
Distance Computation between Non-convex Polyhedra at Short Range
Based on Discrete Voronoi Regions

Katsuaki Kawachi and Hiromasa Suzuki
Department of Precision Machinery Engineering, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
{kawachi, suzuki}@cim.pe.u-tokyo.ac.jp

Abstract

An algorithm for calculating the minimum distance be-
tween non-convex polyhedra is described. A polyhedron is
represented by a set of triangles. In calculating the distance
between two polyhedra, it is important to search efficiently
the pair of the triangles which gives the pair of closest points.

In our algorithm discrete Voronoi regions are prepared
as voxels around a non-convex polyhedron. Each voxel is
given the list of triangles which have possibility to be the
closest to the points in the voxel. When a triangle on the
other object is intersecting a voxel, the closest triangles can
be efficiently searched from this list on the voxel.

The algorithm has been implemented, and the results of
distance computations show that it can calculate the mini-
mum distance between non-convex polyhedra composed of
a thousand of triangles at interactive rates.

1 Introduction

Computing distance between objects is an important
problem in various field including computer graphics an-
imation and simulation. In order to prevent the moving
objects from interference, it is needed to detect if the ob-
jects are colliding or not. In addition to this interference
detection, it is useful to calculate the minimum distance be-
tween the objects for predicting the instance of collision in
dynamics simulation.

The algorithms of distance computation can be classified
by their targets as follows.

• Non-polyhedral Objects

– CSG models

– Curved surfaces

– Clouds of points

• Polyhedral Objects without topological information

– Sets of Polygons

• Polyhedral Objects with topological information

– Convex polyhedra

– Non-convex polyhedra

In this paper we present an algorithm for polyhedral ob-
jects. The object consists of a set of triangles and is not
necessarily needed to have topological information.

2 Related Work

For distance computation between convex polyhedral
models specified by a boundary representation, there are
two major algorithms: closest-feature algorithms [7][8] and
simplex-based algorithms [2][1].

The Lin-Canny closest feature algorithm [7] defines
Voronoi region on its features (faces, edges, and vertices). If
two features are closest, each feature is inside the Voronoi re-
gion of the other. In dynamics simulation the algorithm can
efficiently find the closest features by tracking the pair of the
closest features. V-Clip [8] employs the improved closest
feature algorithm which can handle the penetration between
objects and calculate the distance robustly. In these clos-
est feature algorithms the method of searching the closest
feature pair utilizes Voronoi regions defined around convex
polyhedra. Unfortunately these algorithms are based on con-
vex polyhedra and cannot be directly applied to non-convex
ones.

In this paper, we deal with the non-convex problem. We
utilize Voronoi regions for picking up the closest triangles
between non-convex polyhedra. Because it is difficult to
calculate accurate structure of the Voronoi regions on a non-
convex polyhedron, they are defined by the discrete approx-
imation method using voxels [6].



3 Discrete Voronoi Regions

In this section we describe the definition of the discrete
Voronoi regions and the algorithm of distance computation
between non-convex polyhedra.

3.1 Cost of Distance Computation

The total cost of interference detection between two poly-
hedra can be formulated as the following equation [3]:

T = Nv × Cv + Np × Cp, (1)

where

T : total cost function for interference detection
Nv : number of bounding volume pair overlap tests
Cv : cost of testing a pair of bounding volumes for overlap
Np : number of feature pairs tested for interference
Cp : cost of testing a pair of features for interference

As Cp is expensive in general, bounding volume with
smaller Cv can save T by decreasing the number Np. Typi-
cal algorithms for defining bounding volumes include axis-
aligned boxes, octrees [10], sphere trees [9], OBBTree [3],
swept sphere volumes [5] etc. Avobe all, the PQP library
utilizing swept sphere volumes can perform efficient dis-
tance calulation by transforming distance computation to
intersection detection.

In calculating the minimum distance between non-convex
polyhedra the simplest algorithm tests the all pairs of fea-
tures in them and picks up the pair with the smallest distance.
In the same way of collision detection, because the cost of
distance computation between a pair of features is expen-
sive, the total cost can be saved by reducing the number of
pairs of features with some bounding volume.

3.2 Voxels around Objects

A Voronoi region can be defined for each feature on a
polyhedron:

Definition A Voronoi region associated with a feature is a
set of points closer to that feature than any other.

Figure 1 shows a two dimensional illustration of the
Voronoi regions defined around a convex object. If a feature
X on another polygon is included in region Rb (Figure 2),
it is closest to the edge b, and it is needless to calculate
its distance against the other features a, c. The regions are
easily defined on a convex polyhedron, and I-Collide [7]
and V-Clip [8] utilize the Voronoi regions for calculating
the distance between convex polyhedra.

If we can define Voronoi regions on the features of a non-
convex polyhedron, a feature X of the other polyhedron can

a c
Ra

Rb

Rc

b

Figure 1. Voronoi Regions Defined around
Convex Polygon

X

b

Rb

Figure 2. Closest Feature in Voronoi Regions

aa

a

ab

a

a

ab ab

ab

b

b

b

b

b

bc

b bc

bc

bc

bc

c

cc

c cbcab abc

Figure 3. CFL (Closest Feature List) on Voxels

be closest to the feature Y whose Voronoi region includes X.
Because it is difficult to calculate accurate structure of the
Voronoi regions of a non-convex polyhedron, we discretely
define Voronoi regions by voxelizing the space around the
polyhedron and do not explicitly calculate the structure of
Voronoi regions. Each voxel is given the list of the features
which have possibility to be closest to the voxel (Figure 3).
This list is called “Closest Feature List” (CFL). If the feature
X has interference with the voxel V , we need to calculate
the distances between X and the features in CFL on the
voxel V .

3.3 Representation of Non-convex Polyhedra

In this paper we present an algorithm for calculating
distance between objects with the following properties:



• A polyhedron is represented by a set of triangles. In
the closest feature algorithms, a polyhedron is consti-
tuted by three features (faces, edges, and vertices). In
our algorithm edges and vertices are not regarded as
independent features but as a part of a triangle. By uni-
fying them to triangles, we can decrease the number of
distance calculations.

• A triangle does not necessarily have topological infor-
mation about neighboring triangles across the edges. If
topology is known, it is utilized for culling the voxels
which cannot include the triangle on their CFLs.

• Triangles in a polyhedron may have interference each
other.

These properties are useful for dealing with polyhedra
with boundaries, messy polygon models etc. As the al-
gorithm does not calculate the Voronoi regions explicitly,
triangles in a polyhedron can be freely arranged. The algo-
rithm does not distinguish the front and back of a triangle.
So the distance calculated by the algorithm is always zero
or more than zero.

3.4 Closest Triangles to Voxel

In creating CFL on voxels, we utilize the minimum and
maximum values of the distance between a point in a voxel
and a triangle.

If a point x and triangles are given, one triangle which is
closest to the point x can be chosen by the relative position
of x to the triangles. If x exists inside a voxel V , the closest
triangle varies as x moves in V . CFL on a voxel can be
created by picking up all the closest triangles for the all
points in voxel V . If the triangle Y on the other polyhedron
is interfering with V , the triangles in the list on V have
possibility to be closest to Y .

Given a point x and a triangle A, we can calculate their
minimum distance dA(x). In voxel V there exists the points
xmin

A and xmax
A which give the minimum and maximum value

of dA(x) (Figure 4). By this definition, for all points x in
the voxel V we can write

dA(xmin
A ) ≤ dA(x) ≤ dA(xmax

A ), ∀x ∈ V. (2)

In the same way, the minimum distance dB(x) can be
defined for another triangle B, and we get the points xmin

B

and xmax
B satisfying the following condition:

dB(xmin
B ) ≤ dB(x) ≤ dB(xmax

B ), ∀x ∈ V. (3)

If the points xmax
A and xmin

B satisfies dA(xmax
A ) <

dB(xmin
B ), the definitions (2) and (3) leads:

dA(x) < dB(y), ∀x ∈ V, ∀y ∈ V, (4)

that is, any points in V are given smaller minimum distance
by the triangle A than B. Consequently the triangle B
cannot be closest to any points in V .

Triangle AVoxel V

dA(xmax
A )

dA(xmin
A )

xmax
A

xmin
A

Figure 4. Minimum Distance between Triangle
and Point in Voxel

In picking up all the closest triangles for the voxel V ,
the minimum value dmin

i and maximum value dmax
i of the

distance di between V and the triangle i are calculated for
all triangles at first. Then the triangles are sorted by their
minimum values of distance. If some triangles have the
same minimum value, they are sorted again by the maximum
values of distance. By this procedure we can get the triangle
k with the smallest dmin

k and dmax
k . By the condition (4), the

triangle i satisfying dmax
k < dmin

i cannot be closest to the
voxel V and is not included in CFL on V .

In our algorithm voxels are defined on the local coordi-
nate system of a non-convex polyhedron. The CFLs are cal-
culated only once as a preprocess of distance computations.
They are kept with the geometric information of the poly-
hedron and are reused when the relative orientation of the
objects is changed, because the CFL calculation generally
takes much time. For instance, the CFLs on 30 × 30 × 30
voxels around a polyhedron with 1314 triangles requires
about 40 minutes to compute. The CFL calculation can be
much accelerated if we utilize the computation method of
Voronoi region using graphics hardware [4].

3.5 Calculating Distance with CFL

With CFLs we compute the distance between non-convex
polyhedra A and B with the following four steps.

At the first step, the voxels on A which have interference
with the triangles in B are picked. The interference test is
done efficiently by defining a BSP tree of voxels on A and
an OBBTree [3] on the triangles of B.

At the second step, the closest feature tests are applied for
the intersecting triangles and voxels found in the first step.
The Lin-Canny closest feature algorithm utilizes the neces-
sary and sufficient condition that each feature is inside the



Voronoi region of the other. This condition can be rewritten
for the discrete Voronoi regions with CFLs as follows:




Feature X intersects voxel VY

(the CFL of VY includes feature Y )
and

Feature Y intersects voxel VX

(the CFL of VX includes feature X)

(5)

Because the condition(5) is not sufficient but necessary for
non-convex polyhedra, if a voxel V on A intersecting a trian-
gle T in B are found at the first step, they can not be closest
and are ignored at the second step when the condition(5) is
not satisfied.

In order to check the condition, the voxels on B which
have interference with the triangles in A are picked at the
second step. If a triangle in the CFL of V has interference
with the voxel with the CFL including T are found, the
condition is satisfied.

At the third step, the picked voxels are sorted by their
minimum values of distance dmin

k , and at the final step, for
each voxel in the order of dmin

k , the minimum distance be-
tween the triangles in the CFL and the triangle interfering
the voxel is calculated.

By sorting the voxels at the third step, we can efficiently
eliminate the excess voxels. If in the way of final step we
have a voxel k with distance dmin

k which is greater than the
minimum distance given by the previous voxels, we can
cut off the distance computations for the following voxels,
which cannot be the closest to the polyhedron any more.

In the implementation of our algorithm, voxels are de-
fined in the region which is twice as large as an object’s
bounding box. If the object is out of this region, the distance
is approximated by that of the convex hull of the original
polyhedra.

3.6 Voxel Culling

If topological informations between triangles are avail-
able, the voxels where the triangle can be closest can be
culled by the approximated Voronoi region on the triangle.
The voxels which have no interference with the region can-
not be closest and do not need to be calculated their distances
to the triangle.

The Voronoi region of the triangle is approximately de-
fined by the planes containing the edges on the triangle.
Each plane is parallel to the average of the normal vector of
the triangle and that of the neighboring triangle.

When the polyhedron is convex, the approximated re-
gion on a triangle is identical to the accurate Voronoi region.
When non-convex, it is not necessarily identical, but it in-
cludes the accurate Voronoi region, so the approximation by
neighboring triangles does not make an incomplete CFL.

As shown in Figure 5, the approximated Voronoi region
for a triangle is partitioned with planes on edges (plotted

with broken lines). The voxels interfering with the region
can be the closest to the triangle.

Approximated Voronoi Region on Triangle

Triangle

Polyhedron

Figure 5. Voxel Culled by Approximated
Voronoi Region

4 Results

Based on the algorithm of the discrete Voronoi regions we
have implemented a program for calculating the minimum
distance between non-convex polyhedra.

4.1 Length of CFL

Table 1 shows the number of voxels and the average
length of CFL defined on a bunny model of 1314 triangles
(Figure 6). The average length of CFL per voxel is affected
by the size of the voxel. If the size of a voxel is increased,
more triangles per voxel are listed. It can be said that smaller
voxels make the length of CFL shorter and that the efficiency
of distance calculation can be improved, but we have found
that the length of CFL do not decreases very rapidly when
the size of voxels is smaller than the size of triangles. The
change of triangles picked for distance calculation in some
voxel sizes is shown in Figure 7 as dark triangles. The thick
line between two objects indicates the pair of closest points.

CFL on voxels are calculated on each polyhedron as a
preprocess of distance calculation. For instance, a dark
triangle on the back of the bunny is given in CFL on the
black voxels (Figure 8).

Table 1. Number of Voxels and Length of CFL

Number of Voxels Average Length of CFL
10 × 10 × 10 29.08
15 × 15 × 15 11.92
20 × 20 × 20 10.90
30 × 30 × 30 6.35



Figure 6. Non-convex Polyhedron with 1314
Triangles

7 × 7 × 7 voxels 10 × 10 × 10 voxels

20 × 20 × 20 voxels 30 × 30 × 30 voxels

Figure 7. Picked Triangles and Size of Voxels

4.2 Distance Calculation with CFL

In calculating the distance with 30 × 30 × 30 voxels,
the total number of distance calculations between a pair of
triangles is diminished to 172 on average, which is about
1/10000 compared with the number of all combinations of
triangles. The average of CPU time consumed in distance
computation is 0.06 second with MIPS R10000 250MHz.
The triangles which are picked from CFL on voxels and
calculated their distance are shown in dark color (Figure
9). The thick line between two objects indicates the pair of
closest points.

The algorithm enables us fast computation of the distance
between non-convex polyhedra which consist of a thousand
of triangles, and we utilize this algorithm for our interactive
rigid body dynamics simulator named “pVRML”, which can
simulate the dynamics of physically-based models defined

in 3D scene of VRML1.0.

Figure 8. Voxels Associated with a Triangle

5 Conclusion and Future Work

We have described an the discrete Voronoi regions for
calculating the distance between non-convex polyhedra. By
defining the minimum and maximum values of distances
between voxel and triangles, we can efficiently eliminate
the voxels which cannot be closest. The algorithm enables
us to calculate the distance between non-convex polyhedra
made of a thousand of triangles at interactive rates, and we
utilize it for an interactive dynamics simulator.

It is found that the average length of CFL is affected by
the size of the voxel. In order to achieve more efficient
distance computation algorithm, a method for deciding the
optimal size of voxels for an polyhedron is needed.

If the polyhedra are interfering, our algorithm answers
zero as the distance between them. In terms of dynamics
simulation, it can be useful to extend the algorithm to treat
penetration as minus distance in estimating the instance of
collision.

Table 2 shows the comparison of the distance computa-
tion cost with the PQP library [5]. Our implementation is
about 3.4 times as slow as PQP. The polyhedron in Figure 6
is used for this test, and CFLs are defined on 30 × 30 × 30
voxels. This result is mainly caused by the large Nv , i.e.
the number of intersection tests and closest feature tests be-
tween triangles and voxels performed in the first, second and
third step described in the section 3.5, and these tests cost
more than 70% of all computation time. By constructing
a hierarchical structure of triangles in CFLs of voxels, they



can be more efficient and it is likely to be possible to reduce
Nv as small as that of PQP .

Table 2. Performance of Distance Computa-
tion

Algorithm Av. Computation Time Av. Np Av. Nv

PQP 0.018 sec. 105.4 1781
CFL 0.061 sec. 171.6 7970

References

[1] S. Cameron. Enhanceing GJK: Computing minimum pen-
etration distances between convex polyhedra. In IEEE In-
ternational Conference on Robotics and Automation, April
1997.

[2] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast pro-
cedure for computing the distance between complex objects
in three-dimensional space. IEEE Journal of Robotics and
Automation, 4(2):193–203, April 1988.

[3] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A
hierarchical structure for rapid interference detection. In
Computer Graphics Proceedings, Annual Conference Series,
pages 171–180. ACM SIGGRAPH, 1996.

[4] K. E. H. III, T. Culver, J. Keyser, M. Lin, and D. Manocha.
Fast computation of generalized voronoi diagrams using
graphics hardware. In Computer Graphics Proceedings, An-
nual Conference Series, pages 277–285. ACM SIGGRAPH,
1999.

[5] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast prox-
imity queries with swept sphere volumes. Technical Report
TR99-018, Department of Computer Science, University of
North Carolina, Chapel Hill, 1999.

[6] D. Lavender, A. Bowyer, J. Davenport, A. Wallis, and
J. Woodwark. Voronoi diagrams of set-theoretic solid mod-
els. IEEE Computer Graphics and Applications, 12(5):69–
77, September 1992.

[7] M. C. Lin and J. F. Canny. Efficient algorithm for incremental
distance computation. In IEEE Conference on Robotics and
Automation, 1991.

[8] B. Mirtich. V-Clip: Fast and robust polyhedral collision
detection. Technical Report TR-97-05, MERL, July 1997.

[9] J. Pitt-Francis and R. Featherstone. Automatic generation of
sphere hierarchies from cad data. In Proceedings of IEEE
International Conference on Robotics and Automation, 1998.

[10] H. Samet. Spatial Data Structures: Quadtree, Octree and
Other Hierarchial Methods. Addison Wesley, 1989.

(1) (a)

(2) (b)

(3) (c)

(4) (d)

(5) (e)

(1–5), (a–e): Sequences of Distance Calculation
Dark Triangles: Picked Triangles in Calculation

Thick Line: Pair of Closest Points

Figure 9. Closest Points between Two Moving
Non-convex Polyhedra


