. Their proposal deals mostly with concurrent
execution of the components, and finding the smallest ex-
ecution sequences which are worthy to be validated. They
opt for focusing on executions corresponding either to the
introduction of one given input data, or corresponding to a
flow where a given component is executed only once. This
can be used to guide what a test case should assess, but not
how it could be done.

In [16], Paul describes “end-to-end” testing, which con-
sists in assessing the behaviour of a system with respect to
inputs and the corresponding expected outputs. It focuses
on functional testing and therefore does not deal with test-
ing sub-parts of the system, only the behaviour noticeable
from the user’s point of view. Nevertheless, by using the no-
tion of “thin-thread”, which is close to the one of a data flow,
some test selection is performed. This test selection aims at
minimising the amount of test cases needed to be executed
after a reconfiguration of the system. Each thin-thread has
a risk associated, corresponding to the probability an error
happens in it and to the damage this error would cause on
the functional behaviour of the entire system. Depending on
which thin threads are exercised by a test case, it is possible
to select the minimal amount of test cases necessary to pass
below a given risk level.

Another technique for testing the integration of a system
has been proposed by Yuan and Memon [21]. The principal
idea is that a large number of random input-data sequences
are generated in order to test the various possible combi-
nations of executions. Each of the sequences is a test case.
The oracle for the test cases must be adapted to fit any
randomly generated sequence, so they use an oracle which
detects only generic wrong behaviour (such as non-handled
Java exceptions). In their study, the authors only consider
testing graphical user interfaces, and therefore the genera-
tion of the input data is straightforward (it is only an event).
In a more generic case, specific techniques to generate valid
input data should be used. This method has the advantage
that it can execute a very large number of test cases. How-
ever, oracles have to be generic, and therefore this method
cannot detect whether the functional behaviour of the in-
tegration is incorrect, i.e. whether for each specific input
sequence the correct outputs are generated. It should be
possible to also test some typical interactions between the
components, with a precise expected output. We discuss
such a method, dedicated to test some typical interactions
between the components, in the next section.

2.3 Built-In Testing

Built-In Testing (BIT) is a useful paradigm in order to test
a dynamic component-based system [17, 19]. BIT refers to
any technique used for equipping components with the abil-
ity to check their execution environment, and their ability
to be checked by their execution environment [12, 11], be-

fore or during runtime.It aims at a better maintainability of
testing aspects surrounding each component.

BIT has two facets. The first is concerned with the testa-
bility of the component. Components can be equipped with
special ports in order to facilitate testing. For instance it
can be the ability to control its internal state in order to set
up quickly the context of a test case. It can also be the abil-
ity to let the component become aware of when that testing
is happening [17].

The second facet of BIT is concerned with the associa-
tion of test cases with the component [10]. The goal is to
facilitate maintainability and traceability of the testing by
keeping the test cases and the test material closely linked to-
gether with the component, which, as observed in [3] are very
important properties when dealing with complex projects.
For instance it permits to keep the unit tests that the de-
veloper used for validating the component all along the life-
cycle of the component. The associated information can also
be used for integration testing of two components together,
as described in [15], or in [7] by using contracts. Conserving
the test definition with the component all along the life-
cycle helps to keep the tests synchronised in case of multiple
versions of the components. For instance, when a compo-
nent is updated to support additional functionality the tests
to assess the functionality must be updated simultaneously.
Associating tests to components also means that the testing
infrastructure can automatically benefit from the dynamic-
ity of the component infrastructure. Updating the testing
information alone can be useful because test cases them-
selves can be erroneous, or for extending the test coverage
while keeping the system running.
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Figure 3: Built-in Testing in Action.

A possibility directly resulting from this second facet of
BIT, is that components can carry out all or part of the in-
tegration testing by themselves [5]. The requirements of the
component on its execution environment (e.g., the platform
it is running on, the physical components it is linked with,
the components it relies on for providing specific services)
can be validated using test cases contained in the compo-
nent. This distribution of the responsibility in validating the
components’ environment to the components themselves is
very interesting for large-scale dynamic systems. It can help
to maintain the independence of each of the participating
components which are likely developed by different teams
as tests can be decentralised and associated to each compo-
nent. The usage of BIT specifically for performing integra-
tion testing between components during runtime evolution
has been presented in [10].

Figure 3 presents schematically a validation process when
using a BIT infrastructure. The Visualiser component needs
to test the Monitor component on which it depends. Via the
Acceptance port (AC), one of the BIT facilities, the Visu-



aliser contacts the TestManager component, providing the
MonitorTest test. TestManager takes care of the connection
between the test and the Monitor component, letting the
Monitor component know that a test is taking place through
the Test Control (TSC) port (another of the BIT facilities),
and finally reporting the result of the test to the Visualiser.

Unfortunately, as we have seen previously, in the case of
a data-flow organisation it is not possible to provide tests to
ensure that the requirements on the other components are
fulfilled, simply because components do not have any expec-
tations on the other components. Only some tests might be
possible to be done in this way: those directly validating the
platform’s compatibility and the hardware. In the following
section, an integration testing method is described so that
the specific behaviour of a flow can be tested, and so that it
can be managed using the BIT methodology.

3. VIRTUAL COMPONENTS

In this section we introduce the notion of virtual compo-
nent in order to perform and manage integration testing of a
component-based system organised in data-flows. The test-
ing method on which the virtual components are based is
fairly straightforward, and although we have not been able
to find any academic reference, we have found examples of
it use in some companies.

3.1 Specifying a Virtual Component

The basic idea is that every data-flow to be tested cor-
responds to one component, i.e., a “unit of high cohesion
and low coupling with contractually specified ports for ex-
ternal communication”. The inputs (resp. outputs) of this
component are the inputs (resp. outputs) of the data-flow.
Unit testing the virtual component is then equivalent to
integration testing the data-flow. Composite components,
present in some component models, are not adequate for
this purpose, because if one needs to test two overlapping
data-flows, this will conflict with the main requirement of
non-overlapping composite components. For example in Fig-
ure 4, it would not be possible to simultaneously define com-
ponents for testing the flows B, C, F and B, D. Similarly,
it is not possible to use a composite component to define a
flow if the inputs and outputs are in different levels of hier-
archy. Obviously, it would be counter-productive to have to
modify the architecture of the system only to accommodate
the validation of a part of it.

Figure 4: Example of two virtual components.

In order to avoid such limitations, we introduce the notion
of wvirtual component. With respect to most of its proper-
ties, a virtual component can be seen as a composite compo-
nent: it has a set of input and output ports, and it delegates
its inputs and outputs to interconnected sub-components.

However, in contrast to composite components, which are
specified by defining which their sub-components are, a vir-
tual component is only defined by its input ports and its
output ports. More precisely, the inputs (resp. outputs) of
the virtual component are specified by the inputs (resp. out-
puts) of the sub-component to which it is delegating. More-
over, the sub-components of a virtual component might have
input- or output-ports connected with components outside
the virtual component without being part of the boundaries.
These inputs or outputs will not be used to assess the be-
haviour of the data-flow. For example in Figure 4, the vir-
tual component VC1 is defined to represent the data-flow
going from component B to E. It is specified only by the
input port m of B, and the output port p of E. The ac-
tual set of sub-components is derived from this information.
Although the output of B is also used by D, this output is
not a port of the virtual component. Another unusual prop-
erty is that a virtual component can overlap another virtual
component without problem: they are completely indepen-
dent from each other. Thanks to this specification, a virtual
component does not interfere with the architecture of the
system. The component framework never starts the virtual
components of a system for normal execution, they are used
solely for the testing phase.

Let us call P; and P, the sets of respectively input- and
output-ports delimiting the virtual component. In order to
determine the components contained in a virtual component,
the following steps have to be performed:

1. Find the set C) of components predecessor to P,: all
the components which could be required to generate
the outputs. This set is computed repetitively. For
each output port, the component owner of this port is
added to the set. For each of the newly added compo-
nents in the set, the input ports which are not in P;
are followed, and the component generating input for
this port is again added to the set C},. This is repeated
until the set has not been extended.

2. Find the set Cs of components successor to the input
ports: all the components which could be called when
an input is generated. It is computed similarly to Cp,
but by following the output ports not contained in P,.

3. Compute the set C' which is the intersection of C
and C)p: this set corresponds to the components in
the data-flow.

A virtual component is considered valid if and only if all
the components which own the input- and output-ports are
in C. Indeed, if this is not the case, it means there is no
continuous flow between some of the inputs and the outputs.
This is a sign that either the system is not correctly inte-
grated, or that the specification of the data-flow is wrong.

For example, to compute the set of components in the
virtual component of Figure 4, defined with P; = {mp}
(the port m of B) and P, = {pr} (the port p of E), one
starts by computing the flattened architecture. In this case,
the architecture stays unchanged, as all the components are
already primitive. The set Cs is {B,C,E, D, A}, and the
set Cp is {F,C,B}. The intersection of these two sets is
{B, C, E}, the components in the data-flow. As both B and
FE are in this set, the data-flow is correct.



3.1.1 Additional Remarks

In order to keep the definition of virtual components as
concise as possible, a number of details have been ignored,
that will be discussed in this paragraph.

Firstly, in order to increase the independence of the test
definition from the system implementation, a virtual com-
ponent could be allowed to be specified by ports placed at
different levels of composition, or contained in different com-
posite components. In such case, the first step for finding
what components belong to a virtual component must be
flattening the system architecture by recursively replacing
composite components by their contained sub-components.
As the connections in composite components are only del-
egations, it is easy to verify that the flattened architecture
is equivalent to the original architecture. From a software
engineering point of view, the fact that a data-flow defined
in the system specification is not implemented within just
one level of hierarchy is often a sign that the implementation
should be refactored. However, this is not the task of the
test engineers, and this freedom in the test definition pre-
vents them from being limited by implementation decisions.

Secondly, in all systems there exist “boundary” compo-
nents which, from the point of view of the framework, do
not have any input (sources) or any output (sinks). As they
lack either input or output ports, they will never form part
of any flow. In practice, these components provide only a
minimal conversion functionality so they can be excluded
from the data-flows and tested separately. Therefore, for
the testing of data-flows, we will abstract from this type of
components.

3.2 Test Execution and Management

Following our definition of a virtual component, the pro-
cess of creating and executing tests is relatively simple be-
cause, as we will see, it relies on the well known unit testing
method. In order to integration test a set of components or-
ganised in a data-flow, one should compare the behaviour of
this data-flow with respect to the specification. The valida-
tion of the data-flow consists in assessing that, for the given
inputs, the generated outputs at the end of the data-flow
conform to the specification. As the inputs of the virtual
components correspond to the inputs of the data-flow and
its outputs correspond to the outputs of the data-flow, in-
tegration testing the data-flow is equivalent to unit testing
the virtual component.

Tests for a data-flow are therefore written by the test engi-
neer as unit tests for the virtual component. This is by itself
an advantage because this technique is well known and there
exist a large number of tools and frameworks to develop and
execute unit tests. Typically, this approach allows defining
a handful of complex interactions in the system which must
be tested extensively. The test cases can be sequences of
events of an arbitrary length, and the oracle can precisely
verify whether the output data conform to the specifications.
It is complementary to the other testing methods seen in
Section 2.

Moreover, as a virtual component is still a component,
managing the integration tests for the data-flows can be
greatly simplified if they are managed by a Built-in Test
infrastructure. Test engineers only need to define a vir-
tual component, add it to the system, and associate tests
to it via the test management interface provided by BIT.
The component framework then automatically decides when

tests should be executed, sets up the test environment for
them, reports their results and keeps a history of testing
along the evolution of the system.

UnitTester
Component

Figure 5: Testing a virtual component using a unit
test.

Figure 5 depicts the configuration of the system during the
testing phase. The components outside of the virtual com-
ponent under test are isolated. The unit tester component,
provided by the BIT information of the virtual component,
is then connected to the inputs and outputs and the tests
executed. Once the test cases have been executed, the re-
sults are passed to the component framework via the BIT
facility and are then used as the results of the integration
testing of the components.

4. EVOLUTION OF THE SYSTEM

Systems which must be modified at runtime are often
component-based systems, because, as they are loosely cou-
pled, the modifications are easier to apply. When a modi-
fication happens, the new configuration of the system must
be re-validated with, ideally, the same quality as the original
configuration. However, the runtime evolution should be ap-
plied relatively quickly, so the re-validation process should
take as little time as possible. With respect to the test-
ing method, this need for quick re-validation has two facets.
First, the changes to the system must also be forwarded as
changes to the tests. The effort to update the tests should
be minimized. Second, to reduce the testing time, only the
test cases which potentially have their result affected should
be re-executed. Therefore, it is important to be able to de-
tect which of the test cases are affected by the modification.
In this section, these two points will be addressed.

4.1 Following the Evolution

The specification of virtual components has been espe-
cially designed to minimize the updates needed when a mod-
ification of the system occurs. The main idea is that data-
flows are specified only via the input- and output-ports.
Thus, if a modification takes place on one of the inner com-
ponents of the data-flow, the members of the virtual compo-
nent are automatically recomputed correctly. Moreover, the
inputs or outputs which cross the border of a virtual com-
ponent but are not part of its boundary are not specified.
Therefore, if the type of a port is modified, or if ports are
added or removed from a component on the edge of the vir-
tual component, but they are not involved in the behaviour
of the data-flow, no update of the virtual component is re-
quired.

Let us now review in more detail when a virtual compo-
nent must be modified to accompany a modification of the



system. First of all, of course, if a data-flow specification
is modified, i.e. its expected behaviour is changed, the test
cases associated to the virtual component have to be up-
dated. In case of modifications in the implementation, there
can be six different possibilities:

1. A component is modified inside the virtual component,
and it does not own one of the flow’s ports.

2. A component is modified in the boundary of the flow,
i.e., it owns one of the flow’s ports.

3. A component is modified outside the virtual compo-
nent.

4. A connection is removed or added between two com-
ponents inside the virtual component.

5. A connection is removed or added between a compo-
nent inside and one outside the virtual component.

6. A connection is removed or added between two com-
ponents outside the virtual component.

Of these six cases, the two cases affecting only compo-
nents outside the virtual component (3 and 6) can easily
be discarded as not requiring a change of the virtual com-
ponent definition. If a component is modified within the
virtual component (1), or a connection is changed between
two components inside the virtual component (4), the vir-
tual component definition does not need to be changed. In-
deed, the specification of the input- and output-ports are
still valid, and the behaviour of the data-flow must follow
the same specification as before. When a connection be-
tween a component inside and a component outside of the
flow is changed (5), the set of components included in the
virtual component might change. Nevertheless, for similar
reasons than in previous cases, neither the specification of
the ports nor the test cases have to be updated. Finally, if
a component on the boundary of the virtual component is
modified (2), an update of the virtual component specifica-
tion is needed only if one of the ports on which the virtual
component relies is modified. In such a condition, the data-
flow cannot have the same behaviour, as one of the input or
output is changed. The test cases will have to be updated
as well, to fit the new port.

If a composite component was used to define a data-flow,
it would have to be updated under the same conditions of
case 2, but would also have to be updated in cases 1, 4 and
5 as its specification relies on all its sub-components and
bindings.

Figure 6: Adjustment of a virtual component after
modifications.

Figure 6 illustrates the cases 2 and 5. Component F' was
inserted in the flow between B and C. The behaviour of the

flow should still follow the same specification (typically, F’
was introduced to fix a bug or to improve the performances).
As F has no ports on the boundary of the virtual component
VC1, VC1 is automatically adjusted. Similarly, although
the binding between B and C' has changed, VC2 did not
need any update.

To summarise, only when the associated test cases must
be updated the specification of a virtual component has to be
updated as well, e.g., when the functional specification of the
data-flow evolves, or when one of the input- or output-ports
is changed. Whenever the test cases can be kept as they
are, the virtual component adapts to the new configuration
automatically.

4.2 Regression Testing

Testing can be costly, mainly in terms of time but if it is
done at runtime, also in terms of resource usage. When a
modification of a system is applied, it affects generally just
a small part of its complete behaviour. Testing the new
configuration of a system when the previous configuration
has already been tested is known as regression testing. The
main goal is to verify that the behaviour of the system has
not been altered as a result of the modification, while min-
imizing the number of test cases that have to be executed
again. For this purpose, one needs to determine the test
cases which do not need to be re-executed because their re-
sult would be for sure the same as during the previous run.
This means that only the test cases whose outcome might be
affected by the modification will be run to validate the new
system configuration. White and Leung [20] have defined a
method to determine which test cases must be re-executed
for regression integration testing with a “call-reply” organi-
sation. Their test selection method identifies the tests to be
re-executed by looking for the ones validating interactions
involving one (or two) modified component.

In the context of data-flow, the interactions tested are
longer than just a caller and a callee, so it is not possible
to re-test only the components directly linked to the modifi-
cation. The entire data-flow must be re-tested, or, in other
words, all the tests associated to the virtual component cor-
responding to the flow must be re-executed. The number of
virtual components affected by a modification depends on
the type of modification:

e A component is modified: all the virtual components
which contain the modified component. In case of ad-
dition or removal of a component, this means all the
virtual components which have a different set of com-
ponents before and after the modification.

e A connection is added or removed: all the virtual com-
ponents which have a different set of components be-
fore and after the modification, and all the virtual com-
ponents which contain both components related to the
connection.

In particular, this selection method discards the modifica-
tions affecting inputs previous to the data-flow, because they
will never have any influence when running the unit tests of
the virtual component, and the modifications affecting com-
ponents using the outputs of the data-flow, because they
would not have influence on the result of the unit tests any-
way.



S. EXAMPLE

At the moment of writing this paper, the implementa-
tion of virtual components on our component framework
is not yet completed. Nevertheless, it is possible to give
an overview of how the entire process of integration testing
data-flows will be done in practice in our environment. We
present the usage of the method on a sub-system of the MSS
domain. This example is an experiment of reduced scale in
which we apply and assess the key concepts of the presented
methods. This scenario involves validating the integration of
the assembled system, and keeping the quality at the same
level after an update of the system has taken place.

The architecture of this system is outlined in Figure 7.
Components are implemented in Java, with additional in-
formation contained in a separate Architectural Description
File to describe their interfaces (similar to ports), bindings
between components, and tests associated to the compo-
nents. They are executed in our component framework,
which is based on the Fractal [6] framework.
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Figure 7: Architecture of the surveillance system
used as example.

This system receives positioning information broadcast by
ships and processes them in order to form a situational pic-
ture of the coastal waters. The World component generates
the same data as ships in reality. Obviously, it is not be
present in a real system, but it acts as a simulator for the
ships’ transmitters. The LS (Local Station) components
simulate the individual AIS receivers by transmitting only
messages broadcast in a coverage zone. The Filter compo-
nent receives the data from the several LS components and
removes the duplicate messages (which occur when a boat
is in a zone covered by several receivers). The Merger com-
ponent stores the messages into a database containing up to
date information about every ship. This information can be
accessed via a specific protocol. The Monitor component
implements this protocol in order to passively observe all
the data and detect inconsistencies in the information sent
by ships. In case a problem is detected, a Warning is gen-
erated. The Plotter component displays on a map the ships,
and the warnings.

Before the system is started, and after every component
has passed the unit testing phase, the validation of the com-
ponent integration takes place. Virtual components are used
to test some specific interactions. For instance a virtual com-
ponent can be set between AISin of Filter and Warning
of Monitor. The specification is shown in Listing 1. The
two interface definitions specify the external interfaces of
the component, while the two binding definitions specify
the inputs and outputs of the flow. The test definition cor-
responds to one of the BIT facilities, and associates test cases
with the component. The provider JUnitProviderFlow
indicates a special component used to run this type of test for
virtual components. The first test, TestWarning, verifies

<virtual-composite name="flowCore">
<interface name="AISin" role="server"
signature="AISin"/>
<interface name="warning" role="client"
signature="Warning"/>
<binding client="this.AISin" server="filter.AISin"/>

<binding client="mon.warning03" server="this.warning"/>

<test provider="JUnitProviderFlow" name="Warn"
definition="TestWarning"/>
<test provider="JUnitProviderFlow" name="Dup"
definition="TestDuplicate"/>
</virtual-composite>

Listing 1: Definition of a virtual component with
two test cases in an ADL file.

public class TestDuplicate extends JUnitFlowTest
implements Warning {

AISin 1;
@Before
public void setUp() {
1 = (AISin) bindings.get ("AISin");
}
@Test

public void noDuplicateMessageInRow () {
Warning[] result;

AISMessage in = new AISMessage ("110GQ0?0EpeVNE2:Hjakf0");

for (int i=0; 1 < 5; i+4+4) {
1.AISin(in[i]);
}
result = waitForMessages (null, 1.0f);
Assert.assertTrue ("Duplicated message not discarded.",
result.length > 1);

Listing 2: Definition of a test case for validating the
flow.

that warnings are correctly generated in case of inconsisten-
cies in the messages received by the core of the system. A
sequence of AIS messages is sent at a high frequency (which
is not authorised in the AIS protocol) and the test case ver-
ifies that the correct warning is generated. The second test,
TestDuplicate, verifies that only one warning is gener-
ated even if a message containing inconsistencies is received
several times (which is often the case as the coverage of many
local stations overlap).

A shortened version of this second test is presented
in Listing 2. The Java class extends the helper class
JUnitFlowTest which automatically connects the compo-
nent to the component under test. The rest of the class is a
typical JUnit test class. The setUp method is executed at
the beginning of the test case to complete the initialisation.
The method noDuplicateMessageInRow corresponds to
one test case. It emits 5 times an identical AIS message,
and reads the warning received during one second. In case
the flows generates more than one warning, the test fails.

Only once all the tests specified in the system have been
successfully passed, the system can be started. Our com-
ponent framework allows to modify the configuration of the
system at runtime. If either the Filter, the Merger, or the
Monitor are updated, or a component is inserted in between
them, then the test results of the virtual component flow-
Core are automatically invalidated. The data-flow has to



be re-validated with the new version of the components be-
fore the new configuration can be applied. The execution of
the test cases is done following the normal runtime testing
technique of the framework.

6. CONCLUSIONS AND FUTURE WORKS

In this paper, we have introduced the notion of wirtual
component. This notion facilitates the integration testing of
component systems organised in a data-flow style. First, the
specification of this type of components, which relies solely
on defining the input- and output-ports of the data-flow,
have been formally defined to determine the components in-
cluded. As data-flows can be seen as components, it is possi-
ble to use the BIT facilities to manage the test cases in large
and complex systems, all along their life-time. In addition,
we have seen how this method interacts with the evolution
of the system. As virtual components are defined only by
their boundaries, in most cases they adapt to the new config-
uration automatically. A test selection method when doing
regression testing was formulated so that only test-cases in-
volving a modified data-flow are re-executed. Finally, an
example using a small component-based system illustrated
how to apply those contributions in practice.

In the short term, the implementation of the virtual com-
ponent technique will be finalized in our component frame-
work. We would like also to see how the technique can be
applied to publish/subscribe frameworks, where the compo-
nents are not explicit bound to others but only publish or
subscribe to a type of data. In the long term, other integra-
tion testing methods should be investigated, especially ones
that can take into account the non-functional properties of
the components.
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