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Abstract - Moving a crowd of robots or avatars from their 
current configurations to some destination area without caus-
ing collisions is a challenging motion-planning problem be-
cause the high degrees of freedom involved. Two approaches 
are often used for this type of problems: decoupled and central-
ized. The tradeoff of these two approaches is that the decoupled 
approach is considered faster while the centralized approach 
has the advantage of being complete. In this paper, we propose 
an efficient centralized planner that is much faster than the 
traditional randomized planning approaches. This planner 
uses a hierarchical sphere tree structure to group robots dy-
namically. By taking advantage of the problem characteristics 
on independently moving robots, we are able to design a prac-
tical planner with the centralized approach when the number 
of robots is rather large. We use several simulation examples to 
demonstrate the efficiency and effectiveness of the planner. 

I. INTRODUCTION 

The problem of directing a fleet of robots or moving a 
crowd of avatars are often raised in the context of robot 
contest, computer animation, and simulation for urban plan-
ning. The problem is challenging because the high degrees 
of freedom involved when the number of robots becomes 
large. The curse of dimensionality makes the problem diffi-
cult to solve [16]. Generally speaking, there are two main 
approaches to the planning problem for multiple robots: 
decoupled approach and centralized approach. The trade-
offs between these two approaches lie on efficiency and 
completeness. The decoupled approach is typically faster 
but lacks completeness while the centralized approach can 
be made complete but might need a large amount of plan-
ning time and storage space.  

When the degrees of freedom in a system are rather in-
dependent in nature, the decoupled approach might be a 
good solution since the planning time for each decomposed 
problem could be rather short. The algorithm developed for 
solving a simple subproblem can also be complete. However, 
when the planner for the decomposed subproblem fails, 
there are usually no good algorithms that can backtrack and 
systematically try alternative decomposition. If we choose 
to use a centralized approach to solve the problem, a com-
plete method can be developed to search the composite 
configuration space systematically. However, since the size 
of the composite configuration space is overwhelming, a 
systematic search dooms to be impractical. Therefore, most 
planners with the centralized approach use a randomized 
algorithm to achieve probabilistic completeness. 

Although randomized algorithms have been shown to be 
a practical approach to solve motion-planning problems in 
high dimensional configuration space, we found that they 
may fail to find a feasible path when the decoupled degrees 
of freedom are actually interfering with each other such as 
in the case of robot crowds. In this paper, we propose a 
novel centralized planning approach that moves the robots 
in groups formed dynamically with a sphere-tree structure. 
We use several examples to demonstrate that the traditional 
randomized path planners fall short when the number of 
robots becomes large. With the new approach, on the other 
hand, we can plan for a larger number of robots in a more 
efficient way. We have also implemented a decoupled plan-
ner to demonstrate that the centralized planner could be a 
better choice in terms of completeness and efficiency.  

The rest of the paper will be organized as follows. We 
will review the related work on the planning problem for 
multiple robots in the next section. In the third section, we 
will describe the basic problem and present an implemented 
planner with a decoupled approach. Then, we will propose 
our new centralized approach in Section IV. In Section V, 
we will use some experimental data to demonstrate the ef-
fectiveness of our approach. Finally, we will conclude the 
paper in the last section. 

II. RELATED WORK 

Surveys of motion planning algorithms can be found in 
[11] and [7]. According to [7], path planning can be viewed 
as either centralized or distributed. The centralized planning 
typically considers all robots and their degrees of freedom 
altogether and therefore usually entails a high dimensional 
composite search space. In a distributed approach, each in-
dividual robot plans and adjusts its paths in parallel with 
other robots until feasible paths for all robots are found.  

In [11], the taxonomy about planning for multiple robots 
is somewhat different. The approaches are classified into 
two categories: centralized and decoupled. The decoupled 
planning is different from the distributed planning on that 
the robots are planned sequentially in the decoupled ap-
proach. Two variations exist in decoupled planning: (1) pri-
oritized planning that considers one robot at a time under 
the constraint of previously planned paths for other robots, 
(2) the path coordination method that schedules the execu-
tion of individually planned paths to avoid interference. The 
work of [6] is an example of decoupled approach where all 
robots are prioritized and planned with respect to only 
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higher-priority robots. A similar approach has also been 
proposed in [14] to generate the motions of two manipulator 
robots in an on-line manner. In [13], a decoupled approach 
has been used to generate motions for avatars in a virtual 
environment. 

Most methods originally developed for single-robot sys-
tems can be applied in centralized planning. However, due 
to the high dimensionality of such a system, a complete 
planner is usually intractable. In the past decade, the ran-
domized planning approach [1] has attracted much attention 
and been successfully demonstrated in many applications 
with difficult problems [5][10]. Early randomized planners 
use artificial potential fields built in the workspace to guide 
the search in C-space and use random walks to escape local 
minima. A typical planner with this approach is the RPP 
(Randomized Path Planner) [2]. Most of the randomized 
planners developed in the last few years use the PRM 
(Probabilistic Roadmap Method) approach [9]. In such an 
approach, we build a random roadmap in the C-space in a 
preprocessing step and try to answer planning queries at a 
later time as quickly as possible. A common feature of the 
randomized planners is that they are probabilistic complete, 
which means that if there exists a feasible path and there is 
no time limits, then the planner will be able to find it even-
tually. 

The research on generating motions for crowds of agents 
can be found in the literature of Robotics, Artificial Life, 
and Computer Animation. A good survey of cooperative 
robotics can be found in [3]. In [8], a flocking model was 
used for a crowd of robots to follow a leader robot. A similar 
approach has been adopted in [12] to simulate a crowd of 
avatars led by a leader capable of generating collision-free 
motions. Realistic flocking behaviors for virtual creatures 
such as birds or fishes have been successfully simulated 
with artificial forces [17]. In [3], roadmap consisting of me-
dial axes is used to guide the simulation for a flock of ava-
tars. However, a common weakness of these approaches is 
that they cannot guarantee that a feasible motion plan can be 
generated for the whole system even if such a plan exists.  

III. THE DECOUPILED PLANNING APPROACH 

In this section, we will first give a general description of 
the path-planning problem for multiple robots. The problem 
definition, in fact, might be different for different applica-
tions at various situations. However, we will focus on the 
problem suitable for the decoupled approach in this section 
and briefly describe a planner implemented with this ap-
proach. Examples generated with this approach will be 
given at the end. 

A. Considerations for Different Applications 

Depending on the applications, one can define the plan-
ning problem for multiple robots slightly differently. For 
example, depending on the time when the problem is raised, 
a planner may need to plan for all robots at a time or it may 

be called sequentially for each robot when their paths are 
needed. For the first case, the problem can be solved with 
either a decoupled or a centralized approach. However, for 
the second case, a decoupled planning is more appropriate 
since the path for each robot is generated at different time.  

Another application attribute that might affect the choice 
of the planning approach is the specification of the goal 
configuration. If each robot can be given a definite goal 
configuration at run time, we can use either approach to 
solve the problem. However, specifying the goal configura-
tion for a large number of robots is a tedious task. If we 
must generate the motions for all robots at a time, we are 
more likely to specify a rough destination region for the 
robots instead of individual goals. If the destination region 
is not very large, the decoupled approach may not be a good 
choice because the robots that reach the region earlier are 
likely to block the entrance and prevent later robots to reach 
the region. In the next subsections, we will assume that the 
planning requests are issued at run time while the motions 
of other robots are being executed, and each robot will be 
given a specific goal configuration. 

B. Motion-Planning Problem for Multiple Robots 

Assume that we are given a geometric description of the 
robot and polygonal obstacles in a 2D workspace. We as-
sume that each robot can be represented by an enclosing 
circle of radius r. Due to geometric symmetry, we can use 
only two parameters (x, y) to describe the configuration qi 
for a robot i. Suppose that there exist n robots (n>1) in the 
workspace. We denote the individual configuration space 
(C-space) for robot i by Ci. Then the composite configura-
tion space for the multi-robot system is defined as C= C1 x 
C2 x…x Cn, where a configuration in C is denoted by q. 
Each robot has to satisfy the geometric constraint that they 
cannot collide with each other or with obstacles. In addition, 
each robot must move under a velocity limit constraint.  

In this section, we will assume that the planning requests 
are issued at different times for different robots while the 
motions of other robots are being executed. Each request 
defines a planning problem for a robot from its current con-
figuration to a specified goal configuration. Although not 
necessary, it is usually desirable not to disturb the current 
motion plans of other robots when we try to find a feasible 
motion for a robot. Therefore, a decoupled approach is more 
appropriate for this case. 

C. Decoupled Planning Approach 

Assume that we are given a motion-planning problem for 
multiple robots as described in the previous subsection. The 
path of the ith robot (denoted by τi, i = 1 to n) is known as a 
function of time t, including when it is static. In our de-
coupled approach, for the kth robot under consideration we 
augment its C-space by the time dimension to form the 
so-called Configuration-Time Space (CT-space). A concep-
tual example is depicted in Fig. 1. There are two types of 



forbidden regions in the CT-space representing obstacle 
regions that the robot should avoid entering. One (denoted 
by SCB) is due to the static obstacles while the other (de-
noted by DCB) is due to other moving robots. Note that SCB 
is axis-parallel extrusion of 2D obstacles in time while 
DCB’s are curve extrusions of the obstacle regions imposed 
by other moving robots. When the ith robot finishes its mo-
tion at time tf

i , we assume that it will stay there unless oth-
erwise instructed. Equivalently, we are extending the path 
for the ith robot to infinity and this extended path is denoted 
by τi*. The objective of the path planner is to find a colli-
sion-free path τk for the kth leader in the CT-space that can 
connect the current (qs

k) configuration at the current time (t0) 
to the specified goal configuration (qg

k) at some time (tf) in 
the future. Because of the velocity constraint the slope at 
any point along a legal path in this CT-space must be posi-
tive (because time is not reversible) and less than some 
user-specified value (maximal velocity). A Best-First plan-
ning algorithm can be adopted to search for a feasible path 
in such a CT-space. 

D. Planning Examples 

Fig. 2 shows an example of decoupled planning for four 
robots moving across each other. The trace of their paths is 
shown, and the planning order (priority) is depicted beside 
the robots. Note that the first robot chooses a straight-line 
path since it has the highest priority. The later a robot is 
planned, the more detoured its path usually will be. Another 
example of multiple robots moving independently without 
colliding with each other is shown in Fig. 3(a). In Fig. 3(b), 
we show a snapshot of how the planner has been used to 
simulate a human crowd in a virtual environment.  

In the example of Fig. 2, the average planning time for 
each robot is about 105ms on a regular PC with 650MHz 
CPU. When the number of robots increases, one can expect 

that the planning time will have a quadratic growth because 
a robot has to check collisions with other n-1 robots. Al-
though the growth is not as fast as the exponential growth in 
the centralized approach, the advantage that the decoupled 
approach can be used in an on-line manner for interactive 
applications may not be valid when n increases to some 
large value.  

IV. THE CENTRALIZED PLANNING APPROACH 

A. Revising Problem Definition 

When the number of robots increases to some large value, 
say 100, it becomes impractical to specify the goal configu-
ration for each individual robot interactively. In this case, it 
is more desirable to specify a rough destination region for 
the crowd of robots to move to. We assume that the region is 
a circle of radius R centered at (xg, yg), specified by the user. 
The goal is reached if all robots can enter the region en-
closed by the circle. We assume that the order of entering 
and their relative positions are not important. Although a 
decoupled approach can be used to solve the problem but 
such an approach often fails to find a path simply because 
the robots that arrive early may prevent later robots to enter 
the region. Therefore, a centralized approach is preferred. 
However, one has to face the curse of dimensionality as the 
number of robots increases.  

Among the randomized path planning algorithms pro-
posed in the literature, the RPP (Randomized Path Planner) 
and PRM (Probabilistic Roadmap Method) are the two 
mainstream methods. However, both methods share some 

 

 (a) (b) 

Fig. 3: An example of decoupled planning for a crowd of avatars 
moving independently in a virtual world 

 
 (a) (b) (c) 

Fig. 2. An example of decoupled planning with coordinated 
crossing motions for four robots 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Searching for a feasible path amongst obstacle regions in 
the CT-space. 
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common characteristics and have their own pathological 
cases [1]. For example, the PRM planners typically have 
difficulties in connecting two roadmap components through 
long narrow passages. The RPP planner could be better in 
solving difficult planning problems but it typically takes a 
longer time when the heuristic potential fields used in the 
planner are misleading.  

Although the motion-planning problem for multiple ro-
bots can be solved with either centralized approach, we 
think pathological cases often occur in the traditional plan-
ners as the number of robots increases. When the number of 
robots is large, it is more likely that the robots are rather 
crowded at the initial and goal configurations. In this case, 
the probability of finding a legal neighboring configuration 
becomes rather low since the robots all move independently. 
As long as one robot is in collision, the overall system con-
figuration becomes illegal. Therefore, the size of solution 
space is rather small compared to the whole problem space 
when we allow every robot to have its full degrees of free-
dom. The set of legal configurations would be limited to 
those that move the robots at the periphery outwards first. 
However, the probability of choosing such a configuration is 
rather low in a random process. Therefore, we need to im-
prove the traditional planner by accounting for this problem 
characteristic. 

B. Grouping Robots with a Hierarchical Sphere Tree 

As described in the previous subsection, when we plan 
for multiple independent robots, the pathological case hap-
pens because we are giving the robots too much freedom. 
Allowing only a few robots to move at a time may be a good 
idea but the planner may not be probabilistic complete any 
more. In addition, one still has to determine who to move 
first. Therefore, we propose to organize the crowd of robots 
into a hierarchical sphere tree structure and move the robots 
as a set of robot groups whenever possible. A sphere tree is a 
binary tree, whose leaf nodes represent geometric primitives, 
such as a circle or a sphere, composing the shape of a robot. 
Each internal node represents a sphere whose size is large 
enough to enclose its children spheres. This type of sphere 

tree structure is commonly used to reduce the number of 
calls to expensive collision detection routines [15]. As long 
as the bounding volume of a node at a higher level does not 
cause collisions, further examination below the node be-
comes unnecessary.  

We build a sphere tree for the robots at their initial con-
figuration. The robots are organized in a hierarchical struc-
ture where each leaf node represents a robot, as shown in 
Fig. 4. Since each leaf node belongs to a list of ancestor 
sphere nodes of various sizes, robots can be grouped and 
moved with different levels of grouping. When we move an 
internal sphere node, all robots under the node also move for 
the same amount. When a sphere node moves, the ancestor 
spheres up to the root must update their radius accordingly 
in order to enclose their children nodes. This is somewhat 
different from the case of pure collision detection applica-
tions where the relative positions between spheres in a 
sphere tree do not change because most applications assume 
that the robot is a rigid body. 

C. RPP with Hierarchical Grouping 

The low probability of moving to a legal neighbor makes 
the planning problem a pathological case for path planners, 
especially for PRM-based planner. Therefore, we have cho-
sen to improve the potential field based planners (RPP) by 
incorporating a hierarchical grouping strategy to increase 
the chance of finding a legal neighbor. The RPP algorithm 
consists of alternative calls to the Down_Motion and 
Brownian_Motion procedures. The modifications that we 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4. A sphere tree and a profile cut separating spheres with and 
without collisions 

procedure Down_Motion_with_Grouping() 
1. SUCCESS : = false 
2. Append( qi,τ)  {τis the path for down motion } 
3. nStep : = 0  { nStep is number of legal moves } 
4. CUT : = root  { a profile cut list of the sphere tree } 
5. while ┐SUCCESS 
6.   nTrial : = 0  { nb of trials for lower legal neighbors } 
7.   nTotalTrial : = 0  { nb of trials for local minima } 
8.   while nTrial < nMaxTrial 
9.      nTrial : = nTrial + 1 
10.     nTotalTrial : = nTotalTrial + 1 
11.     for all spheres o in CUT  { o is a sphere } 
12.       o’ : = SelectLegalNeighbor(o)  { random select } 
13.       if o’ = NULL then Split(o, CUT) { split o} 
14.     qnew : = Conf(CUT)  { find corresponding conf } 
15.     if Legal(qnew) then  { collision-free or not } 
16.       nTrial : = nTrial + 1 
17.       if U(qnew) < Umin then  { lower potential } 
18.         Append(qnew,τ) 
19.         nStep : = nStep + 1 
20.         break  { while } 
21.     else if Crowded() then RebuildST() 
22.  if nTrial >= nMaxTrial then SplitLargestSphere(CUT) 
23.  if nStep mod nPeriod = 0 then RebuildST() 
24.  if Umin = 0 then SUCCESS : = true 
25.  if nTotalTrial > nMaxTotalTrial then break {local min.} 

Fig. 5: The Down_Motion_with_Grouping algorithm 
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have made are mainly on using the grouping strategy to 
generate legal neighbors in the Down_Motion procedure.  

In Fig. 5, we show the modified procedure, called 
Down_Motion_with_Grouping. The idea is to freeze the 
relative positions between robots as much as possible by 
grouping them with hierarchical spheres as described in the 
previous subsection. The grouping attempts start from the 
root of the sphere tree and walk down toward the leaf nodes 
when the current grouping sphere collides with obstacles. 
When testing the possibility of grouping robots at an inter-
nal node, we randomly try a few neighboring configurations 
for the sphere (line 12) until a legal (collision-free with ob-
stacles) configuration has been found or all trials fail. When 
the attempt fails, we will recursively walk down to the next 
level and attempt to move its two children spheres inde-
pendently. When a legal configuration for the whole system 
has been found, we will have a list of grouping spheres (de-
picted in grey in Fig. 4) at various levels that forms a profile 
cut on the sphere tree. We will record this “CUT” location 
and start the next trial from it. In addition to considering the 
collisions with obstacles, we also have to check the in-
ter-collision between robots (line 15). If the new system 
configuration is legal, then we check if the new configura-
tion has a smaller potential value than the current one. If so, 
we will move the robots to the new configuration, and the 
search for the next legal configuration with a lower potential 
starts over again.  

We set a limit on the number of trials for moving the ro-
bot system to a configuration with a lower potential value. If 
the number is reached, we further lower the CUT by split-
ting the largest sphere (line 22). This step enables the CUT 
to move to the lowest level (leaves) and restores the free-

dom of each robot. However, if we can only lower the CUT, 
the advantage of grouping the robots will disappear eventu-
ally when all robots retain their freedom. Therefore, we also 
have to consider moving the CUT upward as well. However, 
according to [12], attempting to merge nodes in every step 
from bottom up might not be more efficient than updating 
the list from the root node down after a few steps. In addi-
tion, when two sibling spheres move away from each other, 
the radii of their parent spheres may increase to a degree 
that rebuilding the sphere tree is desirable. Therefore, we 
periodically rebuild the sphere tree (line 23) and update the 
CUT from the top down to maintain a more representative 
sphere tree for future uses. In addition, when we detect that 
the robots are away from the obstacles but the inter-collision 
between robots are severe (tested in the Crowded function in 
line 21), we also choose to reorganize their relative positions 
by rebuilding the sphere tree. 

We build a numerical potential field [2] in the C-space of 
a robot to guide the search. Since the goal is a destination 
region instead of a single configuration, we set the potential 
values of all configurations in the region to zero. The overall 
potential U(q) for a system configuration q is the sum of the 
potentials for each individual robot. When all robots enter 
the region, U will become zero. If the system has made a 
given number (nMaxTotalTrial) of trials to move to a lower 
potential without success, we will assume that a local 
minimum has been reached and the procedure will return its 
current available path found so far. A random walk will be 
used to escape the local minimum as in the traditional RPP. 

V. EXPERIMENTS 

We have implemented the RPP planner with dynamic hi-

 

 (a) (b) (c) (d) (e) 
Fig. 6: An example showing how the planner dynamically changes robot grouping to reach the goal 

 

 (a) (b) (c) (d) (e) 
Fig. 7: An example showing a crowd of 30 robots passing a narrow passage 



erarchical grouping in the Java language. We have con-
ducted extensive experiments to demonstrate the efficiency 
of the planner. All experimental data reported in this section 
were measured on a regular PC with 1.2GHz CPU. 

A. Planning Examples 

In Fig. 6 and Fig. 7, we show the example paths gener-
ated by the planner for two different workspaces. In both 
examples, there exist thirty robots trying to move from their 
configurations to a destination region depicted in circle. The 
first subfigure(a) in both examples shows the traces of the 
paths executed by the robots. Note that in the example of 
Fig. 6, the robots move together as large groups until they 
encounter obstacles. In this case, the robots are organized 
into smaller groups and resume more degrees of freedom. 
The sphere tree may be rebuilt at run time so that we can see 
the robots are grouped differently in Fig. 6(d). As some ro-
bots reach the destination region, they still have some de-
grees of freedom to move inside the area so that they do not 
block the entrance where they entered. Fig. 7 shows an ex-

ample in another workspace where there exists a narrow 
passage that forces the robots to move individually as they 
pass the passage. This is a pathological case for the planner 
since the advantage of moving robots in groups disappears 
and we still have to pay the cost of maintaining the sphere 
tree. However, since we rebuild the sphere tree periodically, 
the planner can resume moving in groups as soon as they 
pass the passage. We found that the planner with dynamic 
grouping is still more efficient than the traditional RPP in 
this example, which implies that the overhead of maintain-
ing the sphere tree is rather low.  

B. Performance Comparisons 

We have conducted extensive experiments to compare 
the performances of the decoupled planner, the traditional 
RPP planner and the new planner. The results are shown in 
Table 1. We run the three planners (decoupled, centralized 
with and without using sphere tree to group robots) for the 
workspace shown in Fig. 8. Snapshots along an example 
path generated for 80 robots are shown in Fig. 8. The num-
ber of robots ranges from 10 to 300 in the experiment. All 
planners are forced to terminate when the planning time 
exceeds one hour (marked with ‘---‘ in Table 1). Note that 
the new planner outperforms the decoupled and the tradi-
tional planners in all cases and the more the number of ro-
bots, the more improvement that we can observe. Although 
the traditional RPP planner is probabilistic complete, it is 
terminated after one hour of trial when the number of robots 
reaches 200. On the other hand, the new planner can still 
find a path when the number of robots reaches 280 (or 560 
DOF).  

We also have conducted experiments to study the effects 
of rebuilding the sphere tree that keeps its size small. In two 
ways, we rebuild the sphere tree. One is by detecting the 
situation that most collisions occur between robots instead 

Table 1. Comparisons of the planning times (in seconds) for 
moving different number of robots in three different planners 

N Decoupled 
Centralized RPP 
w/o Sphere Tree 

Centralized RPP 
w/ Sphere Tree 

10 6.67 0.93 0.28 
20 15.29 2.85 0.72 
30 23.60 6.76 1.21 
40 29.52 13.45 1.51 
50 43.03 26.49 3.36 
60 62.49 47.84 3.71 
70 89.10 70.28 4.46 
80 122.87 110.39 13.40 
90 127.44 175.04 17.73 

100 204.683 239.59 27.99 
120 275.21 447.09 56.84 
140 526.91 810.07 71.15 
160 2224.05 1570.83 170.89 
180 --- 2359.68 262.44 
200 --- --- 309.91 
220 --- --- 784.93 
240 --- --- 1594.19 
260 --- --- 1365.34 
280 --- --- 2502.34 

 

 

 (a) (b) (c) (d) (e) 
Fig. 8: An example of centralized planning for a crowd of 80 robots moving to a destination region 

Table 2. The planning times (seconds) for using different meth-
ods to rebuild the sphere tree 

Methods (A) no 
rebuild 

(B) when 
crowded 

(C) peri-
odic 

(D) periodic 
and crowded 

Planning 
time (sec.) 

93.25 53.84 5.47 4.88 

 



of between robots and obstacles while the other is by peri-
odic updates. The results are shown Table 2. The cases (B) 
and (C) correspond to the two methods above. Note that 
timely rebuild of the sphere tree can improve the overall 
performance and the effect of periodic updates seems to be 
more significant than the other case.  

C. Discussions 

The improvement of the new planner over the traditional 
RPP planner is quite significant. Although we are not at-
tempting to deal with the curse of dimensionality, we have 
significantly lowered the constant of the exponent to make 
the planner practical when the number of robots is large. 
The centralized planner outperforms the decoupled planner 
in most cases when the number of robots is not large. Be-
sides, the centralized planner has the advantage of being 
probabilistic complete that the decoupled planner does not 
have. Detail data from our experiments show that the new 
planner with dynamic grouping is more efficient mainly 
because the number of inter-robot collisions has been sig-
nificantly reduced. This observation reveals that the original 
idea of using a hierarchical sphere tree to group robots dy-
namically in order to reduce inter-robot collisions is quite 
effective.  

VI. CONCLUSIONS 

The problem of path planning for multiple robots is get-
ting more attentions in Robotics and Computer Animation. 
However, the traditional planners do not seem to be able to 
solve the problem as efficiently as in other cases. In this 
paper, we reviewed the different approaches proposed in the 
literature, and implemented the planners with these ap-
proaches for comparisons. We also have proposed a new 
planner based on the RPP planner to improve the planning 
performance for a large number of robots. Experiments 
show that this new method can significantly reduce in-
ter-robot collisions and therefore is more effective for this 
type of multiple-robot planning problem.  
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