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Abstract—A method to store each element of an integral memory, that successfully associates a distorted pattern to the
memory set M C {1,2,...,K}" as a fixed point into a nearest memory vector. Many relatively successful alternative
complex-valued multistate Hopfleld. .network is introduced. The methods [2], [3] then followed to overcome these deficiencies
method employs a set of inequalities to render each memory L . . .
pattern as a strict local minimum of a quadratic energy landscape. that_ arise in the design of the Hopfield network as a binary asso-
Based on the solution of this system, it gives a recurrent network Ciative memory. However, very few papers have appeared in the
of » multistate neurons with complex and symmetric synaptic |iterature that generalize the original idea to the nonbinary case,

weights, which operates on the finite state spacgl, 2,..., K}™ o for cases where the memory vectors are allowed to take in-
to minimize this quadratic functional. Maximum number of

integral vectors that can be embedded into the energy landscape t€9ral values other thanl and 1.
of the network by this method is investigated by computer  To be able to recalk-dimensional integral memory vectors
eXpe“mgms- ;hés_ paper also enlightens the perflo"_“ance of the j, {1,2,..., K}, the conventional Hopfield model obviously
proposed method in reconstructing noisy gray-scale images. needs to be generalized such that the state space of the net-
Index Terms—Complex-valued Hopfield network, gray-scale \work containsl := {1,2,...,K}". A straightforward way to
image retrieval, linear inequalities, multistate associative memory. achieve this is through generalizing the conventional bi-state ac-
tivation function to aK -stage quantizer as proposed and ana-
|. INTRODUCTION lyzed in [4]. By replacing the activation functions of neurons
ESIGN of recurrent neural networks as dynamical ass'@—thf <t:)(|)nv$nt|orr1]al H%pf'eld ne(;w?rk wght:]hlzno.nlme? r|ty|tre; ¢
ciative memories has been one of the major research ar able steps have been made foward e design of mutistate
ssociative memories [5]-[7]. It has also been shown in [8] that

in the neural networks literature for two decades, since the @ . ber of int | patt that be stored
oneering work by Hopfield [1]. This work demonstrated that € maximum number ot integral patterns that can be store
i such a network by any design procedure is proportional to

ingle-| full Ki le of i
single-layer fully connected network is capable of restoring (K — 1)- f(K), wheref(K) is of order one.

previously learned static pattern called a memory vector, €h- _ ) e _
suring its convergence from an initial condition representing AN alternative dynamical finite-state system operating/on

the corrupted or incomplete information toward a fixed poinfl@S Peen introduced in [9] as the complex-valued multistate
A Hebbian learning procedure was introduced in [1] for thilopfield network. This model employs the complex neuron

proposed network to be applied for memory sets consisting rgpdel [11] employing the complex-signum nonlinearity [10].

bipolar binary memory vectors. Despite its simplicity and bioEat(\:/\r/] Pkeuirrc;ln Imtthk's autoncr)nmcl)uXS,WS|ingr:te-:jayerr,ncopn?c\t/lionlst
logical significance, this learning rule indeed could not ensur(%-e ork Simply 1akes a complex weighted sum of previous
sfate values and passes it through the complex-signum ac-

asymptotically stable equilibria located at the binary memor ation function. This produces its next state, where the

Moregver, it could not avqld some ungieswed equmbng in .th mplex-signum is ak-stage phase quantizer for complex
resulting network. The basins of attraction associated with fix ; .

o . . mbers and is defined as
points in the resulting network were also unpredictable and the
method did not allow the designer to adjust their sizes. Con- 0 0 < arg(u) < 2=
sequently, the resulting network was indeed far from resem- ion /K 2 & () <K4_ﬂ
bling the nearest-neighbor classifier, i.e., the ideal associatiggigrk(u) € K =it K
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Im{u} bi-state network have not yet been extended for multistate
associative memories.

Based on the energy minimization performed by the com-
plex-valued multistate Hopfield network, this paper suggests
an indirect design procedure. The procedure gives a Hermitian
weight matrix such that each transformed memory vector is an
attractive fixed point of the resulting finite state system. The pro-

/4 posed method basically employs homogenous linear inequali-
e ties to dig a basin for each transformed memory vector in the
guadratic energy landscape to ensure that they are all strict local
minima. If the system of inequalities is feasible, then its solu-
tion provides the desired quadratic form, and finally the com-
plex weights of the network are determined from the Hermitian
integral latticel as a point on the unit circle of the complexcoefficient matrix of this quadratic.
plane, is expressed as Feasibility of the inequality system constructed in the design

. is actually not only sufficient but also necessary for the ex-
pr():{1,2,...,K}" — {em/’{j cjefo,....K — 1}} istence of a Hermitian network that possesses attractive fixed
T points located exactly at the transformed memory vectors. In
px(u) == [e’?”/K"“e‘?”/K“2 --~ei2”/K'“'l} . (2) other words, if the constructed inequality system is infeasible,
no Hermitian network can possess a limit set that contain the
The range ofpgk(-), which will be called the transformed transformed memory vectors. This implies that the proposed
vectors in the rest of the paper, can also be considered asrthod reveals the best performance of such a network as a mul-
codomain of the transformation. In this case, the usage tisftate associative memory.
complex-valued multistate Hopfield network, which actually The memory capacity provided by the method has been esti-
operates on the transformed vector space, is meaningfulmated by intensive computer experiments. The results are pre-
processing integral vectors. Each state of the network can dmnted inSection I11-A, which show that the method can be suc-
uniquely transformed to an integral vectorfivia p2*(-). cessfully applied for almost every memory set with cardinality

A generalized Hebb rule has been proposed in [9] asless than or equal to the dimension of its elements. As an ap-
learning procedure for complex-valued multistate Hopfielplication of the proposed method, the recall capability of the
network to recall some specific phase combinations from thé@sulting network has also been demonstrated on gray-scale im-
distorted versions. However, as expected, this generalized r@ges. The results presented in Section lI-B illustrates the perfor-
which constitutes the unique learning procedure for the consitiance of the network in reconstructing some test images from
ered network model, suffers from almost the same limitatiotigeir distorted versions that are corrupted by various amounts of
as it does in the binary case. This is why an efficient applicati@alt-and-pepper noise.
of this network could not have been proposed yet. On the other
hand, another significant qualitative result addressed in [9] is
that the state vector of the network necessarily converges to a Il. DESIGN PROCEDURE
local minimum of a specific real-valued quadratic functional.

This is defined in terms of the network parameters, along the Complex-Valued Multistate Hopfield Network

collective operation of the complex-valued neurons in asyn- - Assyme a complex-valued multistate Hopfield network con-
chronous mode, if the complex weight matrix of the network igsis ofy, fully connected neurons, whose states at time instant
Hermitian and its diagonal entries are all nonnegative. Such.& gnstitute the state vectai(k] of the network. Letw;; de-
. . ) )
network will be callecHermitianhereafter. _. . notethe complex-valued weight associated to the coupling from
Several design procedures that employ inequalities in tfjg, state of theth neuron to an input of thith one. The asyn-
design of recurrent neural networks have been reported, egyonous operation of the network is characterized as updating

[12]-[14]. Such attempts mainly focused on embedding fixgfle state of a single neuron, shly neuron, at timé: according
points into the conventional Hopfield network and constructgg ihe recurrence

the design inequalities directly from the nonlinear recursion

performed by the network. Though a solution of these in-

equalities gives the desired parameters of the recursion which [k + 1] = csign | /%) " wyja; (k] ()
has fixed points located at the given binary points, networks j

designed in these ways might not be capable of restoring a

memory vector from its distorted versions, since attractivenessile keeping all other states unchanged. HErés the reso-

is not a design condition in such methods. By posing thistion factor of the network, and it determines the cardinality
property as a constraint, an indirect method to construct théthe finite state-space. Although the teef™/ %) has no ef-
energy landscape of the discrete Hopfield network via solutidect on the network dynamics theoretically, it provides a phase
of homogenous linear inequalities was proposed in [15]. Nemargin of 7 /K for phase noise of the weighted sum of state
ertheless, these effective approaches on designing conventiamakor entries.

ein/4

Refu}

ei31t/2

Fig. 1. lllustration of csigg(u) for u = —1.2 — 0.54.



MUEZZINOGLU et al: A NEW DESIGN METHOD FOR THE COMPLEX-VALUED MULTISTATE HOPFIELD ASSOCIATIVE MEMORY 893

The qualitative properties of the proposed network can beGiven a set of integral memory vectavs C {1,2,..., K}",
investigated by introducing an energy function defined on thet M. denote the set of complex vectors obtained by trans-
state-space in terms of the weight coefficients: forming elements ol into their complex representation by (2).

In order to perform a search for a Hermitian coefficient matrix
1 W, such that the real-valued discrete quadratic form (5) attains
E(x):= ~3 Z Zwijifixj (4) alocal minimum at each element 1., we simply apply the
i definition of a strict local minimum, and impose a set of strict
inequalities
similar to the way followed in the stability analysis of con-
ventional Hopfield network [16]. A sufficient condition on E(x) < E(y),Vy € BF(x) — {x} (6)
the convergence of the recursion (3) has been reported in [9]
as a Hermitian weight matrixW = W) with nonnegative 4 pe satisfied for eack € M,. HereBX (u) is the 1-neighbor-
diagonal entries«(;; > 0). The proof of this statement is hood ofu and defined formally as
simply achieved by showing that each state transition neces-

sarily causes a decrement in the energy function under these n
conditions, which also enable us to rewrite (4) in a real-value®X (u) := U {V v =ue 2Ky
quadratic form i=1
B(x) = — 2x"Wx (5) v =uie” PR vy = g # L} U {u}.
5 .

(7
Since the network operates in a finite state-space by definition of

csigny (-), then the domain of (5) is finite. The state transitionBy substituting (4) in (6), we express this condition2asin-
therefore ends at a local minimum of (5) in finite time steps fagqualities to be satisfied by the coefficient mat = [w;;]
any initial condition. In fact, the domain of the energy function

(5) and the state space of the asynchronous recursion (3) are & _ _ K

same spaces. Hence, the energy function, which is quadraticﬁ: Z Wit > Z Z wiiyg, VY € By (x) = {x}. (8)
the states but linear in the weight coefficients, not only estab-" v

lishes the convergence analysis, but also defines attractive fi)fed . - . . . _
. . . L ricorporating now our initial design considerationg = w;;
points of the network as its strict local minima.

We assume throughout the paper that the update order ofﬁdw” = 0, condition (8) can be further expressed in terms of

neurons, i.e., the indekin (3), is chosen at random, like usu- "?y the upper triangle entries &%
ally it is done in the conventional discrete Hopfield network.
One can easily verify that the update order is a parameter of the Z wij [Tixj — Yay;] + ij (275 — vig;] >0 (9)
network, in other words the basins of attraction of fixed points 1si<i<n
may vary with the update order. Therefore, we make use of the
termattractivenessinstead of conventional stability, to imposéor all y € BE (x) — {x}. We then substitute the identity
nonempty basin of attraction for the fixed point of interest.
Definition 1: A fixed point x* of recursion (3) is attractive Wi T + Wi TiT; =
if there exists an open b_au(x*) centered ak* such tha_lt: for 9Re{w;; \Re{z;z;} — 2m{w;; Him{z;z;}  (10)
everyy € A(x*) there exists an update order. When this update
order is applied, the state vectoof recursion (3) converges to )
x* for the initial conditionx[0] = y. in (9) and obtain

J

B. Design of Quadratic Energy Function Possessing Local Z Re{w;;} [Re{z;z;} — Re{y;y;}]
Minima at Desired Points 1<i<j<n

We restrict ourselves to the synthesis of the complex-valued +Im{wi; } Im{giy;} — Im{z2;}] > 0. (11)
multistate Hopfield network with Hermitian weight matrix with
zero diagonal entries. Note that this assumption not only redudesall y € B% (x) — {x}. Recall from the definition of trans-
the amount of parameters that describe the network, but afsomationp(-) in (2) that R€z;z,} = cos(2n/K(—&; + &;))
simplifies the design as it already guarantees convergence.dnd Im{z;z;} = sin(2r /K (—%; 4+ Z;)) wherex is the original
deed, the design of the network is equivalent to the designinfegral vector from which the unit-magnitude complex vector
its energy function in this case, since the parameters (i.e., thés obtained. Hence, the design condition (11) could be directly
Hermitian weight matrix) of the network can be uniquely deexpressed in terms of the original memory vectors, i.e., the ele-
termined from the coefficients of its energy function and vicments ofM, instead of the transformed onesiif..
versa. Thus, rather than the recursion (3) directly, our designWe finally gather all inequalities associated to all memory
method described in the following mainly focuses on the emectors, and formally impose the overall system of inequali-
ergy function (5), which is necessarily real-valued by the préies, which have been derived above, as the design condition as
vious assumption. follows.
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Corollary 1: The quadratic form (5) possesses a strict locale checked for this purpose. On the other hand, some of the spu-
minimum at each element éf.. if and only if the homogenous rious memories are correlated with the memory vectors and their

inequality locations can be exactly determined in terms of the memory vec-
tors. For example, the conventional Hebb rule used in the design
2 . R of binary associative memory introduces many undesired fixed
1<Z< { Re{wi;} [COS (f (&; — xi)) points to the network beyond the desired ones, and most of these
<i1<g<n

points cannot be determined without checking each pointin the
(9 — @i)> entire state-space [19]. However, one can easily conclude that if
] x is afixed point of the discrete Hopfield network, then seis.
A This property of network designed by the Hebb rule enables the
K (95 = yi)) designer to address some spurious memories in advance, which
o 1 are directly related to the original memory vectors.
< (& })) } >0 (12) Assimilar relation can be extracted from our design method by
- observing from (12) that only the differences between the entries
of the integral memory vectors, not their actual values, are used
in the construction of the design inequalities. It can be easily
verified that the inequality system constructed for an integral
memory vectok € {1,2,..., K}" in the way proposed in the
previous subsection would be exactly the same one constructed
for each vectok + k - e (mod K), wherek = 1,2,..., K
n ande is then-vector with all “1” entries. Hence, the weight
TK (u) := U {V v = u;+1(ModK)Vo; = u; —1(modK) matrix calculated from the solution of (12) not only makes each
element ofM,. an attractive fixed point, but also introduces at

is satisfied by the Hermitian weight matrW for all x € M
and for ally € 7K (x) — {x}. HereZX (x) is the ball that con-
tains the inverse-transformed versions of the vectoB!fr{x),
namelyx and all of its “1” neighbors in the integral lattice
{1,2,...,K}"

i=1
o least(K — 1)|M| additional vectors, namely the transformed
vj = uj,j # "} Uful. versions of the integral vectors obtained by incrementing each
element ofM in moduloK by k-e, k = 1,....K — 1, as
To find real and imaginary parts of desired weight coeffispurious memories to the network. Such vectors are called trivial
cients, a solution to this system2|fM/ |n inequalities is needed spurious memories and an extension to the design is proposed
to be calculated by an appropriate method. Note that (12)iisthe following to eliminate them.
a linear feasibility problem, because left-hand side of eachLet us append an arbitrary integer, say 1, to each memory
inequality is linear in the variables Re;;} and Im{w;;} for vector inM as last entry and apply the proposed procedure to
i,7 = 1,2,...,n. Due to this property, if (12) is a feasibleobtain the complex-valued multistate associative memonyiof
inequality system for a giver/, any linear programming 1 neurons. Since the last entry of any trivial spurious memory
procedure, e.g., the primal-dual method [17], or the perceptrgndifferent than 1 by definition, one can simply exclude their
learning algorithm [18], would provide a solution, so thgransformed versions from the state-space of the network by re-
complex parameters of the network could be determined Byicting the dynamics (3) in the subspace that consists of the
reconstructingW from this solution. On the other hand,ectors whose last entries are equat®5/K . This is achieved
infeasibility of (12) means that the given memory vector setting the state of the.¢- 1)st neuron fixed te?2/X along
cannot be altogether embedded as strict local minima into (gle recursion. Note that this state is connected to the inputs of
and consequently that_ there exists no Hermitian network whighhar neurons via the weigh{s; 11}/, thus this modifica-
has attractive fixed points located at each of these Vectors. i, o, the network model is actually equivalent to introducing a
complex threshold, = ¢*2™/ K, ,, . toth neuron of the orig-
C. Elimination of Trivial Spurious Memories inal network (3) forl = 1,...,n, whose dynamical behavior
The goal of the design method described above is only é8n now be recast as
render each memory vector as an attractive fixed point of the "
network. Since no additional condition has been imposed o _ nci i(n/K) .
eliminating undesired fixed points that might occur in the re-%[k 1) = csigng | e z_;w”x] kKt ). @39)
sulting network, the Hermitian weight matr® obtained by =
solving (12) by any suitable procedure could also satisfy a setAlthough the method avoids the trivial spurious memories,
of inequalities, which implies a vector other than the elemeritsere might still occur some nontrivial spurious memories in the
of M. be a strict local minimum of (5), although these inequahetwork. It is expected that the number of such attractive fixed
ities are not explicitly imposed in the design. points increase witli, since the cardinality of the state-space
Most of the associative memory design methods are knownitereases withK. However, it is ensured by the method that
cause spurious memories. Unfortunately, neither the existemzme of these spurious memories is locatefifr{x) for all x €
nor the location of many of these points in the state-space of thg therefore the resulting network corrects all possible errors
dynamical network is predictable. Moreover, discrimination afaused by incrementing or decrementing a single entry of the
these vectors after the design is very difficult for largeince memory vectors by one. In other words, correction of the vectors
almost every point in the huge state space of the system shauld-neighborhood of the memory vectors are guaranteed.
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D. Algorithmic Summary of the Method [ll. SIMULATION RESULTS

A summary of the proposed design method described inResults of computer experiments are presented below to
Section 1I-B together with its improvement in Section 1I-C idllustrate the quantitative performance of the method, i.e.,
given below. the maximum cardinality of an arbitrary memory set that can
be successfully embedded into the network by the proposed
design method. The recall capability of the resulting network

Algorithm 1: Input to the algorithm is and its application on reconstructing gray-scale images are also

M c{1,2,...,L}"

Step 0: Set a resolution factor K > L for demonstrated.

the network. Append 1 to every X € Mas p Complete Stage Rerformance

the last entry. Set A as the empty ma- ) . )

trix. Any fixed point of annth-order dynamical system can be
Step 1: For each % c M and for each considered as an-dimensional static i_nformatior_l encode_d as
y € TK(x) - {x}, calculate the row vector as systt_am paramgte_rs.Asdem_onstrated m_the prewous;ecuqn,dy-
shown in the first formula at the bottom namical associative memories are designed from this point of
of the page, where cij = cos(2r/K(i; — ;) — view by determining the parameters ofqrprlorl chosen net—_
cos(2m/K (i — ) and s;; = sin(2n/K(4; — i) — quk mode! such that a given set of sta_tlc_vectors are the_flxed
sin(2r /K (&; — 4;)), and append it as an addi- points of this s_ystem._Hence, an associative me_mory_real_lzes_a
tional row to matrix A dichotomy defined on its state space: some specific points in this
Step 2: Find a solution q* € R+ for the space are fixed points (constitute the Iim?t set) of the system,
inequality system Aq > 0 by using any ap- V\{h|l_e the rest are ngt. Hovyever, the design of an ideal asso-
propriate method. C|at|v_e memory in this way is generally not possible for every
Step 3: Construct the Hermitian matrix as possible memory set, i.e., not every dichotomy can be imple-
shown in the second formula at the bottom mented, because of limitations of the chosen model, e.g., the
of the page. numbe_r of parameters. In our case, for_ gxample, _the network
Step 4: Extract the parameters of re- model involves(n?® + n)/2 complex coefﬂuen_ts (wglghts apd .
cursion  (13) from W as w; _ wy; for thresholds:)n, hovyevgr, the number of all possible dichotomies is
ij = 12...nandt; = 27/ K, 1 for equal to2X ,whlph is the number ofsu_bsets of the state space
=12 .. 7n.’ ’ {1,2,..., K}"™. Ifitwere possible to design the complex-valued

multistate Hopfield network as an ideal associative memory for
every possible memory set, then this design would be a very ef-
As the dimensiom of the memory vectors increases, manipficient compression tool that enables the lossless compression

ulating the energy of each memory vector in the way suggestaitan arbitrary memory set intm? + n)/2 complex numbers.
by the second and third steps of this algorithm becomes time dtowever, such a compression seems impossible from the in-
memory consuming when compared to the generalized Hefobbmation theory point of view, since the number of free vari-
rule. In practice, this procedure is easily realizable for memoaples, i.e., parameters, is quadratiajmwhile the number of di-
sets with resolution factor of order ten and dimension of ordehotomies grows exponentially with Therefore, if the design
ten, sufficient to perform reconstruction of gray-scale images.based on a network model, which is the case for many neural
On the other hand, the performance of the resulting networkassociative memories, then only some of the possible memory
much better than that of the one designed by the generalizeds can be introduced as fixed points to the network by any de-

Hebb rule, as shown at the end of the next section. sign method.
C12 812 €13 813 -** Cln+l Sin+1l - €23 823 C24 824 *-* C2pn4l1 S2n+1 - 1 Cnntl Snn+l
0 qi + g5 q3 + iq} @n—1 + 15,
W qi — g5 0 T e L/

* s * ok * _aa% ..
on—1 — W2,  Qan—3 — Wyp—2 den—5 — Y6n—4a 0
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TABLE | which belong to the integral latticel, 2, . .., 5}*. We have first
PERCENTAGES OFMEMORY SETS THAT YIELDED augmented one to each vector as the last entry and transformed
FEASIBLE INEQUALITY SYSTEMS

them to their phase-modulated versions by (2)

n | M| | PRE=5)| P%(K=10) || n | |M|| P%(K =5) | P% (K =10) r i67/5
5 3 100 100 20 | 10 100 100 1 etm
5 90 95 20 100 100 X = gin
7 2 5 30 3 17 | ¢767/5 |
10| 4 100 100 50 | 25 100 100 ret87/5
10 97 100 50 100 100 o | efm/o
15 0 12 [ 9 21 X7 | eirns
L €™
- eiSﬂ'/5 -
We say that a memory sét/ is stored completely by our 3 ei87/5
design method if each element&f constitutes a fixed point in X= | gim
the resulting network. We measure the quantitative performance | ¢i27/5 |
by the percentage of the number of completely stored memory i
sets among a collection of memory sets generated randomly. . i4r/5
Recall that the complete storage of a memory set is equivalent X = | gisn/s
to the feasibility of the inequality system (12) constructed for | ¢i67/5 |

this set. . . . )
assuming that the resolution factéf is equal to five. The
For some, | M| andK values 100 random memory sets havg,q . ajity system has been constructed as in (12) and been

been generated and checked whether each of these sets yieég%d by linear programming to obtain the weight matrix and

a feasible ine_qua_lity sysf[em or not. The number of se_ts_ Ak threshold vector as shown at the bottom of the page.
yielded a feasible inequality system for each experimentis listedi; .an pe verified that for these parameters each transformed

in Table I, which shows that aimost every setWillf| < n can  emory vector is a fixed point of the recursion (13). After

be completely stored independent of the valuéof . injecting each 1-neighbor of each memory vector as the initial
The effect of &' on complete storage performance is alsgate vector it has been observed that the network converged to

shown in Table . The probability of complete stora in-  yhe nearest memory vector for each initial condition. Hence,

creases as the resolution fact6increases for fixed and|M|. it can pe concluded that the design has been successful. We
However, this would cause the state space to grow enormougly,e 415 identified the spurious memories by checking the

and, hence, possibly cause more nontrivial spurious memorieg,«formed version of each element of the integral lattice
as illustrated in the next subsection. {1,2,...,5}* and observed that the network has 15 spurious
memories, none of which is trivial. Note that the same memory
set can be embedded for a larger resolution factor. When the
design is repeated fdk = 6, one can see that the number of
spurious memories increases by two.

We first give an illustrative example of proposed design pro- since gray-scale images can be represented by integral vec-
cedure and investigate the performance of resulting networkyqrs, reconstruction of such images from their distorted versions

Example 1: Consider the memory set consisting of the foleonstitutes a straightforward application of multistate associa-

B. Application of the Design Procedure

lowing integral vectors: tive memory, as investigated in [20]. The following example il-
lustrates the performance of the proposed method in performing
3 4 4 5 this task.
1 5| . 30 .3 41 4 2 Example 2: Gray-scale versions of three well-known test
|5 |1 =151 * T |4 images, namely Lenna, peppers, and cups images, have been
3 5 4 3 used in this experiment. Due to computational limitations, the
M 0 7.4 —168.4 —65.6 +4132.8 139.7 —31.7
W — 7.4 +168.4 0 108.4 —417.8 —76.5 —192.6
—65.6 —2132.8 108.4 +¢17.8 0 80.9 +:167.1
L 139.74+431.7 —76.54192.6 80.9 —:167.1 0
r =73 —14134.1
¢ — | —826+i46.1
126.6 — 1131.3
L 20.7 +:174.4
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Fig. 3. Images corrupted by 20% salt-and-pepper noise (top) and their reconstructions obtained by the network (bottom).

original high-resolution 256-level images have been rescaledtansformationpf(l(-) and combined in a 10Q 100 matrix.
100x 100 resolution and their gray-levels have been quantiz&tie reconstructed images obtained by this procedure for
down to 20 levels. Thus, each image can be considered asagh distorted image are shown in the corresponding column
100x 100 matrix consisting of integral numbers where 0 anof Fig. 3(b). It can then be concluded that the networks are
20 denote a black and a white pixel, respectively, and eacapable of removing 20% salt-and-pepper noise on each image
integer value in between these values indicate a gray toseaccessfully. In other words, almost none of these 500 networks
These three prototype images are shown in Fig. 2. converges to a spurious memory in this experiment.

Each image has been segmented into 500 20-dimensionaAs the experiments were repeated for 40% and 60% noise
vectors asx!, € {1,2,...,20}%° for v = 1,...5 and [see Fig. 4(top) and Fig. 5(top), respectively], nontrivial spu-
v =1,...100, such thagth column ofith image is representedrious memories became effective in the recall, so reconstruction
by concatenating 5 of these integral vectors, nam:eﬁly, performance decreased. This can be observed from the re-
1 = 1,...,5. Herel denotes the image index: 1 for Lennagalled images shown in Fig. 4(bottom) and Fig. 5(bottom),
2 for peppers, and 3 for cups. A 20-neuron complex-valuedspectively.
multistate associative memory has then been designed for eachhe tasks performed by a filter and by an associative memory
triple of memory vectors.,,x2, ,x3 ,u = 1,2,...,5 and are conceptually different: Afilter is usually expected to remove
v=1,2,...,20. Since we have attempted to embed only thramise on any signal, while an associative memory is designed to
vectors into a 20-neuron network by our method, which is féiiter out the noise on prototype vectors only. However, despite
below the actual capacity investigated in Section IlI-A , all 50the negative effects of spurious memories, the performance of
designs have been successful. the network in filtering noisy images is still comparable to that

After the design phase the distorted versions of the prototypemedian filtering, which is known to be one of the most effec-
images have been obtained by adding 20% salt-and-pepipez methods for filtering out salt-and-pepper noise. This can be
noise, as shown in Fig. 3(top). Each of these distorted imagesified by Fig. 6(top) and (bottom), showing the reconstructed
was segmented the same way as described above, and thewdhgions of 40% corrupted images obtained by our method and
transformed version of each vector obtained in this way as thg median filtering, respectively.
initial condition to the corresponding network was applied. The recall capability of our method with the generalized Hebb
After all 500 networks reached their steady states, i.e., fixedle proposed in [9] was also compared. In this experiment, the
points, the integral vectors have been obtained by the invetheee images in Fig. 2 were used as the prototype images in
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Fig. 4. Images corrupted by 40% salt-and-pepper noise (top) and their reconstructions obtained by the network (bottom).

Fig. 5. Images corrupted by 60% salt-and-pepper noise (top) and their reconstructions obtained by the network (bottom).

Fig. 6. Filtered images obtained from noisy images with 40% salt-and-pepper noise by the network (top) and by median filtering (bottom).
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Fig.7. Lennaimages obtained by the networks designed by (a) the generalizétf]
Hebb rule and (b) by the proposed method, respectively.

generalized Hebb rule. The dominant effect of spurious memo[-16
ries can be visually identified when Lenna image was about to

be reconstructed from its 20% distorted version when generalt’]
ized Hebb rule is used in the design [see Fig. 7(a)]. Our methoghg
on the other hand, enables an almost perfect recall as shown 9]
Fig. 7(b).
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