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Abstract—A method to store each element of an integral
memory set 1 2 . . . as a fixed point into a
complex-valued multistate Hopfield network is introduced. The
method employs a set of inequalities to render each memory
pattern as a strict local minimum of a quadratic energy landscape.
Based on the solution of this system, it gives a recurrent network
of multistate neurons with complex and symmetric synaptic
weights, which operates on the finite state space1 2 . . .

to minimize this quadratic functional. Maximum number of
integral vectors that can be embedded into the energy landscape
of the network by this method is investigated by computer
experiments. This paper also enlightens the performance of the
proposed method in reconstructing noisy gray-scale images.

Index Terms—Complex-valued Hopfield network, gray-scale
image retrieval, linear inequalities, multistate associative memory.

I. INTRODUCTION

DESIGN of recurrent neural networks as dynamical asso-
ciative memories has been one of the major research areas

in the neural networks literature for two decades, since the pi-
oneering work by Hopfield [1]. This work demonstrated that a
single-layer fully connected network is capable of restoring a
previously learned static pattern called a memory vector, en-
suring its convergence from an initial condition representing
the corrupted or incomplete information toward a fixed point.
A Hebbian learning procedure was introduced in [1] for the
proposed network to be applied for memory sets consisting of
bipolar binary memory vectors. Despite its simplicity and bio-
logical significance, this learning rule indeed could not ensure
asymptotically stable equilibria located at the binary memory.
Moreover, it could not avoid some undesired equilibria in the
resulting network. The basins of attraction associated with fixed
points in the resulting network were also unpredictable and the
method did not allow the designer to adjust their sizes. Con-
sequently, the resulting network was indeed far from resem-
bling the nearest-neighbor classifier, i.e., the ideal associative
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memory, that successfully associates a distorted pattern to the
nearest memory vector. Many relatively successful alternative
methods [2], [3] then followed to overcome these deficiencies
that arise in the design of the Hopfield network as a binary asso-
ciative memory. However, very few papers have appeared in the
literature that generalize the original idea to the nonbinary case,
i.e., for cases where the memory vectors are allowed to take in-
tegral values other than1 and 1.

To be able to recall -dimensional integral memory vectors
in , the conventional Hopfield model obviously
needs to be generalized such that the state space of the net-
work contains . A straightforward way to
achieve this is through generalizing the conventional bi-state ac-
tivation function to a -stage quantizer as proposed and ana-
lyzed in [4]. By replacing the activation functions of neurons
in the conventional Hopfield network with this nonlinearity re-
markable steps have been made toward the design of multistate
associative memories [5]–[7]. It has also been shown in [8] that
the maximum number of integral patterns that can be stored
in such a network by any design procedure is proportional to

, where is of order one.
An alternative dynamical finite-state system operating on

has been introduced in [9] as the complex-valued multistate
Hopfield network. This model employs the complex neuron
model [11] employing the complex-signum nonlinearity [10].
Each neuron in this autonomous, single-layer, connectionist
network simply takes a complex weighted sum of previous
state values and passes it through the complex-signum ac-
tivation function. This produces its next state, where the
complex-signum is a -stage phase quantizer for complex
numbers and is defined as

csign ...

(1)
Note that, by the virtue of this nonlinearity, each state of the net-
work is allowed to take one of the equally spacedpoints on
the unit circle of the complex plane (see Fig. 1). Each neuron
indicates an integral information modulated as the phase angle
of its unit-magnitude complex-valued state, which constitutes
an element of the state vector of the dynamical network. Hence,
not the original integral vectors, but their transformed versions
can be stored and recalled by this network. This injective trans-
formation, which basically maps each entry of a vector in the
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Fig. 1. Illustration of csign(u) for u = �1:2� 0:5i.

integral lattice as a point on the unit circle of the complex
plane, is expressed as

(2)

The range of , which will be called the transformed
vectors in the rest of the paper, can also be considered as the
codomain of the transformation. In this case, the usage of
complex-valued multistate Hopfield network, which actually
operates on the transformed vector space, is meaningful in
processing integral vectors. Each state of the network can be
uniquely transformed to an integral vector invia .

A generalized Hebb rule has been proposed in [9] as a
learning procedure for complex-valued multistate Hopfield
network to recall some specific phase combinations from their
distorted versions. However, as expected, this generalized rule,
which constitutes the unique learning procedure for the consid-
ered network model, suffers from almost the same limitations
as it does in the binary case. This is why an efficient application
of this network could not have been proposed yet. On the other
hand, another significant qualitative result addressed in [9] is
that the state vector of the network necessarily converges to a
local minimum of a specific real-valued quadratic functional.
This is defined in terms of the network parameters, along the
collective operation of the complex-valued neurons in asyn-
chronous mode, if the complex weight matrix of the network is
Hermitian and its diagonal entries are all nonnegative. Such a
network will be calledHermitianhereafter.

Several design procedures that employ inequalities in the
design of recurrent neural networks have been reported, e.g.,
[12]–[14]. Such attempts mainly focused on embedding fixed
points into the conventional Hopfield network and constructed
the design inequalities directly from the nonlinear recursion
performed by the network. Though a solution of these in-
equalities gives the desired parameters of the recursion which
has fixed points located at the given binary points, networks
designed in these ways might not be capable of restoring a
memory vector from its distorted versions, since attractiveness
is not a design condition in such methods. By posing this
property as a constraint, an indirect method to construct the
energy landscape of the discrete Hopfield network via solution
of homogenous linear inequalities was proposed in [15]. Nev-
ertheless, these effective approaches on designing conventional

bi-state network have not yet been extended for multistate
associative memories.

Based on the energy minimization performed by the com-
plex-valued multistate Hopfield network, this paper suggests
an indirect design procedure. The procedure gives a Hermitian
weight matrix such that each transformed memory vector is an
attractive fixed point of the resulting finite state system. The pro-
posed method basically employs homogenous linear inequali-
ties to dig a basin for each transformed memory vector in the
quadratic energy landscape to ensure that they are all strict local
minima. If the system of inequalities is feasible, then its solu-
tion provides the desired quadratic form, and finally the com-
plex weights of the network are determined from the Hermitian
coefficient matrix of this quadratic.

Feasibility of the inequality system constructed in the design
is actually not only sufficient but also necessary for the ex-
istence of a Hermitian network that possesses attractive fixed
points located exactly at the transformed memory vectors. In
other words, if the constructed inequality system is infeasible,
no Hermitian network can possess a limit set that contain the
transformed memory vectors. This implies that the proposed
method reveals the best performance of such a network as a mul-
tistate associative memory.

The memory capacity provided by the method has been esti-
mated by intensive computer experiments. The results are pre-
sented inSection III-A, which show that the method can be suc-
cessfully applied for almost every memory set with cardinality
less than or equal to the dimension of its elements. As an ap-
plication of the proposed method, the recall capability of the
resulting network has also been demonstrated on gray-scale im-
ages. The results presented in Section III-B illustrates the perfor-
mance of the network in reconstructing some test images from
their distorted versions that are corrupted by various amounts of
salt-and-pepper noise.

II. DESIGN PROCEDURE

A. Complex-Valued Multistate Hopfield Network

Assume a complex-valued multistate Hopfield network con-
sists of fully connected neurons, whose states at time instant

constitute the state vector of the network. Let de-
note the complex-valued weight associated to the coupling from
the state of theth neuron to an input of theth one. The asyn-
chronous operation of the network is characterized as updating
the state of a single neuron, sayth neuron, at time according
to the recurrence

csign (3)

while keeping all other states unchanged. Hereis the reso-
lution factor of the network, and it determines the cardinality
of the finite state-space. Although the term has no ef-
fect on the network dynamics theoretically, it provides a phase
margin of for phase noise of the weighted sum of state
vector entries.
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The qualitative properties of the proposed network can be
investigated by introducing an energy function defined on the
state-space in terms of the weight coefficients:

(4)

similar to the way followed in the stability analysis of con-
ventional Hopfield network [16]. A sufficient condition on
the convergence of the recursion (3) has been reported in [9]
as a Hermitian weight matrix ( ) with nonnegative
diagonal entries ( ). The proof of this statement is
simply achieved by showing that each state transition neces-
sarily causes a decrement in the energy function under these
conditions, which also enable us to rewrite (4) in a real-valued
quadratic form

(5)

Since the network operates in a finite state-space by definition of
csign , then the domain of (5) is finite. The state transitions
therefore ends at a local minimum of (5) in finite time steps for
any initial condition. In fact, the domain of the energy function
(5) and the state space of the asynchronous recursion (3) are the
same spaces. Hence, the energy function, which is quadratic in
the states but linear in the weight coefficients, not only estab-
lishes the convergence analysis, but also defines attractive fixed
points of the network as its strict local minima.

We assume throughout the paper that the update order of the
neurons, i.e., the indexin (3), is chosen at random, like usu-
ally it is done in the conventional discrete Hopfield network.
One can easily verify that the update order is a parameter of the
network, in other words the basins of attraction of fixed points
may vary with the update order. Therefore, we make use of the
termattractiveness, instead of conventional stability, to impose
nonempty basin of attraction for the fixed point of interest.

Definition 1: A fixed point of recursion (3) is attractive
if there exists an open ball centered at such that: for
every there exists an update order. When this update
order is applied, the state vectorof recursion (3) converges to

for the initial condition .

B. Design of Quadratic Energy Function Possessing Local
Minima at Desired Points

We restrict ourselves to the synthesis of the complex-valued
multistate Hopfield network with Hermitian weight matrix with
zero diagonal entries. Note that this assumption not only reduces
the amount of parameters that describe the network, but also
simplifies the design as it already guarantees convergence. In-
deed, the design of the network is equivalent to the design of
its energy function in this case, since the parameters (i.e., the
Hermitian weight matrix) of the network can be uniquely de-
termined from the coefficients of its energy function and vice
versa. Thus, rather than the recursion (3) directly, our design
method described in the following mainly focuses on the en-
ergy function (5), which is necessarily real-valued by the pre-
vious assumption.

Given a set of integral memory vectors ,
let denote the set of complex vectors obtained by trans-
forming elements of into their complex representation by (2).
In order to perform a search for a Hermitian coefficient matrix

, such that the real-valued discrete quadratic form (5) attains
a local minimum at each element of , we simply apply the
definition of a strict local minimum, and impose a set of strict
inequalities

(6)

to be satisfied for each . Here is the 1-neighbor-
hood of and defined formally as

(7)

By substituting (4) in (6), we express this condition asin-
equalities to be satisfied by the coefficient matrix

(8)

Incorporating now our initial design considerations
and , condition (8) can be further expressed in terms of
only the upper triangle entries of

(9)

for all . We then substitute the identity

Re Re Im Im (10)

in (9) and obtain

Re Re Re

Im Im Im (11)

for all . Recall from the definition of trans-
formation in (2) that Re
and Im where is the original
integral vector from which the unit-magnitude complex vector

is obtained. Hence, the design condition (11) could be directly
expressed in terms of the original memory vectors, i.e., the ele-
ments of , instead of the transformed ones in .

We finally gather all inequalities associated to all memory
vectors, and formally impose the overall system of inequali-
ties, which have been derived above, as the design condition as
follows.
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Corollary 1: The quadratic form (5) possesses a strict local
minimum at each element of if and only if the homogenous
inequality

Re

Im

(12)

is satisfied by the Hermitian weight matrix for all
and for all . Here is the ball that con-
tains the inverse-transformed versions of the vectors in ,
namely and all of its “1” neighbors in the integral lattice

mod mod

To find real and imaginary parts of desired weight coeffi-
cients, a solution to this system of inequalities is needed
to be calculated by an appropriate method. Note that (12) is
a linear feasibility problem, because left-hand side of each
inequality is linear in the variables Re and Im for

. Due to this property, if (12) is a feasible
inequality system for a given , any linear programming
procedure, e.g., the primal-dual method [17], or the perceptron
learning algorithm [18], would provide a solution, so the
complex parameters of the network could be determined by
reconstructing from this solution. On the other hand,
infeasibility of (12) means that the given memory vectors
cannot be altogether embedded as strict local minima into (5),
and consequently that there exists no Hermitian network which
has attractive fixed points located at each of these vectors.

C. Elimination of Trivial Spurious Memories

The goal of the design method described above is only to
render each memory vector as an attractive fixed point of the
network. Since no additional condition has been imposed on
eliminating undesired fixed points that might occur in the re-
sulting network, the Hermitian weight matrix obtained by
solving (12) by any suitable procedure could also satisfy a set
of inequalities, which implies a vector other than the elements
of be a strict local minimum of (5), although these inequal-
ities are not explicitly imposed in the design.

Most of the associative memory design methods are known to
cause spurious memories. Unfortunately, neither the existence
nor the location of many of these points in the state-space of the
dynamical network is predictable. Moreover, discrimination of
these vectors after the design is very difficult for largesince
almost every point in the huge state space of the system should

be checked for this purpose. On the other hand, some of the spu-
rious memories are correlated with the memory vectors and their
locations can be exactly determined in terms of the memory vec-
tors. For example, the conventional Hebb rule used in the design
of binary associative memory introduces many undesired fixed
points to the network beyond the desired ones, and most of these
points cannot be determined without checking each point in the
entire state-space [19]. However, one can easily conclude that if

is a fixed point of the discrete Hopfield network, then so is.
This property of network designed by the Hebb rule enables the
designer to address some spurious memories in advance, which
are directly related to the original memory vectors.

A similar relation can be extracted from our design method by
observing from (12) that only the differences between the entries
of the integral memory vectors, not their actual values, are used
in the construction of the design inequalities. It can be easily
verified that the inequality system constructed for an integral
memory vector in the way proposed in the
previous subsection would be exactly the same one constructed
for each vector mod , where
and is the -vector with all “1” entries. Hence, the weight
matrix calculated from the solution of (12) not only makes each
element of an attractive fixed point, but also introduces at
least additional vectors, namely the transformed
versions of the integral vectors obtained by incrementing each
element of in modulo by , , as
spurious memories to the network. Such vectors are called trivial
spurious memories and an extension to the design is proposed
in the following to eliminate them.

Let us append an arbitrary integer, say 1, to each memory
vector in as last entry and apply the proposed procedure to
obtain the complex-valued multistate associative memory of

neurons. Since the last entry of any trivial spurious memory
is different than 1 by definition, one can simply exclude their
transformed versions from the state-space of the network by re-
stricting the dynamics (3) in the subspace that consists of the
vectors whose last entries are equal to . This is achieved
by setting the state of the ( )st neuron fixed to along
the recursion. Note that this state is connected to the inputs of
other neurons via the weights , thus this modifica-
tion on the network model is actually equivalent to introducing a
complex threshold to th neuron of the orig-
inal network (3) for , whose dynamical behavior
can now be recast as

csign (13)

Although the method avoids the trivial spurious memories,
there might still occur some nontrivial spurious memories in the
network. It is expected that the number of such attractive fixed
points increase with , since the cardinality of the state-space
increases with . However, it is ensured by the method that
none of these spurious memories is located in for all

, therefore the resulting network corrects all possible errors
caused by incrementing or decrementing a single entry of the
memory vectors by one. In other words, correction of the vectors
in 1-neighborhood of the memory vectors are guaranteed.
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D. Algorithmic Summary of the Method

A summary of the proposed design method described in
Section II-B together with its improvement in Section II-C is
given below.

Algorithm 1: Input to the algorithm is

Step 0: Set a resolution factor for
the network. Append 1 to every as
the last entry. Set as the empty ma-
trix.

Step 1: For each and for each
, calculate the row vector as

shown in the first formula at the bottom
of the page, where

and
, and append it as an addi-

tional row to matrix .
Step 2: Find a solution for the
inequality system by using any ap-
propriate method.

Step 3: Construct the Hermitian matrix as
shown in the second formula at the bottom
of the page.

Step 4: Extract the parameters of re-
cursion (13) from as for

and for
.

As the dimension of the memory vectors increases, manip-
ulating the energy of each memory vector in the way suggested
by the second and third steps of this algorithm becomes time and
memory consuming when compared to the generalized Hebb
rule. In practice, this procedure is easily realizable for memory
sets with resolution factor of order ten and dimension of order
ten, sufficient to perform reconstruction of gray-scale images.
On the other hand, the performance of the resulting network is
much better than that of the one designed by the generalized
Hebb rule, as shown at the end of the next section.

III. SIMULATION RESULTS

Results of computer experiments are presented below to
illustrate the quantitative performance of the method, i.e.,
the maximum cardinality of an arbitrary memory set that can
be successfully embedded into the network by the proposed
design method. The recall capability of the resulting network
and its application on reconstructing gray-scale images are also
demonstrated.

A. Complete Storage Performance

Any fixed point of an th-order dynamical system can be
considered as an-dimensional static information encoded as
system parameters. As demonstrated in the previous section, dy-
namical associative memories are designed from this point of
view by determining the parameters of ana priori chosen net-
work model such that a given set of static vectors are the fixed
points of this system. Hence, an associative memory realizes a
dichotomy defined on its state space: some specific points in this
space are fixed points (constitute the limit set) of the system,
while the rest are not. However, the design of an ideal asso-
ciative memory in this way is generally not possible for every
possible memory set, i.e., not every dichotomy can be imple-
mented, because of limitations of the chosen model, e.g., the
number of parameters. In our case, for example, the network
model involves complex coefficients (weights and
thresholds), however, the number of all possible dichotomies is
equal to , which is the number of subsets of the state space

. If it were possible to design the complex-valued
multistate Hopfield network as an ideal associative memory for
every possible memory set, then this design would be a very ef-
ficient compression tool that enables the lossless compression
of an arbitrary memory set into complex numbers.
However, such a compression seems impossible from the in-
formation theory point of view, since the number of free vari-
ables, i.e., parameters, is quadratic in, while the number of di-
chotomies grows exponentially with. Therefore, if the design
is based on a network model, which is the case for many neural
associative memories, then only some of the possible memory
sets can be introduced as fixed points to the network by any de-
sign method.

...
...

...

...
...

...
. . .

...
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TABLE I
PERCENTAGES OFMEMORY SETS THAT YIELDED

FEASIBLE INEQUALITY SYSTEMS

We say that a memory set is stored completely by our
design method if each element of constitutes a fixed point in
the resulting network. We measure the quantitative performance
by the percentage of the number of completely stored memory
sets among a collection of memory sets generated randomly.
Recall that the complete storage of a memory set is equivalent
to the feasibility of the inequality system (12) constructed for
this set.

For some and values 100 random memory sets have
been generated and checked whether each of these sets yielded
a feasible inequality system or not. The number of sets that
yielded a feasible inequality system for each experiment is listed
in Table I, which shows that almost every set with can
be completely stored independent of the value of.

The effect of on complete storage performance is also
shown in Table I. The probability of complete storage in-
creases as the resolution factorincreases for fixed and .
However, this would cause the state space to grow enormously
and, hence, possibly cause more nontrivial spurious memories
as illustrated in the next subsection.

B. Application of the Design Procedure

We first give an illustrative example of proposed design pro-
cedure and investigate the performance of resulting network.

Example 1: Consider the memory set consisting of the fol-
lowing integral vectors:

which belong to the integral lattice . We have first
augmented one to each vector as the last entry and transformed
them to their phase-modulated versions by (2)

assuming that the resolution factor is equal to five. The
inequality system has been constructed as in (12) and been
solved by linear programming to obtain the weight matrix and
the threshold vector as shown at the bottom of the page.

It can be verified that for these parameters each transformed
memory vector is a fixed point of the recursion (13). After
injecting each 1-neighbor of each memory vector as the initial
state vector it has been observed that the network converged to
the nearest memory vector for each initial condition. Hence,
it can be concluded that the design has been successful. We
have also identified the spurious memories by checking the
transformed version of each element of the integral lattice

and observed that the network has 15 spurious
memories, none of which is trivial. Note that the same memory
set can be embedded for a larger resolution factor. When the
design is repeated for , one can see that the number of
spurious memories increases by two.

Since gray-scale images can be represented by integral vec-
tors, reconstruction of such images from their distorted versions
constitutes a straightforward application of multistate associa-
tive memory, as investigated in [20]. The following example il-
lustrates the performance of the proposed method in performing
this task.

Example 2: Gray-scale versions of three well-known test
images, namely Lenna, peppers, and cups images, have been
used in this experiment. Due to computational limitations, the
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Fig. 2. Test images used in image reconstruction example.

Fig. 3. Images corrupted by 20% salt-and-pepper noise (top) and their reconstructions obtained by the network (bottom).

original high-resolution 256-level images have been rescaled to
100 100 resolution and their gray-levels have been quantized
down to 20 levels. Thus, each image can be considered as a
100 100 matrix consisting of integral numbers where 0 and
20 denote a black and a white pixel, respectively, and each
integer value in between these values indicate a gray tone.
These three prototype images are shown in Fig. 2.

Each image has been segmented into 500 20-dimensional
vectors as for and

, such that th column of th image is represented
by concatenating 5 of these integral vectors, namely,

. Here denotes the image index: 1 for Lenna,
2 for peppers, and 3 for cups. A 20-neuron complex-valued
multistate associative memory has then been designed for each
triple of memory vectors , and

. Since we have attempted to embed only three
vectors into a 20-neuron network by our method, which is far
below the actual capacity investigated in Section III-A , all 500
designs have been successful.

After the design phase the distorted versions of the prototype
images have been obtained by adding 20% salt-and-pepper
noise, as shown in Fig. 3(top). Each of these distorted images
was segmented the same way as described above, and then the
transformed version of each vector obtained in this way as the
initial condition to the corresponding network was applied.
After all 500 networks reached their steady states, i.e., fixed
points, the integral vectors have been obtained by the inverse

transformation and combined in a 100 100 matrix.
The reconstructed images obtained by this procedure for
each distorted image are shown in the corresponding column
of Fig. 3(b). It can then be concluded that the networks are
capable of removing 20% salt-and-pepper noise on each image
successfully. In other words, almost none of these 500 networks
converges to a spurious memory in this experiment.

As the experiments were repeated for 40% and 60% noise
[see Fig. 4(top) and Fig. 5(top), respectively], nontrivial spu-
rious memories became effective in the recall, so reconstruction
performance decreased. This can be observed from the re-
called images shown in Fig. 4(bottom) and Fig. 5(bottom),
respectively.

The tasks performed by a filter and by an associative memory
are conceptually different: A filter is usually expected to remove
noise on any signal, while an associative memory is designed to
filter out the noise on prototype vectors only. However, despite
the negative effects of spurious memories, the performance of
the network in filtering noisy images is still comparable to that
of median filtering, which is known to be one of the most effec-
tive methods for filtering out salt-and-pepper noise. This can be
verified by Fig. 6(top) and (bottom), showing the reconstructed
versions of 40% corrupted images obtained by our method and
by median filtering, respectively.

The recall capability of our method with the generalized Hebb
rule proposed in [9] was also compared. In this experiment, the
three images in Fig. 2 were used as the prototype images in
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Fig. 4. Images corrupted by 40% salt-and-pepper noise (top) and their reconstructions obtained by the network (bottom).

Fig. 5. Images corrupted by 60% salt-and-pepper noise (top) and their reconstructions obtained by the network (bottom).

Fig. 6. Filtered images obtained from noisy images with 40% salt-and-pepper noise by the network (top) and by median filtering (bottom).
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(a) (b)

Fig. 7. Lenna images obtained by the networks designed by (a) the generalized
Hebb rule and (b) by the proposed method, respectively.

generalized Hebb rule. The dominant effect of spurious memo-
ries can be visually identified when Lenna image was about to
be reconstructed from its 20% distorted version when general-
ized Hebb rule is used in the design [see Fig. 7(a)]. Our method,
on the other hand, enables an almost perfect recall as shown in
Fig. 7(b).

IV. CONCLUSION

Besides some straightforward generalizations of the conven-
tional Hopfield model, complex-valued multistate Hopfield net-
work can also be an efficient tool to process static integral in-
formation. To support this idea, a design method for a subclass
of this model has been proposed, and uses Hermitian network
model to make it operate as a multistate associative memory.
The new method was shown to outperform the generalized Hebb
rule, which has yet constituted the only known so far learning
rule for this model in associating phase-modulated integral in-
formation. The recall performance of the resulting network was
illustrated on restoring gray-scale images, and the results have
been satisfactory.
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