

Defining Families: The Commonality Analysis

Page 1 of 32

Defining Families: The Commonality Analysis

David M. Weiss
Lucent Technologies Bell Laboratories

1000 E.Warrenville Rd.
Naperville, IL 60566
weiss@bell-labs.com

Abstract

Software engineers today are often asked to do both rapid production and careful engineering at
the same time. One way to help resolve the tension between these often conflicting goals is to
develop families of software and to invest in facilities for rapidly producing family members. Suc-
cess in such an endeavor requires that the software engineers be able to identify the desired family
members. Few systematic techniques for doing so currently exist. Commonality analysis is one
approach to defining a family by identifying commonalities, i.e., assumptions that are true for all
family members, variabilities, i.e., assumptions about what can vary among family members, and
common terminology for the family. A commonality analysis forms the basis for designing reus-
able assets that can be used to produce rapidly family members. Commonality analysis is being
tried in Lucent Technologies as part of a process for engineering domains that is known as family-
oriented abstraction, specification, and translation (FAST).

Keywords

:

software engineering, domain analysis, domain engineering, families, software process, applica-
tion-oriented languages

1. Introduction

Software engineers today are often asked to do both rapid production and careful engineering at
the same time. They are pressured to develop a system or product so that it can be marketed before
their company’s competition does so, but also so that it is acceptable to their customers. As the
market for consumer software increases, the pressure for rapid production increases. As the mar-
kets for safety critical software, secure software, and user friendly software increase, the pressure
for careful engineering increases. Although software engineers may feel unfairly burdened by
such pressures, engineers in other fields are responding to the same pressures as well. In fields
such as aerospace engineering, automotive engineering, and computer engineering, methods of
rapidly producing carefully engineered products have long been explored. Although software is
developed quite differently than airplanes, automobiles, or computers, software engineers can
benefit from applying some of the same production strategies. The purpose of this paper is to
show, by principle and example, from experience and measurement, how to apply one such strat-
egy to software production.

1.1 Basic Assumptions

Three assumptions underlie the strategy suggested here. Phrased as hypotheses, they are

Defining Families: The Commonality Analysis

Page 2 of 32

• The Redevelopment Hypothesis: Most software development is mostly redevelopment. In par-
ticular, most software development consists of creating variations of existing software systems.
Usually, each variation has more in common with other variations than it has differences from
them. For example, the different versions of a telephone switching system that accommodate
different customers’ requirements in areas such as billing, devices to be connected to the
switch, and specialized features for processing calls, have a considerable amount of require-
ments, design, and code in common, not only in the modules of the system that have little or
nothing to do with differing customer requirements but also in those modules that accommo-
date the variations.

• The Oracle Hypothesis: It is possible to predict the types of changes that are likely to be
needed to a system over its lifetime. In particular, the types of variations of a system that will
be needed are predictable.

• The Organizational Hypothesis: It is possible to organize both software and the organization
that develops and maintains it in such a way as to take advantage of predicted changes. In par-
ticular, the software and its developers may be organized so that a change of any predicted type
can be made independently of changes of other types and so that making such a change
requires changing at most a few modules in the system. The task of producing a new version of
the software then consists of making relatively independent changes in different modules of the
software.

These hypotheses suggest a software production strategy in which one plans for a system to exist
in a number of variations, attempts to predict those variations, identifies what they have in com-
mon, and reuses the common aspects in producing the variations. Such a set of variations on a sys-
tem may be considered to be a family, a relatively old idea in software engineering, suggested by
Dijkstra and others in the software engineering literature as early as 1972 [7]. Parnas and others
described approaches for building software families in the mid-1970s [13], [14], [15], [16]. This
work emphasized the design and development of program families, but said little about how to
decide what the members of a family should be. More recently, an area of study known as domain
engineering has developed whose intent is to define families and assemble the assets needed to
produce family members rapidly [4], [12].

The success of family-oriented software development processes depends on how well software
engineers can predict the family members that will be needed. This problem is hard because the
idea of a family is not well formalized, there are no rules that enable engineers to identify families
easily, prediction of expected variations is difficult, and there is usually no time allocated in the
development process for conducting an analysis of the family. Nonetheless, the payoff for con-
ducting such an analysis can be quite high; it potentially reduces drastically the time and effort
needed for design and for production of family members. (A later section of this paper quantifies
the expected improvements in time and effort.)

This paper describes an analytical technique, known as commonality analysis, for deciding what
the members of a family should be. This technique is in use at Lucent Technologies as part of a
domain engineering process known as family-oriented abstraction, specification, and translation
(FAST). The goal of the FAST process is to develop facilities for rapidly generating members of a

Defining Families: The Commonality Analysis

Page 3 of 32

family; it is a variation on the Synthesis process described in [3]. Performing a commonality
analysis is an early step in the FAST process.

1.2 Developing Families

“... program structure should be such as to anticipate its adaptations and modifications.
Our program should not only reflect (by structure) our understanding of it, but it should
also be clear from its structure what sort of adaptations can be catered for smoothly.
Thank goodness the two requirements go hand in hand.”

Edsger W. Dijkstra
On Program Families

Techniques for building families center on constructing a design for the family that consists of a
set of information hiding modules, each independently adaptable to independently occurring
changes, as exemplified in [2], [15], [14], and [16]. A change may be made to one module without
needing to know how changes are made to other modules. Each module is said to have a secret,
i.e., a decision that is hidden within the module, such as how a set of data is structured, how an
algorithm is implemented, or how to communicate with a device. If the secrets of the modules are
the same as the changes predicted to occur over the lifetime of the system, then the design should
facilitate rapid production of different family members. Hereafter, such a design will be called a
family design

Using technology such as MetaTool™, a descendant of the tool described in [6], GenVoca [1], A*
[9], or YACC [11], it may be possible to generate automatically different versions of the modules
comprising a family design, and therefore rapidly generate different family members. Put another
way, experience with family design techniques suggest that the organizational hypothesis is valid
for many systems. Where the oracle hypothesis is also valid, family design techniques and gener-
ational technology may be applied to produce rapidly family members that follow the oracle’s
predictions.

Producing a family design requires considerable careful engineering, and the investment in a fam-
ily-based approach may delay the time to production of the first family member. The FAST pro-
cess seeks to reduce the delay by introducing systematic methods for defining a family, for
creating a way to describe family members, and for generating family members from their
descriptions. Once the initial investment is made, the time to produce family members may be
quite short. In addition to introducing systematic methods to reduce the initial production time,
one may also choose to invest less in the initial engineering of the family, amortizing the time and
cost over a number of family members, possibly at the risk of increasing the production costs of
later family members. Some of the approaches described in [13] and [14] suggest ways to do such
amortization.

Regardless of how the investment in engineering the family is amortized, one must still have con-
fidence that there is a family worth building. Performing a commonality analysis is a systematic
way of gaining such confidence and of deciding what the scope of the family is, i.e., what are the
potential family members. The analysis is intended to identify and document what is common to
all family members and how family members may vary. It reduces the risk of building systems

Defining Families: The Commonality Analysis

Page 4 of 32

that are inappropriate for the market and provides guidance to designers of the systems. In the
FAST process it is the first step in automating the production of family members.

Sections 2. and 3. describe the artifact produced by a commonality analysis and the process used
to produce it. Section 4. discusses the uses for the results of the analysis and presents some con-
clusions.

1.3 An Example: The Host At Sea Buoy Family

To illustrate the ideas presented here, this paper uses as an example the Host At Sea (HAS) Buoy
family. The HAS Buoy example was invented to typify the problems encountered by designers of
real-time systems and first appeared in [18]. Briefly, HAS Buoys float at sea and collect data about
their environment. They are equipped with sensors to monitor environmental variables such as air
temperature, water temperature, and wind speed. Each buoy has an onboard computer that main-
tains a database of weather data. At regular intervals the buoy transmits the current weather condi-
tions and its location. Passing ships may request a buoy to transmit all of the weather data it has
collected over a specified interval, such as the previous 24 hours. Each buoy keeps track of its
location and can accept positional updates from passing ships. Buoys may also be provided with
emergency equipment for use during sea rescue operations, including a flashing red light, and a
switch that, when flipped, causes the buoy to transmit an SOS signal instead of its regular weather
reports.

The HAS buoys form a family, since they may be configured with different sensors in different
numbers, with different radio and navigational gear, with different emergency equipment, and
with different computer systems of different capabilities. Nonetheless, as indicated in the preced-
ing, all buoys have certain requirements in common.

The Appendix contains a more detailed description of HAS buoys.

2. Defining Families

The work cited previously on design of families suggests that the key issues in design are identify-
ing and making useful the abstractions that are common to all family members, and structuring
the design to accommodate changes. Input to the designer should then consist of either the
abstractions themselves or the information needed to identify them, and also the expected
changes. The commonality analysis is based on the idea that there are two primary sources of
abstractions:

• the terminology used to describe the family, and

• assumptions that are true for all family members.

To identify the scope of the family the analysis must also include predictions of how family mem-
bers will vary. Every commonality analysis used in the FAST process contains these three ele-
ments: terminology, commonalities, and variabilities. (Section 3.1 includes a discussion of some
additional elements that make the analysis more useful).

2.1 Terminology

Defining Families: The Commonality Analysis

Page 5 of 32

Most software development methodologies now suggest that developers equip themselves with a
dictionary of standard terms. These terms serve to make communications among developers eas-
ier and more precise. Since the terms are standard, they represent ideas that are common to the
development and are therefore a fruitful source of abstractions. For just these reasons a dictionary
of terms is a part of a commonality analysis document. (Hereafter, for convenience, commonality
analysis will refer both to the artifact produced by the analysis and the process of performing the
analysis.)

2.2 Commonalities

“We consider a set of programs to constitute a family whenever it is worthwhile to study
programs from the set by first studying the common properties of the set and then deter-
mining the special properties of the individual family members.”

David L. Parnas

Identifying common aspects of the family is a central, and the eponymous, part of the analysis.
Accordingly, a commonality analysis contains a list of assumptions that are true for all family
members. Such assumptions are called commonalities. Commonalities are requirements that
hold for all family members and are another fruitful source of abstractions. As an example, a fam-
ily of buoys that float at sea and monitor weather conditions is likely to have as a commonality the
assumption that all members of the family must monitor air temperature, wind speed, and precip-
itation.

2.3 Variabilities

“The art of progress is to preserve order amid change, and to preserve change amid order.”
Alfred North Whitehead

Whereas commonalities define what’s always true of family members, variabilities define how
family members may vary. Variabilities define the scope of the family by predicting what deci-
sions about family members are likely to change over the lifetime of the family. A commonality
analysis contains a list of variabilities and the range of values for each variability. These ranges of
values act as parameterizations of the variabilities, and are known as parameters of variation.

Fixing a value for a parameter of variation specifies a subset of the family. As an example, vari-
abilities for the weather buoy family may include the required precisions of measurement of the
monitored environmental conditions. The parameters of variation corresponding to these variabil-
ities specify the ranges of values for the precision. For some family members it may only be nec-
essary to measure temperature to within 10 degrees; others might require .1 degree. The range for
the parameter of variation for precision of temperature measurement would then be .1 to 10
degrees. Fixing a value for this parameter, such as 1 degree, then specifies a subfamily all of
whose members require that precision.

In addition to specifying the range of values for each variability, the analysis also specifies the
time at which the value is fixed, i.e., the binding time for the decision represented by the variabil-
ity. Some typical binding times are run time, system (family member) build time, and system
(family member) specification time. For the weather buoys, the binding time for the degree-of-

Defining Families: The Commonality Analysis

Page 6 of 32

precision decision may be specification time, i.e., prior to building the system. Fixing this deci-
sion early may allow for savings in the number and type of sensors used by the buoy and may
reduce the complexity, size, and required processor utilization of the software.

2.4 Uses For The Analysis

The commonality analysis defines requirements for the family and may be used in a variety of
ways, as follows.

• Input to the language designer. For some families, it is worth designing a specification lan-
guage from which family members may be generated. The commonality analysis identifies
what must be expressed in such a language so that family members may be distinguished from
each other economically and precisely.

• Input to the software architect. The commonality analysis identifies for the architect what
aspects of the family will remain fixed over time and what will change, allowing the software
to be designed for maintainability and reuse.

• Training for software developers. The commonality analysis documents just the kind of infor-
mation that a new project member initially needs to understand the family.

• Marketing reference. Marketers may learn from the commonality analysis what family mem-
bers can be quickly and easily produced and which family members will be difficult and expen-
sive to produce. (A good commonality analysis will be produced with input from and in
cooperation with marketers, who can help predict the family members most likely to be wanted
by customers in the future.)

• Historical reference. During the process of producing a commonality analysis, a record of key
issues that arise during the process is made part of the document. This record allows software
architects, developers, marketers, and others involved in maintaining and evolving the family
to understand why the family is structured and implemented the way it is.

3. FAST Commonality Analysis: An Example

“Everything should be as simple as possible, but no simpler.”

A. Einstein

The experience with commonality analyses reported here is based primarily on its use in the
FAST process. The facilities developed by using FAST typically consist of a language for specify-
ing family members, a translator for generating a member of a family from a specification in the
language, and tools for analyzing such a specification. Figure 1. is a hierarchical view of the activ-
ities involved in applying FAST. Each parent activity is accomplished by performing its children,
e.g., engineering a family consists of analyzing the family and implementing the family. Family
members are known as applications. The activity that produces a commonality analysis is indi-
cated as Analyze Commonality, and is part of the branch of the tree shown in boldface in the dia-
gram. The specification language, its translators, and its analysis tools are together known as an
application engineering environment, and are produced as part of the Engineer Family activity.

Defining Families: The Commonality Analysis

Page 7 of 32

The FAST commonality analysis process is oriented towards developing application engineering
environments. However, FAST places few restrictions on the methods for designing the specifica-
tion language and implementing translators and tools for it. Accordingly, the commonality pro-
cess described here should fit well into many different approaches to designing and implementing
families.

3.1 Contents of a FAST Commonality Analysis

A FAST commonality analysis consists of sections that serve to identify the purpose and scope of
the analysis, the terminology for the domain, the commonalities, variabilities, and parameters of
variation that characterize the domain, issues that arise during the analysis, and appendices of
information useful to the users of the analysis. Table 1. shows its organization. In addition, a list
of tasks left to do to complete the analysis is often maintained as part of the document while the
document is being created.

Establish Standard Terminology
Establish Domain Commonality

Parameterize Variabilities

Qualify Family

Define Decision Model

Analyze
Commonality

Design
Family

Design Application Modeling Language

Create a Standard Application Engineering Process
Design Application Engineering Environment

Implement
Application
Engineering
Environment

Document
Application
Engineering
Environment

Analyze
Family

Implement
Family

Manage Project

Model Application

Produce Application
Delivery and operation support

Engineer
Application

Engineer
Family

FAST

& Variability

Figure 1. FAST Activities Tree

Defining Families: The Commonality Analysis

Page 8 of 32

To aid in the analysis of the family and to improve the readability of the document, commonalities
(and variabilities) are organized into sublists that deal with separate concerns. For example, a
commonality analysis for the weather buoys might have a section of commonalities that deals
with the sensors that are part of the buoy, another section that deals with the reports produced by
the buoy, and others that deal with other concerns relevant to the family. The same structure would
be used to organize the variabilities and parameters of variation. Note that this structure is specific
to the family.

Section Purpose

1. Introduction Describes the purpose of performing the analysis and the
expected use. Typically, the purpose is to analyze or define the
requirements for a particular family and to provide the basis for
capabilities such as

• a way of specifying family members

• a way of generating some or all of the code and documenta-
tion for family members

• an environment for composing family members from a set of
components that are designed for use in many family mem-
bers

2. Overview Briefly describes the domain and its relationship(s) to other
domains.

3. Dictionary of Terms Provides a standard set of key technical terms used in discus-
sions about and descriptions of the domain.

4. Commonalities Provides a structured list of assumptions that are true for all
members of the domain.

5. Variabilities Provides a structured list of assumptions about how family
members may vary.

6. Parameters of Variation Quantifies the variabilities, specifying the range of values and
the decision time for each.

7. Issues Provides a record of the alternatives considered for key issues
that arose in analyzing the family.

8. Appendices Includes various information useful to reviewers, designers,
language designers, tool builders for the family, and other
potential users of the analysis.

Table 1. Organization of a FAST Commonality Analysis Document

Defining Families: The Commonality Analysis

Page 9 of 32

During the course of any analysis technique used in systems development issues arise that are dif-
ficult to resolve and that have a strong effect on the result. Commonality analyses are no excep-
tion. Such issues, along with the alternatives considered for their resolution, are included in a
separate section of the document. This practice helps keep the analysts from going in circles, and
provides insight for later users into the reasons for the decisions made by the analysts. Such
insight is particularly useful for reviewers of the analysis, for developers of a language used to
specify family members, for creators of the design for the family, and for engineers new to the
domain.

As an example, an issue for buoy analysts might be whether or not buoys could be equipped with
active sensors, such as sonar, that might be used for purposes other than weather reporting. Such a
feature might widen the market for buoys, but might impose design and operational constraints
that would make it unrealistic to include such buoys in the same family as floating weather sta-
tions.

Commonality analyses focus on requirements for the family, but often uncover useful design and
implementation information during the analysis. Such information is often documented in one or
more appendices so that it need not be rediscovered. For example, the buoy analysts might note
that receivers and transmitters could be purchased in the form of transceivers at a lower cost than
individually. However, the loss of a transceiver would mean the loss of both a receiver and trans-
mitter, thereby decreasing reliability somewhat over individual receivers and transmitters. The
choice should probably be left to the customer as to the preferred option for any particular buoy.
The form and structure of these appendices depend strongly on the domain and on the priorities
and purposes of the analysts. The commonality analysis process does not prescribe their structure
or contents.

3.2 The FAST Commonality Analysis Process

FAST commonality analyses are performed in a series of meetings of domain experts, facilitated
by a moderator. Meetings are usually held at regular intervals, but their duration and frequency
may vary widely. Some groups choose to meet all day every day for a period of several weeks.
Others may meet for a few hours once a week for several months. The analysis team produces the
document during the meetings as a group, by consensus, guided by the moderator. One group
member, the recorder, has the responsibility to record the group’s decisions in the commonality
analysis document during the meetings, using the standard structure of a commonality analysis as
shown in Table 1.

Typically, each participant, except the moderator, is expert in one or more aspects of the domain.
Experts about weather buoys might be familiar with areas such as the type and frequency of col-
lection of data needed to produce weather reports, about the uses to which the data are put, about
the devices used to collect the data, about smoothing algorithms used to filter the data, and various
other aspects of the behavior, computational requirements, and hardware requirements for
weather stations.

The moderator is expert in the FAST process, can recognize well-formed, clear, and precise defi-
nitions, commonalities, variabilities, parameters of variation, and useful issues, and knows how to
guide the discussion to produce them. The moderator is also frequently the recorder. As the

Defining Families: The Commonality Analysis

Page 10 of 32

recorder edits the document it is continuously displayed for all participants during each meeting.
Each participant receives a copy of it, either electronically or in hard copy, at the end of each ses-
sion.

3.3 Stages of the Analysis

The commonality analysis process is organized into several stages, as follows.

• Prepare: The moderator ensures that all resources needed for the initial sessions are in place.

• Plan: The moderator and domain experts meet to agree on the purpose and scope of the analy-
sis and to review briefly the expected activities and results of the commonality analysis pro-
cess.

• Analyze: The moderator and domain experts meet to analyze the family and characterize its
members up to the point of producing parameters of variation, i.e., they produce all sections of
the document except section 6.

• Quantify: The moderator and domain experts meet to define the parameters of variation for the
family, section 6. of the document, and prepare the document for review.

• Review: Reviewers external to the team that produced the analysis conduct an active review of
it [17].

Figure 2. shows the stages of the analysis, the activities that proceed in each stage, and the order-
ing among the stages, indicating concurrency and iteration both among activities within in a stage
of the analysis and between stages. For example, defining terms, identifying commonalities, and
identifying variabilities may proceed concurrently; they are all iterative with identifying and
resolving issues.

3.4 Prepare

In preparation for the analysis, the moderator prepares a skeleton version of the commonality
analysis document. The skeleton contains a proposed introduction and overview, and one or two
each of definitions of terms, commonalities, and variabilities. The intent of the skeleton is to help
focus the initial discussion on the boundaries of the family, and to provide experts who may be
unfamiliar or unused to performing commonality analyses with examples that they may use as
models to guide their thoughts.

The moderator must also ensure that a meeting facility is available to the team that permits them
all to view the document as it is being created, and that provides an acceptable environment for
the discussion. Note that it is not necessary that all members of the team be at the same location
during the analysis meetings, but that it is important that all be able to view the document as it is
being created and to participate in the associated discussion.

Defining Families: The Commonality Analysis

Page 11 of 32

Figure 2. Commonality Analysis Process

Prepare

Plan

Analyze

Quantify

External

Train
team

Define
purpose & scope

Define
terms

Identify
commonalities

Identify
variabilities

Identify &
resolve issues

Define
parameters of
variation

Process initiated

Family characterized

Family quantified

Changes required

Characterization

needs changing

Review completed

of analysis

and/or scope

Review

Defining Families: The Commonality Analysis

Page 12 of 32

3.5 Plan

During the Plan stage of the analysis the moderator starts with a brief review of the commonality
analysis process. The team then reviews the skeleton commonality analysis and revises the intro-
duction and the overview. The result is shared agreement on the purpose of the analysis and on the
boundaries of the domain. During later stages of the analysis these sections are usually revisited,
particularly the overview, as the definition of the family and its interface to other domains
becomes clearer. When the team has achieved a common view of the domain boundaries, it moves
on to the primary focus of the analysis, accomplished during the Analyze stage. Until the Plan
stage is complete, which may take several sessions, each team member’s homework is to review
the results of the previous session in preparation for the next session. The Plan session(s) are usu-
ally completed within one day’s time.

3.6 Analyze

During the Analyze stage the team generates technical terms and their definitions, commonalities,
variabilities, and issues. Teams seem to operate more smoothly when they start with the defini-
tions proposed by the moderator in the skeleton analysis and then quickly move to commonalities,
again first working on those proposed by the moderator in the skeleton analysis.

3.6.1 Finding Terms and Commonalities

Technical terms and commonalities tend to suggest each other, and there is usually considerable
iteration between the two. As an example, a commonality for the weather buoys might be

The buoy is equipped with a set of

sensor

s that monitor

environmental condition

s.
The value of a particular environmental condition at a given time is a function of
the readings of sensors that can measure, directly or indirectly, the condition. (A
typical function used is the average.) The number and types of sensors onboard a
particular buoy is fixed once the buoy begins operation.

Italics are used to indicate terms defined in the dictionary. Note that one might not decide to define
the term

sensor

 until after the commonality has been stated. Conversely, a discussion of how
weather buoys are equipped might lead one first to define the term

sensor

 and then to state the
commonality. In either case, one expects tight interaction between defining terms and discovering
commonalities.

Identifying terms and discovering commonalities are helped by having standard forms for each.
One standard for definitions is the “is a” form. For example, “a sensor is a device that can deter-
mine the value of an environmental variable such as water temperature, air temperature, or wind
speed.” This form is similar to set definitions used in mathematics, where one gives a rule for
deciding whether or not an element is a member of the set.

A corresponding standard form for commonalities is the “has attributes” form. For example,

Every

sensor

 has the following attributes:

1. Precision.

2. Range.

Defining Families: The Commonality Analysis

Page 13 of 32

3. Accuracy.

Considering a definition in the standard form often leads to a statement of a commonality in the
standard form.

The standard forms are determined pragmatically: when a form occurs frequently, it is declared to
be a standard. The current set of standard forms are suitable for many, but not all definitions and
commonalities. The following buoy commonality is an example.

The buoy receives requests, via radio, to transmit more detailed reports on environ-
mental conditions and to transmit weather

history

 information, including both
weather data and the location and time at which the weather conditions occurred.
The buoy has a way to respond to such requests.

The first part of the commonality does not fit any of the existing standard forms.The last sentence
is an example of a standard form that identifies mechanisms for accomplishing activities. In this
case the mechanism is a way to respond to requests.

3.6.2 Finding Variabilities

The standard forms for commonalities also have the advantage that their use often leads to discov-
ery of variabilities. In many cases, all members of a domain have a set of common attributes, and
some members have special or optional attributes. This leads to variabilities such as

Some sensors have the following attributes:

1. Response: Maximum rate of change of sensor readings.

2. Filtering: The type of filtering algorithm that the sensor applies to the data it collects.

Similarly, where a commonality may state the existence of a mechanism, a corresponding vari-
ability may identify the different mechanisms that may be used. As with commonalities, many, but
not all, variabilities may be stated using standard forms.

Variabilities are frequently discovered by considering proposed commonalities that turn out not to
be true for all members of the family. A frequent occurrence is one domain expert suggesting that
every family member has some capability, only to be contradicted by another expert who supplies
counterexamples. The counterexamples form the basis for a variability.

For the buoy family, one can imagine considerable discussion concerning the nature of the envi-
ronmental conditions to be monitored and how such monitoring is done. Some experts might
argue that buoys are equipped only with passive sensors, i.e., those that merely observe signals
and events in the environment. The software for such sensors is relatively simple and the software
developers understand them well. Furthermore, they are relatively inexpensive and rugged, and
each buoy can be equipped with enough of them so that a few failures make little difference.

On the other hand, some experts might argue that providing the option of equipping buoys with
active sensors, such as sonar, broadens the potential set of customers for buoys. They might note
that the data from such sensors can be characterized using similar attributes to passive sensors,
e.g., precision, accuracy, range of detectable values, response time to changing conditions, and
type of filtering algorithm to be used. Although there might be added complication and cost in the

Defining Families: The Commonality Analysis

Page 14 of 32

software, such complication and cost would be recouped by the additional marketplace gained.
Furthermore, the software could be designed so that customers who did not want active sensors
and the attendant software would not have to have it.

A decision not to include active sensors would permit a commonality specifying that buoys are
equipped with passive sensors only. The reverse decision would modify such a commonality to
say that every buoy is equipped with passive sensors, and would add a variability that some buoys
are equipped with active sensors. Of course, the analysis would have to define the distinction
between the two and specify better what sensor types are permitted within the family.

Note that resolving the issue of what the appropriate types of sensors for the buoy family are may
involve some economic analysis to support the argument that the marketplace would be broad-
ened by the addition of active sensors. It might require some prototyping and design work to show
that active sensors are sufficiently reliable and rugged. One would also want to show that the fam-
ily could be designed so that members of the family that are not equipped with active sensors are
also not equipped with more complicated software, enabling them to use smaller, less expensive
computers.

Once analysts are accustomed to thinking in terms of commonalities and variabilities, they will
suggest variabilities as a result of considering the differences in capabilities among existing fam-
ily members and between existing and planned family members. Part of the moderator’s job is to
stimulate such thought patterns by continually asking what changes in suggested capabilities are
likely in the future. A specialization of this type of question is to ask what technological changes
are likely to occur. Changes in technology spur changes in customer requirements and methods
for satisfying those requirements. Good technological predictions may change the discourse about
variabilities from focusing on what customers may need to focusing on what customers can have,
allowing the domain analysts to identify a family that leads the market instead of just staying
abreast of it.

Another way of stimulating thoughts about future changes is to ask what kinds of changes have
occurred in the past and look for patterns in such changes. This may require homework to analyze
existing data about past changes.

When the team believes that the set of commonalities is complete, variabilities may be generated
systematically by examining each commonality for corresponding variabilities. The standard
forms provide a basis for such an examination.

3.6.3 What’s A Good Commonality/Variability/Definition?

Once a team of domain experts understands the purpose of a commonality analysis, they usually
find it easy to propose commonalities, variabilities, and definitions. More difficult is identifying
those that are meaningful and worth retaining, and recording them so that they are useful and
understandable to the users of the analysis. There are no methods that will guarantee success, but
there are some heuristics that help with the process.

Commonalities and variabilities are decisions, and as with any form of decision making, there are
several tests that one may apply for meaningfulness. One such test is the “what’s ruled out” test.
This test assumes that each decision rules out some possibilities. Identifying what’s ruled out

Defining Families: The Commonality Analysis

Page 15 of 32

gives one some confidence that a decision has been made. For example, deciding that buoys will
monitor weather conditions rules out the possibility that they will monitor the number of ships
passing by, the number of fish near the buoy, the ocean depth, or any of a number of non-weather-
related phenomena.

A simpler form of “what’s ruled out” is the “negation” test. If the negation of a decision is mean-
ingful then the decision is likely to be meaningful as well. For example, the statement that “buoys
will exchange data with each other,” when negated is a meaningful decision. A statement such as
“the software must be reliable”, when negated, yields a decision that no one would make. (Who
would claim that the software he/she is developing need not be reliable?)

Commonalities and variabilities embody customer requirements and should therefore describe
required externally-visible behavior. Behavior may often be described in the following terms:

• outputs to be produced (The buoy transmits messages containing weather information periodi-
cally),

• external interfaces (The buoy can accept location data from external sources, such as passing
ships, via radio messages), and

• devices that must be monitored and controlled, (The buoy is equipped with a set of sensors that
monitor environmental conditions).

Note that timing and accuracy are part of behavior, e.g., the period with which buoy weather
reports are produced and the accuracy of the data in the reports must be accounted for in the buoy
commonality analysis. In addition, there may be operational requirements, such as reliability
requirements, that dictate requirements for the platform(s) that must be used (The buoy must
operate on a platform that has a mean time to failure of 10,000 hours).

Commonalities must specify invariances across the family, i.e., they must be true for every family
member. This includes family members that satisfy differences in existing customer needs, and
differences in customers’ needs over time, both for a single customer and between customers. Fig-
ure 3. shows an example of this situation, which shows different family members required with
increasing time. Several different customers may start with the same family member (Customers 2
and 3 in the figure), and later require different variations on it, whereas others may have their own
subfamily from the beginning (customer 1 in the figure). The family should take into account the
maintenance requirements for systems that either exist or are to be built, and the variety of sys-
tems that are going to be built. One may think of the family members as being distributed in
space, i.e., across different customers, and in time.

Variabilities describe expected changes in the capabilities of the family, and are quantified by the
parameters of variation. They are predictions about what customers may need in the future. Vari-
abilities that range smoothly over a set of values, e.g., that have piecewise continuous value
spaces, make generation of family members easier than those that must be described as a set of
special cases.

1

1. J. Coplien denotes the former as contributing to positive variability and the latter as negative variability.

Defining Families: The Commonality Analysis

Page 16 of 32

Commonalities and variabilities generally do not describe design or implementation. Internal data
structures and algorithms that embody design decisions are left to the software designers who use
the commonality analysis as input. One set of exceptions to this rule are implementations in leg-
acy code that are too expensive to change. In cases where a commonality analysis is performed as
part of reenginering an existing system, it may not be feasible to change design decisions that
have long existed, and that must therefore be noted as requirements.

Definitions, commonalities, and variabilities should together define and use a set of abstractions
that are useful and commonly used by domain experts. An abstraction here refers to a many-to-
one mapping, i.e., there should be a variety of realizations of each abstraction. For buoys, sensors
represent an abstraction, since there are a variety of devices that may be used as sensors, and there
are a variety of ways in which the software that controls and monitors sensors may be designed
and implemented.

In summary, the following contribute to well-formed, meaningful, and useful definitions, com-
monalities, and variabilities.

1. Make clear statements that each represent a choice among alternatives.

2. Formulate in terms of customer requirements, and try to avoid statements that describe
designs and implementations. State in terms of behavior, i.e., required outputs, external inter-
faces, devices; and required reliability, timing, and accuracy.

3. Seek to capture as variabilities expected technology changes and the accompanying new capa-
bilities made possible by those changes.

4. Use definitions, commonalities and variabilities to create a set of abstractions common and
useful to the family, i.e., useful to those who will specify family members, those who must
design and implement the family, and those who are responsible for evolving the family.

3.6.4 Tension Between What Is And What Should Be

In cases where a commonality analysis is used to reengineer an existing domain there is inevitably
tension between the current state of the domain and its future state as the domain experts conceive
it. Indeed, if there were no cause for such tension the analysis would probably not be performed.
Characteristic of this tension is discourse about what aspects of the domain can be changed and
what cannot. It may simply be too expensive to change some design or implementation decisions,
particularly if other parts of the software depend on them. In such cases, these decisions can be
regarded as requirements on the domain and expressed as commonalities.

During the analysis the experts are frequently reminded that they are trying to describe the future
state of the domain. Parts of the document that they produce will not accurately describe the
domain until its reengineering has been completed. One result of this is a document that contains
caveats about the differences between the current and future states. These often appear in discus-
sions of issues and in appendices. A second result is that the document may appear somewhat
strange to external reviewers and other readers, who must be explicitly instructed about its pur-
pose.

Defining Families: The Commonality Analysis

Page 17 of 32

3.6.5 Issues

Commonality analysis teams inevitably have difficulty in resolving some issues. Often there is a
term for which it is difficult to agree on a definition, or a proposed commonality whose truth is in
doubt. In cases where there is insufficient information to come to a resolution, or where the team
seems to be deadlocked or repeating the same arguments endlessly, the issue is recorded in the
Issues section of the document, the proposed alternative resolutions are noted, and the issue is
assigned to one of the team members to investigate further. The team member’s homework is to
explore possible alternatives more thoroughly, document them, and present them to the team for
resolution. Frequently, this procedure takes several days to accomplish and the resolution is easily
achieved in the light of more information or a better ordered presentation of the issue and the
alternatives. Sometimes resolving an issue requires constructing a prototype or performing con-
siderable amounts of data analysis, either of which may take days or weeks. Meanwhile, the team
proceeds with the analysis. When the team achieves resolution, the resolution is recorded with the
issue.

Issues are stated as questions. For example, an issue for the buoy analysis might be the following.

Figure 3. Family Members By Customer

Family Members
Needed by Customer 1

Family Members
Needed by Customer 2

Family Members
Needed by Customer 3

Initial Family
Member For

Initial Family
Member For
Customer 1

Customers 2 and 3

Key

Family Member

Customer 1

Customer 2

Customer 3

1.0 1.1 1.2

1.2.1

1.2.2

1.2.1.1

2.0 2.1
2.1.1

2.1.2

2.2 2.2.1

2.2.3

2.2.1.1

2.2.1.2

2.2.3.1 2.2.3.1.1

2.2.1.1.1

Defining Families: The Commonality Analysis

Page 18 of 32

Issue: What attributes do all sensors have in common?

Alternative 1: None. There is too widespread a variation in environmental variables to be
monitored for the sensors to have any common attributes.

Alternative 2: At least precision, accuracy, and range. Without these three there is no way
to assess the accuracy of the reports received and to decide on the most appropriate sensors
for different environments. More sophisticated sensors may also have rates of change and
filtering algorithms associated with them.

Alternative 3: Only precision, accuracy, and range. By standardizing on these three we can
standardize on the software needed to format the weather reports and to read the sensors.

Resolution: Alternative 2. Alternative 1 doesn’t hold for our purposes since we are restrict-
ing our attention to standardized weather reports and reports of sea conditions. Alternative
3 is too restrictive. As sensor technology improves we want to be able to take advantage of
it to issue better reports from the buoys. See commonality 2 and variability 5.

The resolution of the issue refers to the commonalities and variabilities that arose from its consid-
eration, providing traceability for the effects of difficult decisions.

3.6.6 Injecting Structure

Organizing commonalities and variabilities into groups that deal with particular aspects of the
domain helps the domain analysts and later readers of the analysis to understand the domain bet-
ter. It also helps the analysts to decide when they’re done with the analysis. A good organizing
structure is rarely obvious at the beginning of the analysis process. It emerges as the analysis pro-
ceeds and, like most other facets of the analysis, evolves as the analysts gain better understanding
of the domain and the analysis process. A provisional organization is to group commonalities (and
variabilities) into sections concerned with outputs to be produced, devices and platforms, and
external interfaces

1

. Sometimes there will be commonalities (and variabilities) that seem to
involve all of these concerns, and sometimes they will seem to fit none. A general or shared cate-
gory may be used for these cases.

The provisional organization becomes specialized to the domain as the analysis proceeds

2

. When
the analysts have agreed on a specialized structure it becomes useful as a guide in deciding
whether or not there are more commonalities to be found. The analysts can think about the catego-
ries independently, generating new assumptions within each category until no one can suggest
more.

3.6.7 Homework

Homework assignments consist of the following:

1. Note that this is similar to the top level organization for modular design suggested in [16]
2. In most commonality analyses performed so far, the suggested provisional organization is only used by
the moderator as a guide in eliciting commonalities and variabilities. The first structure the experts may see
is one specialized to the domain proposed by the moderator.

Defining Families: The Commonality Analysis

Page 19 of 32

• a standing assignment for all team members to review the document from one session to the
next,

• investigating issues and presenting alternative resolutions to the team,

• analyzing the history of changes made to existing family members,

• finding new terms, commonalities, and variabilities.

Analyze sessions frequently start with a review of homework assignments and a presentation of
the status of each assignment. When there is no progress on investigating issues and no change
history to discuss, a session starts with the results of the standing assignment. Each team member
gives his/her comments on each section of the document. This usually provokes a continuing dis-
cussion.

The standing homework is initially effective in driving the analysis. As more definitions, com-
monalities and variabilities appear, and as structure emerges, the standing assignment may be
modified to focus better on current concerns. To do so, the moderator asks the analysts to answer
sets of questions that deal with the current concerns as homework assignments. For example, if
recent discussions have been concerned with devices, the questions may take forms such as “What
types of devices have been added to the family recently?”, and “What kind of technology is likely
to be incorporated into devices in the near future? The far future?”

3.6.8 When Is The End In Sight?

The Analyze stage progresses at a rate that is determined by the attitude of the team, the skill of
the moderator, the complexity of the domain, and the amount of time and effort that the team
devotes to the process. A typical team analyzing a typical domain using the techniques and heuris-
tics described in the preceding sections can complete the Analyze stage in about three weeks if
they devote full time to it. There are several indicators that the Analyze stage is complete.

1. No terms have been added to the dictionary for several sessions and existing definitions are
undergoing at most minor wording changes.

2. No new commonalities or variabilities are being proposed.

3. All outstanding issues have been resolved.

4. No changes to the introduction or overview of the document have been proposed for several
sessions.

5. The organization of the commonalities and variabilities has not changed in several sessions.

At such a point, the moderator may guide the team towards the Quantify stage by systematic gen-
eration of undiscovered variabilities. He/she does so by leading the team to examine each com-
monality in turn to try to find corresponding variabilities, using techniques such as those
described in section 3.6.2 Finding Variabilities. Generating variabilities from commonalities may
take several sessions and may result not only in the discovery of new variabilities, but also in
changing or adding definitions and existing commonalities, in modifying their organization, and
in identifying and resolving new issues. When the dust from this phase has settled, the team is
ready to begin the Quantify stage.

Defining Families: The Commonality Analysis

Page 20 of 32

3.7 Quantify

The Quantify stage consists of generating parameters of variation and editing the document to
make it more readable. For each variability the analysts label the parameter of variation, briefly
state the decision it represents, quantify the range of values for the decision, specify the binding
time for the decision, and provide a default value, if any, for the decision. This information is
recorded in a table organized in the same way as the commonalities and variabilities.

Generating parameters of variations takes about one session. It may be done as a group, with all
members of the team participating at the same time, or it may be done as homework, with each
team member handling a group of variabilities. In the latter case, the entire team needs to review
all of the parameters. Generally, the analysts suggest few other changes to the document at this
point.

Following the generation of parameters of variation, the moderator and one or two analysts will
review the document for editorial changes to prepare it for external review. Such changes correct
spelling and grammatical errors, and improve the appearance and style of the document without
changing its substance.

3.8 External Review

The external review is intended primarily to uncover incorrect assumptions, omitted assumptions
and terms, and inconsistencies in a commonality analysis. In addition, it reveals whether or not
domain experts not involved in the analysis and intended users of the analysis can understand it.

Although there are several different techniques one might use to review commonality analyses,
many such reviews at Lucent use the active reviews process [17]. The questions for the review
have been standardized for commonality analyses, and a standard process for the reviews has been
devised, as described in [19].

3.9 Flexibility In The Process

The preceding sections prescribe a particular process for conducting commonality analyses. Some
might view this process as unnecessarily rigid and confining. In practice, Lucent teams have tried
a number of variations on this process, and moderators are encouraged to remain flexible about
how it is conducted. The invariant in all of the analyses has been the form of the commonality
analysis document, in particular the organization shown in Table 1.

Most of the variability in the process can be expressed in the following factors.

1. Frequency and duration of the meetings. Some groups elect to meet all day every day, others
half a day every day, others on different schedules.

2. Geographic distribution. Most groups can meet together face-to-face. Some are geographi-
cally distributed and have only limited time face-to-face.

3. Number of participants. Commonality analyses seem to work best when performed by a group
of 5-10 analysts and a moderator.

1

 Occasionally, an analysis is performed as a solo task by a
single domain expert rather than as a team effort. In such cases, the solo expert consults others

1. In the author’s experience, six analysts and one moderator seems to be the optimal group.

Defining Families: The Commonality Analysis

Page 21 of 32

as the need arises.

4. Order of events. All teams start describing the boundaries of the domain before starting to
generate terms, commonalities, and variabilities.The order in which definitions, commonali-
ties, and variabilities are addressed varies. Parameters of variation are always left to last.
Guided by the experience of their moderators, more recent teams have tended to focus more
on definitions and commonalities before focusing on variabilities.

1

The experience at Lucent suggests that the flexibility in the process seems to affect the time and
effort needed to complete the analysis, but not the quality. In particular, teams that meet for
shorter sessions, e.g., sessions lasting less than half a day, seem to spend more time and more
effort to complete the analysis. There are no convincing data or experiments that support this con-
clusion, but experienced moderators agree on this point.

3.10 The Moderator

A moderator is a key part of the commonality analysis process, especially for groups that are
unfamiliar with the process. The moderator needs to guide the group by asking appropriate ques-
tions at appropriate times and needs to record the results of the group’s discussions in the com-
monality analysis document.

2

 A good moderator has the following attributes.

1. Willingness to ask naive and “dumb” questions. Such questions frequently elicit implicit
assumptions and contradictory assumptions unknowingly held by different domain experts.

2. A passion for precision. This quality drives the team to state assumptions and definitions care-
fully and meaningfully.

3. Experience with a wide variety of applications and domains. The moderator can sometimes
suggest assumptions that can be generalized from one domain to another.

4. Ability to summarize quickly. Frequent summarization of relevant points of the discussion
helps the team, since a summary of the alternatives for the issue under discussion aids
progress.

5. Even-handedness. The commonality analysis is a social process and the participants must feel
that their opinions are evenly recognized.

6. Clear understanding of the objective, but willingness to be flexible in applying the process. As
previously discussed, different teams apply the process differently, each attempting to opti-
mize for its particular situation.

7. Adept with language. The moderator needs to be able to shape and record the thoughts of the
analysts so that the entire team clearly understands them. He/she must do so without changing
the substance of the thoughts, and do it rapidly enough that the team’s attention remains
focused on the issue under discussion.

1. I believe this is partly a result of the development of standard forms for expressing definitions, commonal-
ities, and variabilities, and the advent of standard homeworks.
2. The job of recording is sometimes handled by a separate person to free the moderator to concentrate on
focusing the discussion properly. Combining the moderator and recorder tasks into one person seems to
work better, however.

Defining Families: The Commonality Analysis

Page 22 of 32

8. Good editorial skills. A document whose form and style improve continually during the pro-
cess contributes to maintaining high morale among the analysis team. The moderator contrib-
utes to this by constantly editing the document, as time allows during a session and as
homework between sessions.

9. Possesor of a sense of humor. (No explanations needed.)

3.11 Measuring Progress and Results

Because commonality analysis is a new process there are as yet only crude measures of progress
devised for it and no good objective measures of quality. (Because the process attempts to predict
changes and because it is a group process, quality measures may always be subjective. Measures
may be derived by attempting to answer questions such as “How accurate is each variability?”
How precise is each definition?” I believe the answers to these will always be subjective, although
the standard forms for expressing definitions, commonalities, and variabilities help in evaluating
commonality analysis documents.) On the other hand, minimum criteria for completeness of an
analysis may be defined. These include ensuring that the following are true:

• The objectives of the analysis are stated in the introduction.

• The overview identifies the domain boundaries.

• Every term that appears in the dictionary is defined.

• Every issue is resolved.

• Every parameter of variation is cross-referenced to a variability.

In addition, the reviewers’ comments and the issues identified as part of the review are an indica-
tion of the quality of the result. (Subjectivity in analyzing review results is also inevitable. The
analyst must decide whether few issues raised by reviewers indicates a thoughtful, complete anal-
ysis with which the reviewer agrees, or an incomprehensible analysis that reviewers could not
understand well enough to review. Similarly, many issues may indicate a provocative analysis that
stimulates the reviewers to think deeply about the domain, or a shallow analysis about which
reviewers have many doubts.)

Measures of progress of the process include the following.

• Number of terms defined.

• Number of commonalities produced.

• Number of variabilities produced.

• Number of issues opened.

• Number of issues closed.

• Number of parameters of variation defined.

Figure 4. is a graph of these measures for one commonality analysis. The ordinate shows the time
(not the effort) expended as a percent of the total time to do the analysis. As in other processes for

Defining Families: The Commonality Analysis

Page 23 of 32

producing analyses, there are sudden sharp increases in the number of artifacts of different types
produced as the group shifts its attention among different concerns [5].

3.12 Resources Needed

Experience in analyzing existing domains shows that there is rarely one person who understands
all aspects of a domain. Usually there are two to three experts whose combined knowledge covers
the domain. To ensure a wide range of viewpoints and adequate interaction during the process,
five or six experts seem to be sufficient. Such a group, if dedicated full time to the commonality
analysis, can usually complete it in a form sufficient for external review in four weeks. A well-
focused set of reviewers will complete their assignments in two weeks.

Many projects are unwilling to devote their domain experts to a single task for four weeks.

1

Although the duration for completing a commonality analysis varies depending on the mode in

Figure 4. Progress Of A Commonality Analysis

Day

N
u

m
b

e
r

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 5 8

1
3

1
5

1
7

2
2

3
0

3
7

4
2

4
4

4
9

5
1

6
3

6
8

Definitions

Commonalities

Variabilities

Open Issues

Resolved Issues

Page Count

Defining Families: The Commonality Analysis

Page 24 of 32

which the group works, the total effort is approximately the same, i.e., about 24 staff weeks. The
result of this effort is usually a document of 25-50 pages, excluding appendices.

In addition to the people resources, the analysis process requires equipment that can be used to
create and edit the document during meetings so that all participants may view it at all times.
Groups at Lucent often use a WYSIWYG word processor combined with a large screen display.

1

As with other types of analytical meetings, whiteboards, flip charts and other means of sharing
ideas aid the discussion.

4. Results

The author is aware of 17 different domains at Lucent where a commonality analysis has been
tried, and one domain outside Lucent [4].

Of the 17, 10 have been completed, one was never finished, and six are in progress. Although
some groups consider the analysis to be just an early step in their application of the FAST process,
nearly all have come to view it as a worthwhile endeavor in itself. Their analyses have been and
are being used for the following purposes.

• Continuation of the FAST process, i.e., to design an application modeling language for the
domain and then to develop tools to generate the code and documentation for family members
from specifications in the language.

2

 In these cases, the teams usually estimate during the pro-
cess the productivity gains they expect to get from using this approach. Most estimate that they
will get an improvement between 2:1 and 3:1. As yet, there is insufficient data from develop-
ment use to validate these estimates.

• Basis for a design common to all domain members. Some groups create an object oriented
design for their domain. Variabilities, for example, are viewed as decisions to be encapsulated
within classes or information hiding modules [16].

• As reference documentation. The analysis is viewed as a repository of critical information
about the domain that has hitherto never been documented, and that many project members
have never previously known or understood.

• Basis for reengineering a domain. Some projects use the analysis as a way to start reorganizing
and redesigning an existing set of code into a unified domain.

• As a training aid. The commonality analysis is used to introduce new project members to the
domain.

1. Groups that have not previously tried doing a commonality analysis are generally reluctant to commit
their experts full time to the process. Many start working in a reduced mode, e.g., one day a week, until they
are convinced that the process is yielding (or will yield) a worthwhile result. They then shift into a more con-
centrated work mode.
1. There has been sufficient demand for conducting commonality analyses at Lucent that a room has been
designed and built for the purpose.
2. Some domain engineering methods use terms such as domain oriented language, domain specific lan-
guage, and application oriented language instead of application modeling language.

Defining Families: The Commonality Analysis

Page 25 of 32

• As a plan for evolution of the domain. The commonality analysis is used as a description of the
products (and/or services) that are expected to be offered to customers in the future.

It is difficult to offer quantitative evidence that performing a commonality analysis alone leads
directly to improvements in understanding a domain, in design and code for a domain, and in
other aspects of software development for a domain. Informal surveys of developers who have
performed such analyses indicate that they believe they have gotten value from the analysis. This
effect may just be a result of giving them time during their development interval to think about
issues they do not ordinarily have time to consider. The commonality analysis process structures
this time and the artifact that results from it in a way that clearly focuses the developers on issues
of changeability. Other techniques may work equally well.

The commonality analysis process has been designed and has evolved to suit situations where
programmers are used to communicating with each other orally and are used to exchanging infor-
mation in meetings. (The structure of a commonality analysis document, however, is independent
of the approach used to produce it.) Developers who are used to such an environment feel com-
fortable with the process and adapt easily to it. It does not require that they learn new tools or lan-
guages, but frequently changes the way they think about their domain in particular, and about
software development in general. Most often, they like the process.

4.1 Conclusions

FAST in general, and the commonality analysis process in particular, works well when the rede-
velopment, oracle, and organizational hypotheses are satisfied. This is typically the situation when
there needs to be different versions of a system, (different family members) all of which share
common requirements, design, or code. Some examples of such situations are:

1. Systems that have the same requirements but must execute on different platforms, e.g., data-
base management systems or compilers for the same language.

2. Systems that store and use the same data, but perform different variations of processing the
data, e.g., systems that provide different types of reports based on the same data.

3. Systems that control and monitor the same devices, but have somewhat different behavior, e.g.,
telecommunications systems with different features or different billing algorithms.

4. Systems that provide the same interface to the user, but implement their behavior differently,
e.g., different word processors with the same or nearly the same features.

In all of these situations FAST is worth applying when the cost of investing in domain engineering
is less than the payback from generating the different family members using the application engi-
neering environment. So-called legacy systems often meet this requirement. They are usually suc-
cessful systems that have been in use for a long period of time, have undergone many changes,
and continue to be needed.

FAST and the commonality analysis process were designed to try to help software engineers solve
problems that are common to many software development environments today. Where it succeeds,
the success of commonality analysis can also be attributed to the following factors.

Defining Families: The Commonality Analysis

Page 26 of 32

• The structure of the document guides the thinking of the participants, causing them to focus on
factors key to analyzing a domain.

• The use of English provides flexibility, but permits ambiguity where necessary. As the analysis
proceeds, more formality, in the form of parameters of variation, is introduced.

• The structure of the process creates progress, aided by the moderator who can concentrate on
the concerns of clear, precise, thinking and group interactions.

• The participants are able to complete the process, ending with a tangible result that has a vari-
ety of uses for them and software developers who work with them.

• The participants (often) seem to enjoy the process, as it gives them an opportunity to think
about and discuss issues that are important yet often ignored, to think about their problem with-
out having to be concerned with the details of writing code, and to interact with other software
developers in a different way than usual.

• The process and its product are of immediate use to the participants and their colleagues. It
gives them a standard terminology to use, reveals to many of them knowledge that they did not
previously have, and helps them to build a team.

The description of the commonality process given here is derived from a formal model of the pro-
cess using the process and artifact state transition abstraction (PASTA) approach, as suggested in
[8] and defined in [10]. The model defines the artifacts used in the process, the states through
which the artifacts transition during the process, the states of the process (defined as functions of
the states of the artifacts), the operations that may be performed on the artifacts, and the roles of
the people who may perform those operations. Table 1. and Figure 2. are both based on the
PASTA model of the commonality analysis process.

The commonality analysis process (and FAST) started as an experimental process at Lucent in
1992 and is still evolving. Some projects have gained sufficient confidence in it that they are start-
ing to make it a standard part of their software production process. In most cases, projects decide
to try the process because they need to find ways to satisfy the demands of a growing set of varied
customers at lower cost with shorter development intervals, i.e., they are seeking a competitive
advantage.

5. Acknowledgments

Thanks to the many Lucent software developers and their managers who have been willing to try
the commonality analysis process. Thanks also to those who accepted the challenge of becoming
moderators and thereby showed that people other than the inventor of the process could moderate
a commonality analysis. Eric Sumner played a key role in finding the first few groups of develop-
ers at Lucent who were willing to try a commonality analysis. The experiences of moderators
such as Mark Ardis, David Cuka, Neil Harrison, Lalita Jagadeesan, Robert Lied, and Peter Mat-
aga all contributed to the evolution of the process. David Cuka has been particularly instrumental
in suggesting improvements to the process. Robert Chi Tau Lai and Mark Ardis made many useful
suggestions for improving this paper. James Hook pointed out some features of the commonality
process as significant that I would otherwise have omitted.

Defining Families: The Commonality Analysis

Page 27 of 32

6. References

[1] Batory, D. and O’Malley, S.;

The Design and Implementation of Hierarchical Software Sys-
tems with Reusable Components

, ACM Trans. on Software Eng. and Methodology, October,
1992

[2] Britton, K. H., Parker, R.A., Parnas, D.L.;

A Procedure For Designing Abstract Interfaces
for Device Interface Modules

, Proc. 5th Int. Conf. Software Eng., 1981

[3] Campbell, Grady H. Jr., Faulk, Stuart R., Weiss, David M.;

Introduction To Synthesis

,
INTRO_SYNTHESIS_PROCESS-90019-N, 1990, Software Productivity Consortium,
Herndon, VA

[4] Campbell, G.,O’Connor, J., Mansour, C., Turner-Harris, J.;

Reuse in Command and Control
Systems

, IEEE Software, September, 1994

[5] Chmura, L. and Norcio, A.;

Design Activity In Developing Modules For Complex Software

,
Empirical Studies of Programmers, E. Soloway and S. Iyengar, eds., Norwood, NJ, Ablex
Publishing Corp., 1986

[6] Cleaveland, J. Craig, Building Application Generators, IEEE Software, pp. 25-33, 1988

[7] Dijkstra, E. W.,

Notes on Structured Programming

. Structured Programming, O.J. Dahl,
E.W. Dijkstra, C.A.R. Hoare, eds., Academic Press, London, 1972

[8] Kirby, J. Jr., Lai, R.C.T., Weiss D.M.;

A Formalization of a Design Process

, Proc. 1990
Pacific Northwest Software Quality Conf., October 1990, pp. 93-114

[9] Ladd, D. A., Ramming, J. C.;

A*: A Language for Implementing Language Processors,

IEEE International Conference on Computer Languages, 1994

[10] Lai, R.C.T.;

A Process Modeling Approach and Notation

, in The Impact of CASE Technol-
ogy on Software Processes, D. Cook, ed., World Scientific Publications, New York, January
1994

[11] Levine, John R., Mason, Tony, Brown, Doug;

Lex and yacc

, Sebastopol, CA, O'Reilly &
Associates, 1992

[12] Neighbors, J.,

The Draco Approach to Constructing Software from Reusable Components

,
IEEE Transactions on Software Engineering, SE-10, 1984

[13] Parnas, D.L.,

On the Design and Development of Program Families, IEEE Transactions on
Software Engineering, SE-2:1-9, March 1976

[14] Parnas, D.L., Designing Software For Ease Of Extension and Contraction, Proc. 3rd Int.
Conf. Soft. Eng., May 1978

[15] Parnas, D.L., Clements, P.C.; A Rational Design Process: How and Why to Fake It, IEEE
Transactions on Software Engineering, SE-12, No. 2, February 1986

[16] Parnas, D.L., Clements, P.C., Weiss, D.M.; The Modular Structure Of Complex Systems,

Defining Families: The Commonality Analysis

Page 28 of 32

IEEE Transactions on Software Engineering, SE-11., pp. 259-266, March 1985

[17] Parnas, D.L., Weiss, D.M.; Active Design Reviews: Principles and Practices, Proc. 8th Int.
Conf. Soft. Eng., London, August 1985

[18] Software Engineering Principles, Course Notebook, Naval Research Laboratory, 1980

[19] Weiss, David M., Commonality Reviews, AT&T Bell Laboratories Technical Memorandum
BL0112650-940321-09, March 1994

Defining Families: The Commonality Analysis

Page 29 of 32

Appendix: The Host At Sea Buoy Example

Material in this appendix is excerpted from [18].

Introduction

The Navy intends to deploy HAS buoys to provide navigation and weather data to air and ship
traffic at sea. The buoys will collect wind, temperature, and location data, and will broadcast sum-
maries periodically. Passing vessels will be able to request more detailed information. In addition,
HAS buoys will be deployed in the event of accidents at sea to aid sea search operations.

Rapid deployment and the use of disposable equipment are novel features of HAS. HAS buoys
will be relatively inexpensive, lightweight systems that may be deployed by being dropped from
low-flying aircraft. It is expected that many of the HAS buoys will disappear because of equip-
ment deterioration, bad weather conditions, accidents, or hostile action. The ability to redeploy
rather than to attempt to prevent such loss is the key to success in the HAS program. In this sense,
HAS buoys will be disposable equipment. To keep costs down, government surplus components
will be used as much as possible.

Hardware

Each HAS buoy will contain a small computer, a set of wind and temperature sensors and a radio
receiver and transmitter. Eventually, a variety of special purpose HAS buoys may be configured
with different types of sensors, such as wave spectra sensors. Although these will not be covered
by the initial procurement, provision for future expansion is required.

The HAS-BEEN computer has been chosen for the HAS buoy program. There are more than 3000
of these available as government surplus equipment. They were originally developed as the stan-
dard computer for a balloon force (High Altitude Surveying, or HAS), which is now defunct.
Known as the Balloon Internal Navigator, these were originally called HAS-BIN computers; the
spelling was corrected in 1976 as part of a presidential program to remove “redneckisms”' from
government documents.

The HAS-BEEN computer has been found suitable for the new HAS program by virtue of its low
weight, low cost, low power consumption, and nomenclature. A preliminary study shows that the
capacity of a single BEEN computer will be insufficient for some HAS configurations, but it has
been decided to use two or more BEEN computers in these cases. Therefore, provision for multi-
processing is required in the software.

The HAS-BEEN computer has a typical complement of full-word integer instructions. Input is
performed by a SNS (SENSE) instruction that selects a device and stores the contents of its con-
trol register at a designated core location. Up to 256 different sensors may be connected, and the
first 256 core locations are available for depositing the results. The device and corresponding core
location are addressed by an 8-bit field in the SNS instruction.

The temperature sensors take air and water temperature (Centigrade). On some HAS buoys, an
array of sensors on a cable will be used to take water temperature at various depths.

Defining Families: The Commonality Analysis

Page 30 of 32

Because the surplus temperature sensors selected for HAS are not designed for sea-surface condi-
tions the error range on individual readings may be large. Preliminary experiments indicate that
the temperature can be measured within an acceptable tolerance by averaging several readings
from the same devices. To improve the accuracy further and to guard against sensor failure, most
HAS buoys will have multiple temperature sensors.

Each buoy will have one or more wind sensors to observe wind magnitude in knots and wind
direction. Surplus propellor-type sensors have been selected because they meet power restrictions.

Buoy geographic position is determined by use of a radio receiver link with the Omega navigation
system.

Some HAS buoys are also equipped with a red light and an emergency switch. The red light may
be made to flash by a request radioed from a vessel during a sea-search operation. If the sailors are
able to reach the buoy, they may flip the emergency switch to initiate SOS broadcasts from the
buoy.

Software Functions

The software for the HAS buoy must carry out the following functions:

1. Maintain current wind and temperature information by monitoring sensors regularly and aver-
aging readings.

2. Calculate location via the Omega navigation system.

3. Broadcast wind and temperature information every 60 seconds.

4. Broadcast more detailed reports in response to requests from passing vessels. The information
broadcast and the data rate will depend on the type of vessel making the request (ship or airplane).
All requests and reports will be transmitted in the RAINFORM format.

5. Broadcast weather history information in response to requests from ships or satellites. The his-
tory report consists of the periodic 60-second reports from the last 43 hours.

6. Broadcast an SOS signal in place of the ordinary 60-second message after a sailor flips the
emergency switch. This should continue until a vessel sends a reset signal.

7. Accept external update data. Although HAS buoys calculate their own position, they must also
accept correction information from passing vessels. The software must use the information to
update its internal database. Major discrepancies must cause it to invoke elaborate self diagnostics
to attempt to eliminate the errors in future calculations.

8. Perform periodic built-in test (BIT) checks. The software should be able to detect and compen-
sate for memory or computer function failures. Also, the many sensors of a HAS host are rela-
tively easily damaged and may be providing erroneous data. There should be sufficient sensors to
provide reasonableness checks and to allow compensation for those found to be inconsistent or
biased. Those found to be nonfunctioning can be ignored in future calculations.

Specifically, the following BIT checks are deemed necessary:

Defining Families: The Commonality Analysis

Page 31 of 32

(a) Basic computer function test.

This test is designed to check the most frequently used functions of the computer. It checks arith-
metic and control operations and all fast registers. It should be repeated every 350 ms.

(b) Extended computer function test.

This program makes more extensive tests on the basic computer, plus checking less central func-
tions such as I/O and shifts. It should be completed at least once every 5000 ms.

(c) Computer memory function test.

Each word in the memory must be checked by storing and reading all zero, all one, and alternating
zero-one bit patterns. A complete check of a 10000 word memory should be completed every 15
minutes.

(d) Sensor consistency tests.

Although each of the sensors provides data independently, there are known constraints on the rea-
sonable relationships that they can have to each other. For example, the many temperature read-
ings can be expected to remain within a few degrees of each other and not to change by more than
20 degrees in 30 minutes. Other sensors such as wind sensors, can contain provision for calibra-
tion readings. Checks of all wind sensors should be made every 10 minutes. Consistency checks
of temperature sensors should be completed every 5 minutes.

Response To Detected Failures

The software is expected to function without noticeable degradation with damage to up to 20% of
the sensors. If more than 20% of the sensors are improperly functioning, both periodic and request
reports should be marked “suspect.” In the event that the data are considered unusable (e.g., more
than 50% of the sensors found malfunctioning), a “defective” report should be sent in place of the
suspect data.

In the event that BIT detects malfunctioning of a few specific commands, their simulation by
means of sequences of other commands (e.g., simulation of subtraction using addition and nega-
tion) should be attempted.

Where areas of memory are found defective, functioning with reduced memory should be
attempted. If no more than 10% of memory is defective, relocation without loss of function can be
attempted. If more memory is defective, deletion of air temperature calculations should be the first
step. Relocation should then allow the performance of the remaining functions.

Software Timing Requirements

In order to maintain accurate information, readings must be taken from the sensing devices at the
following fixed intervals:

temperature sensors: every 10 seconds

wind sensors: every 30 seconds

Defining Families: The Commonality Analysis

Page 32 of 32

Omega signals: every 10 seconds.

Since the buoy can only transmit one report at a time, conflicts will arise.

If the transmitter is free and more than one report is ready, the next report will be chosen accord-
ing to the following priority ranking:

SOS 1 highest

Airplane Request 2

Ship/Satellite Request 3

Periodic 4

History 5 lowest

Program Generation

HAS host programs will be generated at the HAS Program Generation Center (NAVHASPGC-
PAC) located at Chesapeake Beach, Maryland. A NAVHASPGCPAC is also planned for eventual
location in Monterey, California. Since different HAS buoys may carry different sets of sensors,
HAS-BEEN programs may be different. The software to be procured must include a system gen-
erator. To generate a specific program, a configuration (number of sensors of each type) will be
described and generation of the program should then be automatic.

