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Abstract

We propose a simple framework that utilizes online ap-
pearance models for 3D face and facial feature tracking
with a deformable model. Adapting the geometrical param-
eters for each frame adopts a steepest ascent method in the
observation likelihood using a local exhaustive and directed
search in the parameter space. The observation likelihood
is based on the current appearance and the registered im-
ages. The developed framework is straightforward and has
the following advantages. First, it does not require any a
priori statistical facial texture. Second, it does not require
any a priori transition model for the 3D motion. Video se-
quences featuring large head motions, large facial anima-
tions, and external illumination variations are successfully
tracked, which demonstrate the efficiency of the developed
framework.

1. Introduction

Object tracking is required by many vision applications,
especially in video technology and visual interface systems.
The ability to track facial motion is useful in applications
such as face-based biometric person authentication, expres-
sion analysis, and human computer interaction. Detecting
and tracking faces in video sequences is a challenging task
because faces are non-rigid and their images have a high de-
gree of variability. A huge research effort has already been
devoted to detecting and tracking of facial features in 2D
and 3D (e.g., [2, 3, 5, 6]).

To solve the tracking problem, one may use feature-
based approaches which are utilized in 3D vision. These
approaches proceed as follows. First, a set of facial fea-
tures is extracted from the initial frame automatically or
manually. Then, a motion-based tracker attempts to locate
(match) them in the subsequent frame. An optimization pro-
cess is then carried out to recover the 3D pose and the pos-

sible facial animations. However, such trackers very often
suffer from the drifting problem (error accumulation) since
facial features do not have enough stable local appearance
due to many factors. To overcome the problem of appear-
ance changes, recent works on faces adopted statistical fa-
cial textures. For example, the Active Appearance Models
have been proposed as a powerful tool for analyzing facial
images [4, 8]. In [1], the author proposed a framework
that tracks face and facial features using Active Appear-
ance Models. While statistical appearance-based tracking
methods are promising with respect to some aspects, they
are depending on the imaging conditions under which the
learning is performed. Thus, by changing these conditions,
one should repeat the whole learning process. Also, they
are related to a specific class of objects.

Recently, 2D tracking approaches have adopted on line
appearance models [7, 9]. In [9], a deterministic and
stochastic approach was developed to track the 2D motion
of faces using an affine transform. In this paper, we propose
a simple and efficient tracking framework having the fol-
lowing advantages. First, the framework does not require
any a priori statistical facial texture. Second, it does not
require any a priori transition model for the 3D motion.
Third, the approach simultaneously tracks the head 3D pose
and the facial animations. The rest of the paper is organized
as follows. Section 2 describes the deformable 3D face
model. Section 3 states the tracking problem. Section 4 de-
scribes the utilized appearance and observation likelihood.
Section 5 describes the search algorithm utilizing a com-
bined exhaustive and directed search. Section 6 presents
some experimental results.

2. Modelling faces

2.1. A deformable 3D model

Building a generic 3D face model is a challenging task.
Indeed, such a model should account for the differences be-
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tween different specific human faces as well as between dif-
ferent facial expressions. This modelling was explored in
the computer graphics, computer vision, and model-based
image coding communities. In our study, we use the 3D
face model Candide. This 3D deformable wireframe model
was first developed for the purpose of model-based image
coding and computer animation. The 3D shape of this de-
formable 3D wireframe model is directly recorded in coor-
dinate form. The 3D face model is given by the 3D coordi-
nates of the vertices Pi, i = 1, . . . , n where n is the number
of vertices. Thus, the shape up to a global scale can be fully
described by the 3n-vector g – the concatenation of the 3D
coordinates of all vertices Pi. The vector g can be written
as:

g = g + S σ + A α (1)

where g is the standard shape of the model, and the columns
of S and A are the Shape and Animation Units, respectively.
A Shape Unit provides a way to deform the 3D wireframe
such as to adapt the eye width, the head width, the eye sep-
aration distance etc. Thus, the term S σ accounts for shape
variability (inter-person variability) while the term A α ac-
counts for the facial animation (intra-person variability).
The shape and animation variabilities can be approximated
well enough for practical purposes by this linear relation.
Also, we assume that the two kinds of variability are inde-
pendent.

In this study, we use 12 modes for the Shape Units ma-
trix and six modes for the Animation Units matrix. With-
out loss of generality, we have chosen the following Action
Units: 1) Jaw drop, 2) Lip stretcher, 3) Lip corner depressor,
4) Upper lip raiser, 5) Eyebrow lowerer, 6) Outer eyebrow
raiser. These Action Units are enough to cover most com-
mon facial actions (mouth and eyebrow movements).

In Equation (1), the 3D shape is expressed in a local co-
ordinate system. However, one should relate the 3D coordi-
nates to the image coordinate system. To this end, we adopt
the weak perspective projection model. We neglect the per-
spective effects since the depth variation of the face can
be considered as as small compared to its absolute depth.
Therefore, the mapping between the 3D face model and the
image is given by a 2×4 matrix, M, encapsulating both the
head 3D pose and the camera parameters.

Thus a 3D vertex Pi = (Xi, Yi, Zi)T ⊂ g will be pro-
jected onto the image point pi = (ui, vi)T given by:

(ui, vi)T = M (Xi, Yi, Zi, 1)T (2)

For a given person, σ is constant. Estimating the vector σ
can be carried out using either feature-based or featureless
approaches. Therefore, the state of the 3D model is given
by the 3D head pose (three rotations and three translations)
and the control vector α. This is given by the vector b:

b = [θx, θy, θz, λ tx, λ ty, λ tz, αT ]T(3)

2.2. Shape-free facial images

A face texture is represented as a shape-free texture (ge-
ometrically normalized image). The geometry of this image
is obtained by projecting the standard shape g (wireframe)
using a standard 3D pose (frontal view) onto an image with
a given resolution. The texture of this geometrically nor-
malized image is obtained by texture mapping from the
triangular 2D mesh in the input image using a piece-wise
affine transform, W . Mathematically, the warping process
applied to an input image y is denoted by:

x(b) = W(y, b) (4)

where x denotes the shape-free texture and b denotes the
geometrical parameters. Here images are represented by
one-dimensional vectors. Figure 1 illustrates the warping
process applied to an input image. Two resolution levels
have been used for the shape-free textures, encoded by 1300
and 5392 pixels.

(a) (b)

Figure 1. (a) An input image with correct adaptation. (b)
The corresponding shape-free image (5392 pixels).

3. The tracking problem

Given a video sequence depicting a moving face, the
tracking consists of estimating (for each frame) the 3D pose
of the face as well as the facial animations encoded by the
control vector α. In other words, one would like to esti-
mate the vector bt (Eq.(3)) for each frame t. In a tracking
context, the model parameters associated with the current
frame will be handed over to the next frame.

4. Appearance-based observation likelihood

In order to recover the model parameters, i.e. the vector
b, an observation likelihood should be available. This like-
lihood quantifies the consistence of the hypothetical model
parameters with the observation made at the same instant of
time. This observation likelihood is denoted by p(yt|bt).
Any function p should rely on some texture model with
which the observation yt is compared.
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Obviously, statistical texture models can be used in the
observation likelihood. For example, an active appearance
model search utilizes eigenfaces as a texture model [1]. In
our case, however, we seek simplicity and flexibility, that
is, there is no prior statistical texture model. Therefore our
idea is to exploit the video sequence itself, that is, the track-
ing and the learning processes are running in tandem. For
this purpose, an appearance At is built on-line from previ-
ous shape-free textures. This appearance should be able to
explain the stable observations and allow the recovery of the
geometric model.

For an input image yt and a hypothetical model b, the
observation likelihood is given by:

p(yt|b) ∼= < xt(b), At > (5)

where <,> is the zero-mean normalized cross correlation,
At is the current appearance, and xt(b) is the warped ver-
sion of the input image yt using the geometric parameters
bt (Eq. (4)).

For the current image yt, the optimal vector b∗
t under the

ML (Maximum Likelihood) framework is given by:

b∗
t = arg max

b
(p(yt|b)) = arg max

b
(< xt(b), At >) (6)

5. Combined exhaustive and directed search

Obviously, there is no closed-form solution to Eq.(6).
We approach this optimization problem using a combined
exhaustive and directed search in the parameter space.
Without loss of generality, we assume that the dimension
of the vector b is 12. The optimization consists of two suc-
cessive stages which are invoked for each frame in the video
sequence:

1. Exploration stage. At each iteration l = 1, 2, · · · , L,

the locally best parameter, b
[l]
j , is chosen by chang-

ing each parameter i ∈ {1, · · · , 12} under fixed val-
ues of the remaining parameters, [b[l−1]

k : k �= i, ; k ∈
{1, · · · , 12}]. The choice yields the largest increase in
the likelihood measure (Eq. (5)) providing that the pa-
rameters differ by only the value of the locally best
parameter b

[l]
j . The exploration is repeated while the

likelihood increases further. For each iteration and
for each parameter, the exploration locally exhausts
a given number of the equispaced parameter values
within the range [b[l−1]

i − ∆i/2, b
[l−1]
i + ∆i/2]. The

components of b[0] are set to the values computed at
the previous frame.

2. Search stage (refinement stage). The exploration con-
verges to a final maximum value p(yt|b[L]), and the

vector b[L] allows for inferring the possible steepest
ascent direction in the parameter space. The search
along this direction refines further the obtained param-
eters bµ = b[L] + µ (b[L] − b[0]). Once the model
geometry b∗

t = bµ is found, it is handed over to the
next frame.

In our implementation, ∆i is set to 12 degrees for the
rotation angles and to 1/40th of the image size for the 2D
translations. The number of equispaced steps is set to 20.
The refinement step is set to one hundredth of the distance
between the initial solution b[0] and the rough solution b[T ].

To gain computational efficiency, we can set an upper
bound Lmax for the number of iterations. Furthermore, the
exhaustive exploration stage adopts a coarse-to-fine scheme
for the equispaced values.

To update the current appearance model At to At+1 after
x(b∗

t ) becomes available, we assume the updating weights
on the current observation, x(b∗

t ), and the appearance model
At are λ and (1−λ) respectively, the appearance At can be
updated as

At+1 = λ x(b∗
t ) + (1 − λ) At (7)

The update rate λ can be chosen experimentally like most
incremental algorithms. With this updating scheme, the old
information stored in the model decays exponentially over
time. It is worthwhile noting that using the byproduct of the
above framework, i.e. the sequence of textures x(b∗

t ), one
can build an eigenface system associated with the tracked
face by means of batch or incremental Principal Component
Analysis.

6. Experimental results

Figure 2 displays the adaptation results associated with
eight frames of a 750-frame-long sequence featuring quite
large pose variations as well as large facial animations. The
sequence is of resolution 720x480 pixels. As can be seen
with the very little prior information, the 3D motion of the
face as well as the facial actions associated with the mouth
and the eyebrows are accurately recovered. The upper left
corner shows the current appearance as well as the shape-
free texture. Also, one can notice that the mouth animations
correspond well to the actual ones despite that the tracker
has no prior knowledge neither on the texture appearance
nor on the transition motions of such animations. Figure 3
displays the estimated value of the yaw angle, the vertical
translation, the lip stretcher, and the brow raiser as a func-
tion of the frames of the sequence.

Figure 4 displays the adaptation results associated with
two video sequences. The girl sequence features external
illumination variations obtained with a moving light source
just above the camera.
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Figure 2. Face and facial tracking results. Frames 63,
181, 222, 282, 418, 492, 522, and 683, 720x480 pixels in
size, in a 750-frame-long sequence. The upper left corner
shows the current appearance At and the shape-free texture.
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Figure 3. The yaw angle (large value for frame 282), the
vertical translation, the lip stretcher (large values for frames
181 and 418), and the brow raiser (large value for frame
522).

Figure 4. Face and facial feature tracking results asso-
ciated with two sequences. The second sequence features
illumination variations.
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